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Integrable equations and algebraic geometry

1834 - Russell: Solitary wave on a canal of water
1895 - KdV equation: 41y = 6101y + Pxxx

1966 - Gardner, Green, Kruskal, Miura: Inverse scattering
transform method for integrating KdV

@ 1968 - Lax, Novikov, Dubrovin, Krichever, Matveev, lts,...:
— Lax pairs, Baker-Akhiezer functions
— KP, Boussinesq, sine-Gordon, NLS equations...

1973 - Fay's identity
1983 - Fay, Mumford: KdV, KP, sine-Gordon




The nonlinear Schrédinger equation

@ The nonlinear Schrédinger (NLS) equation, p = £1

i)+ 020 +2p P =0

o Integrability: Zakharov and Shabat (1971)

@ Applications: hydrodynamics (deep water waves), plasma
physics and nonlinear fiber optics




The nonlinear Schrédinger equation

@ The nonlinear Schrédinger (NLS) equation, p = £1
i+ O3 +2p PP =0

o Integrability: Zakharov and Shabat (1971)

@ Applications: hydrodynamics (deep water waves), plasma
physics and nonlinear fiber optics

Reference

o E. Belokolos, A. Bobenko, V. Enolskii, A. Its, V. Matveev,
Algebro-geometric approach to nonlinear integrable equations,
(1994)
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The Davey-Stewartson equations

@ The (integrable) Davey-Stewartson equations, where o = +1
and p = +1,

i + Pux — thyy +2(S + plp2)1p =0
byx + aq)yy + 2P|¢|>2<x =0

@ 1974, Davey and Stewartson: evolution of a three-dimensional
wave packet on water of finite depth

Reference

e T. Malanyuk, Finite-gap solutions of Davey-Stewartson
equations, (1994)
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@ The multi-component nonlinear Schrodinger equation, s, = +1

P0up; + 030 + 2D sl =0 j=1,...,n
k=1
o Notations: n-NLS® where s = (sy,...,sp)

e n=2,s=(1,1): Manakov system (1974), asymptotic model
for the propagation of the electric field in a waveguide

Reference

e J. Elgin, V. Enolski, A. Its, Effective integration of the
nonlinear vector Schrédinger equation, (2007)
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Theta functions

Riemann surfaces

Definition
A Riemann surface R is a connected one-dimensional complex
analytic manifold

Example: Nonsingular algebraic curves

Any compact Riemann surface can be represented as a nonsingular
compactified algebraic curve




Theta functions

Covering of compact Riemann surfaces

M, N compact Riemann surfaces

i =1
M WK =1 l
‘ ' \/b=2
f | /i\
] | 1
N JI. ;I

Figure: Covering of degree 5



Theta functions

Topology of compact Riemann Surfaces

Theorem (and Definition)

Any compact Riemann surface R is homeomorphic to a sphere with
handles. The number g € N of handles is called the genus of R.

Figure: Sphere with 2 handles
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@ Rg compact Riemann surface of genus g J
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Homology basis

@ Rg compact Riemann surface of genus g
e Ay, Bi,..., Az, Bg canonical homology basis

=) (=2

Figure: Canonical homology basis
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Holomorphic differentials

® wi,...,wg basis of holomorphic differentials normalized by

/ wj-:2i7r(5jk j,k:].,...,g
Ag

© B = ([, wj) matrix of B-periods
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Theta functions
Theta functions with characteristics

Let z € C8 and ',6" € {0,118

O[l(z) = ) exp{3B(m+d),m+5)+ (m+d,z+2irs")}

meceZ8

O(z) = Z exp {3(Bm,m) + (m,z)}

mecZsg

O[8](z) = ©(z + 2im” + BJ') exp {5(BY', &) + (z + 2imd", ')}

v
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Cross-ratio functions

° Jola,bc.d) = (=563

(] )\O(a’ b7 C7 d) —'I_ )\O(a’ C’ b, d) = 1
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On a compact Riemann surface of genus g > 0

@ ¢ nonsingular odd characteristic
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Fay’'s identities

Cross-ratio functions

On a compact Riemann surface of genus g > 0

@ ¢ nonsingular odd characteristic

Ag(a, b, c,d) = O)(J; w) OL](Jy )
s o[3](J2 w)es]( S w)

o Fay’s identity. Let z< C8 and a,b,c,d € R,

@(z—l—/caw)@(z—i-/bdw) Ag(a,c, b, d)

+®(z+/baw)@(z+/dw))\g(a, b,c,d)

:;(z)e(z+/caw+/bdw)
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Fay’'s identities
Notations

@ Let a € Ry and k; a local parameter

2
wj(a) = (Vaj + Wajka+ Usj == o +...)dk,
o F:C8+—C .
D,F(z) =Y 0;F(z)Va,
j=1




Fay’'s identities
Corollaries

Oz + [{w)
O(2)

Oz + [fw)e(z + [Pw)
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Corollaries

Oz + [Pw) Oz + [fw)e(z + [Pw)
Doln —gpy— =Ptp @(z:-ffw)@(z)
Oz + [Pw)O(z+ [fw)

DaDpIn ©(z) = g1 + g2 o(z)2




Fay’'s identities
Corollaries

New corollary

oz + [Pw)
o(z)

b
2)

/
D% In ol

+Ky4+2D2InO(z) =0
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Associated system of n-NLS® and reduction condition

n-NLS®: i 0ty + 20 + 2D sln)yy =0 j=1,....n
k=1

@ Associated system of n-NLS®

POt + i + 2D i) vy =0
k=1

—i 0 + 0297 + 20> eyl =0

k=1

@ Reduction condition

Ui = s
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The following functions for j = 1,..., n are solutions of the
associated system of n-NLS®

O(Z-D+ [ _
Uil 1) = A =g D;“ ) cxpi(—Ep + Nt)
ani1,a) ©(Z — D - fanﬂ _

where
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Theta functional solutions of the associated system

The following functions for j = 1,..., n are solutions of the
associated system of n-NLS®

©(Z-D+ fam _
Pi(x, t) = A; 8(Z-D) exp i(—Ejx + Njt)
q2(an+1 aj) e(z D - fa,,+1 .
Eix — N;
77/)_] ( ) AJ @(Z D) €xp I( jX Jt)
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Fay’'s identities
Theta functional solutions of the associated system

10h1 4+ 291 + 2 (X Yk¥}) 1 =0

Q@ a=a1and b=2a

@(z+f:nl w) 5 @(z+f:nl w)
D;n+1 In (9(2)+1 + Dan+1 In @(Z)Jrl +

@(erf:l w) 2
(Dovis 0 =322 1)+ Ko +2D2 , In©(2) =0
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Theta functional solutions of the associated system

10h1 4+ 291 + 2 (X Yk¥}) 1 =0

Q@ a=a1and b=2a

a1 a1
1 In +fanﬂ D2 In S +fa et
ant1 O(z) an+1 O(2)

@(erf:l w) 2
(Dapa 0 =752 — K1)+ Ko +2D3, , In6(2) =

Q@ > /F1Va =0 andthus D2 =-37_ D

an+1 an+1




Fay’'s identities
Theta functional solutions of the associated system

10h1 4+ 291 + 2 (X Yk¥}) 1 =0

Q@ a=a1and b=2a

a1 a1
1 In +fanﬂ D2 In S +fa et
ant1 O(z) an+1 O(2)

@(erf:l w) 2
(Dapa 0 =752 — K1)+ Ko +2D3, , In6(2) =

Qo Zn—H V, =0 and thus Dg g = Zk 1 D2, D
+fak @(Z+f n+1
Q D,,., D, InO(z) = q1 + @ @(2)2




Theta-functional solutions of
n-NLS?



Theta-functional solutions of n-NLS*

Real Riemann surfaces

® Rg is called real if it admits an anti-holomorphic involution
: 2 _
T :Rg =>Rg 7=1




Theta-functional solutions of n-NLS*

Real Riemann surfaces

® Rg is called real if it admits an anti-holomorphic involution
: 2 _
T :Rg =>Rg 7=1
@ The set of fixed points forms connected components which are
called the real ovals of the involution 7
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Real Riemann surfaces

® Rg is called real if it admits an anti-holomorphic involution
: 2 _
T :Rg =>Rg 7=1
@ The set of fixed points forms connected components which are
called the real ovals of the involution 7

@ Denote by R;(RR) the set of fixed points. It consists of k
disjoint topological circles, 0 < k < g+ 1
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Real Riemann surfaces

Definition

The complement R, \ Rg(R) has either one or two connected
components

o Ry is a dividing surface if Rg(R) separates R
@ Rg is non-dividing if R; \ Rg(R) remains connected
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Real Riemann surfaces

Symmetric homology basis (V. Vinnikov's paper 1993)

There exists a canonical homology basis

(A,B) = (Ay... Az, By ...Bg) such that

(7)=(8 3)(5)
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Theta-functional solutions of n-NLS®

@ R, real dividing compact Riemann surface of genus g > 0

@ f: R, — C, a (n+1)-sheeted covering of the sphere
© a1,...,an41 distinct points such that f(a;) = f(ax)

Q T7a; = a; with local parameters satisfying W = ka,(p)
Q@ DcRe
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Theta-functional solutions of n-NLS®
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Theta-functional solutions of n-NLS®

Theorem

Forj=1,...,nlet sj = sign(qz2(an+1, aj))

O(Z-D+ [7 w)

an+1

Yi(x, t) = \/192(an+1, aj)| 8(Z-D) expi(—Ejx + N;t)

are smooth solutions of n-NLS®.
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Theta-functional solutions of n-NLS*

Question for the audience

@ What is the general form of a dividing algebraic curve?
— Construction of M-curves by Harnack’s method J
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Degenerate Riemann surfaces

Degeneration to genus g — 1

@ We pinch the Agz-cycle into a double point
— Py, P> after desingularization J

o Normalized holomorphic differential wg becomes differential of
third kind with simple poles at P; and P> J

o Component B, of the diagonal part of B tends to —oo J
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Degenerate Riemann surfaces

Degeneration to genus zero

@ Components of the diagonal part of B tend to —co J

o Putting Dy, = %Bkk + dg

©(Z-D) —

Z exp Z IB%,km,mk—Fka Zk — dx)

me{0,1}8 1<i<k<g




Degenerate Riemann surfaces
Solutions in genus zero of 4-NLS®

4
P01 + b +2(Y sklvnl?) v =0

k=1

4
i Oetpa + 0342 + 2D sultul?) 2 = 0

k=1

4
i Oetps + O5ea + 2> sultul?) s = 0

k=1

4
i Otpa + 03000 + 2D selthud?) tha = 0
k=1
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Solutions in genus zero of 4-NLS®

Figure: Bright 2-solitons of 4-NLS® with s = (1,1,1,1)
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Solutions in genus zero of 4-NLS®

Figure: Breather of 4-NLS® with s = (—1,-1,1,-1)
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Solutions in genus zero of 4-NLS®

[%s]
" 4-
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x

Figure: Rational breather of 4-NLS® with s = (1,1,1,1)
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Solutions in genus zero of 4-NLS®

Y -

A e eI R

ot A I T T
x

Figure: 4-rational breather of 4-NLS® with s = (1,1,1,1)
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Thank you
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