Caroline Kalla

University of Burgundy

ICMS workshop 14 october 2010

Introduction

• 1834 - Russell: Solitary wave on a canal of water

- 1834 Russell: Solitary wave on a canal of water
- 1895 KdV equation: $4\psi_t = 6\psi\psi_x + \psi_{xxx}$

- 1834 Russell: Solitary wave on a canal of water
- 1895 KdV equation: $4\psi_t = 6\psi\psi_x + \psi_{xxx}$
- 1966 Gardner, Green, Kruskal, Miura: Inverse scattering transform method for integrating KdV

- 1834 Russell: Solitary wave on a canal of water
- 1895 KdV equation: $4\psi_t = 6\psi\psi_x + \psi_{xxx}$
- 1966 Gardner, Green, Kruskal, Miura: Inverse scattering transform method for integrating KdV
- 1968 Lax, Novikov, Dubrovin, Krichever, Matveev, Its,...:
 - \rightarrow Lax pairs, Baker-Akhiezer functions
 - \rightarrow KP, Boussinesq, sine-Gordon, NLS equations...

- 1834 Russell: Solitary wave on a canal of water
- 1895 KdV equation: $4\psi_t = 6\psi\psi_x + \psi_{xxx}$
- 1966 Gardner, Green, Kruskal, Miura: Inverse scattering transform method for integrating KdV
- 1968 Lax, Novikov, Dubrovin, Krichever, Matveev, Its,...:
 - \rightarrow Lax pairs, Baker-Akhiezer functions
 - \rightarrow KP, Boussinesq, sine-Gordon, NLS equations...
- 1973 Fay's identity
- 1983 Fay, Mumford: KdV, KP, sine-Gordon

nominear semouriger equation

ullet The nonlinear Schrödinger (NLS) equation, $ho=\pm 1$

$$i \,\partial_t \psi + \partial_x^2 \psi + 2 \,\rho \,|\psi|^2 \,\psi = 0$$

- Integrability: Zakharov and Shabat (1971)
- Applications: hydrodynamics (deep water waves), plasma physics and nonlinear fiber optics

The nonlinear Schrödinger equation

ullet The nonlinear Schrödinger (NLS) equation, $ho=\pm 1$

$$i \partial_t \psi + \partial_x^2 \psi + 2 \rho |\psi|^2 \psi = 0$$

- Integrability: Zakharov and Shabat (1971)
- Applications: hydrodynamics (deep water waves), plasma physics and nonlinear fiber optics

Reference

• E. Belokolos, A. Bobenko, V. Enolskii, A. Its, V. Matveev, Algebro-geometric approach to nonlinear integrable equations, (1994)

ullet The (integrable) Davey-Stewartson equations, where $lpha=\pm 1$ and $ho=\pm 1$,

$$i\psi_t + \psi_{xx} - \alpha\psi_{yy} + 2(\Phi + \rho|\psi|^2)\psi = 0$$
$$\Phi_{xx} + \alpha\Phi_{yy} + 2\rho|\psi|_{xx}^2 = 0$$

• 1974, Davey and Stewartson: evolution of a three-dimensional wave packet on water of finite depth

The Davey-Stewartson equations

ullet The (integrable) Davey-Stewartson equations, where $lpha=\pm 1$ and $ho=\pm 1$,

$$i\psi_t + \psi_{xx} - \alpha\psi_{yy} + 2(\Phi + \rho|\psi|^2)\psi = 0$$

$$\Phi_{xx} + \alpha\Phi_{yy} + 2\rho|\psi|_{xx}^2 = 0$$

 1974, Davey and Stewartson: evolution of a three-dimensional wave packet on water of finite depth

Reference

 T. Malanyuk, Finite-gap solutions of Davey-Stewartson equations, (1994)

The multi-component nonlinear Schrödinger equation

• The multi-component nonlinear Schrödinger equation, $s_k=\pm 1$

$$i \partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n s_k |\psi_k|^2 \right) \psi_j = 0$$
 $j = 1, \dots, n$

• Notations: n-NLS^s where $s = (s_1, \ldots, s_n)$

The multi-component nonlinear Schrödinger equation

ullet The multi-component nonlinear Schrödinger equation, $s_k=\pm 1$

$$i \partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n s_k |\psi_k|^2 \right) \psi_j = 0$$
 $j = 1, \dots, n$

- Notations: n-NLS s where $s = (s_1, \ldots, s_n)$
- n = 2, s = (1, 1): Manakov system (1974), asymptotic model for the propagation of the electric field in a waveguide

The multi-component nonlinear Schrödinger equation

• The multi-component nonlinear Schrödinger equation, $s_k=\pm 1$

$$i \partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n s_k |\psi_k|^2 \right) \psi_j = 0$$
 $j = 1, \dots, n$

- Notations: n-NLS s where $s = (s_1, \dots, s_n)$
- n=2, s=(1,1): Manakov system (1974), asymptotic model for the propagation of the electric field in a waveguide

Reference

• J. Elgin, V. Enolski, A. Its, Effective integration of the nonlinear vector Schrödinger equation, (2007)

- Theta functions
- Pay's identities
- Theta-functional solutions of n-NLS^s
- 4 Degenerate Riemann surfaces

Theta functions

Riemann surfaces

Definition

A Riemann surface \mathcal{R} is a connected one-dimensional complex analytic manifold

Definition

A Riemann surface \mathcal{R} is a connected one-dimensional complex analytic manifold

Example: Nonsingular algebraic curves

Riemann surfaces

Definition

A Riemann surface \mathcal{R} is a connected one-dimensional complex analytic manifold

Example: Nonsingular algebraic curves

Theorem

Any compact Riemann surface can be represented as a nonsingular compactified algebraic curve

Covering of compact Riemann surfaces

M, N compact Riemann surfaces

Figure: Covering of degree 5

Topology of compact Riemann Surfaces

Theorem (and Definition)

Any compact Riemann surface \mathcal{R} is homeomorphic to a sphere with handles. The number $g \in \mathbb{N}$ of handles is called the genus of \mathcal{R} .

Figure: Sphere with 2 handles

Homology basis

ullet \mathcal{R}_g compact Riemann surface of genus g

Homology basis

- ullet \mathcal{R}_g compact Riemann surface of genus g
- ullet $\mathcal{A}_1,\mathcal{B}_1,\ldots,\mathcal{A}_g,\mathcal{B}_g$ canonical homology basis

Figure: Canonical homology basis

Holomorphic differentials

 \bullet ω_1,\ldots,ω_g basis of holomorphic differentials normalized by

$$\int_{\mathcal{A}_k} \omega_j = 2i\pi\delta_{jk} \quad j,k=1,\ldots,g$$

Holomorphic differentials

ullet ω_1,\ldots,ω_g basis of holomorphic differentials normalized by

$$\int_{\mathcal{A}_k} \omega_j = 2i\pi\delta_{jk} \quad j,k=1,\ldots,g$$

• $\mathbb{B} = (\int_{\mathcal{B}_{L}} \omega_{j})$ matrix of \mathcal{B} -periods

Theta functions with characteristics

Fay's identities

Let $z \in \mathbb{C}^g$ and $\delta', \delta'' \in \{0, \frac{1}{2}\}^g$

$$\Theta[\delta](\mathbf{z}) = \sum_{\mathbf{m} \in \mathbb{Z}^{\mathcal{S}}} \exp\left\{ \frac{1}{2} \langle \mathbb{B} \left(\mathbf{m} + \delta'\right), \mathbf{m} + \delta' \rangle + \langle \mathbf{m} + \delta', \mathbf{z} + 2i\pi\delta'' \rangle \right\}$$

Theta functions with characteristics

Let
$$\mathbf{z} \in \mathbb{C}^{\mathbf{g}}$$
 and $\delta', \delta'' \in \{0, \frac{1}{2}\}^{\mathbf{g}}$

$$\Theta[\delta](\mathsf{z}) = \sum_{\mathsf{m} \in \mathbb{Z}^{\mathsf{g}}} \exp\left\{ \frac{1}{2} \langle \mathbb{B}\left(\mathsf{m} + \delta'\right), \mathsf{m} + \delta'
angle + \langle \mathsf{m} + \delta', \mathsf{z} + 2i\pi\delta''
angle
ight\}$$

$$\Theta(z) = \sum_{\boldsymbol{m} \in \mathbb{Z}_g} \exp\left\{ \tfrac{1}{2} \langle \mathbb{B} \, \boldsymbol{m}, \boldsymbol{m} \rangle + \langle \boldsymbol{m}, \boldsymbol{z} \rangle \right\}$$

Theta functions with characteristics

Let $\mathbf{z} \in \mathbb{C}^{\mathbf{g}}$ and $\delta', \delta'' \in \{0, \frac{1}{2}\}^{\mathbf{g}}$

$$\Theta[\delta](\mathbf{z}) = \sum_{\mathbf{m} \in \mathbb{Z}_{\delta}} \exp\left\{ \frac{1}{2} \langle \mathbb{B}\left(\mathbf{m} + \delta'\right), \mathbf{m} + \delta'
angle + \langle \mathbf{m} + \delta', \mathbf{z} + 2i\pi\delta''
angle
ight\}$$

$$\Theta(\mathsf{z}) = \sum_{\mathsf{m} \in \mathbb{Z}^{\mathcal{S}}} \mathsf{exp}\left\{ rac{1}{2} \langle \mathbb{B} \, \mathsf{m}, \mathsf{m}
angle + \langle \mathsf{m}, \mathsf{z}
angle
ight\}$$

$$\Theta[\delta](\mathbf{z}) = \Theta(\mathbf{z} + 2i\pi\delta'' + \mathbb{B}\,\delta')\,\exp\left\{\frac{1}{2}\langle\mathbb{B}\,\delta',\delta'\rangle + \langle\mathbf{z} + 2i\pi\delta'',\delta'\rangle\right\}$$

Theta functions

Fay's identities

On $\hat{\mathbb{C}}$

•
$$\lambda_0(a, b, c, d) = \frac{(a-c)(b-d)}{(a-d)(b-c)}$$

On Ĉ

- $\lambda_0(a, b, c, d) = \frac{(a-c)(b-d)}{(a-d)(b-c)}$
- $\lambda_0(a, b, c, d) + \lambda_0(a, c, b, d) = 1$

On a compact Riemann surface of genus g > 0

ullet δ nonsingular odd characteristic

$$\lambda_{g}(a,b,c,d) = \frac{\Theta[\delta](\int_{c}^{a} \omega) \Theta[\delta](\int_{d}^{b} \omega)}{\Theta[\delta](\int_{d}^{a} \omega) \Theta[\delta](\int_{c}^{b} \omega)}$$

On a compact Riemann surface of genus g>0

ullet δ nonsingular odd characteristic

$$\lambda_{g}(a,b,c,d) = \frac{\Theta[\delta](\int_{c}^{a} \omega) \Theta[\delta](\int_{d}^{b} \omega)}{\Theta[\delta](\int_{d}^{a} \omega) \Theta[\delta](\int_{c}^{b} \omega)}$$

• Fay's identity. Let $z \in \mathbb{C}^g$ and $a, b, c, d \in \mathcal{R}_g$

$$\Theta(\mathbf{z} + \int_{c}^{a} \omega) \,\Theta(\mathbf{z} + \int_{b}^{d} \omega) \,\lambda_{g}(\mathbf{a}, \mathbf{c}, \mathbf{b}, \mathbf{d})
+ \Theta(\mathbf{z} + \int_{b}^{a} \omega) \,\Theta(\mathbf{z} + \int_{c}^{d} \omega) \,\lambda_{g}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})
= \Theta(\mathbf{z}) \,\Theta(\mathbf{z} + \int_{c}^{a} \omega + \int_{c}^{d} \omega)$$

Notations

ullet Let $a\in\mathcal{R}_{oldsymbol{g}}$ and $k_{oldsymbol{a}}$ a local parameter

$$\omega_j(a) = (V_{a,j} + W_{a,j} k_a + U_{a,j} \frac{k_a^2}{2!} + \ldots) dk_a$$

Notations

• Let $a \in \mathcal{R}_g$ and k_a a local parameter

$$\omega_j(a) = (V_{a,j} + W_{a,j} k_a + U_{a,j} \frac{k_a^2}{2!} + \ldots) dk_a$$

•
$$F: \mathbb{C}^g \longmapsto \mathbb{C}$$

$$D_a F(z) = \sum_{j=1}^{g} \partial_{z_j} F(z) V_{a,j}$$

$$D'_{a}F(z) = \sum_{i=1}^{g} \partial_{z_{j}}F(z)W_{a,j}$$

Corollaries

Corollary 1

$$D_b \ln \frac{\Theta(z + \int_c^a \omega)}{\Theta(z)} = p_1 + p_2 \frac{\Theta(z + \int_b^a \omega) \Theta(z + \int_c^b \omega)}{\Theta(z + \int_c^a \omega) \Theta(z)}$$

Corollaries

Corollary 1

$$D_b \ln \frac{\Theta(z + \int_c^a \omega)}{\Theta(z)} = p_1 + p_2 \frac{\Theta(z + \int_b^a \omega) \Theta(z + \int_c^b \omega)}{\Theta(z + \int_c^a \omega) \Theta(z)}$$

Corollary 2

$$D_a D_b \ln \Theta(z) = q_1 + q_2 \frac{\Theta(z + \int_a^b \omega) \Theta(z + \int_b^a \omega)}{\Theta(z)^2}$$

Corollaries

New corollary

$$\begin{aligned} D_a' \ln \frac{\Theta(\mathbf{z} + \int_a^b \omega)}{\Theta(\mathbf{z})} + D_a^2 \ln \frac{\Theta(\mathbf{z} + \int_a^b \omega)}{\Theta(\mathbf{z})} + \left(D_a \ln \frac{\Theta(\mathbf{z} + \int_a^b \omega)}{\Theta(\mathbf{z})} - \mathcal{K}_1 \right)^2 \\ + \mathcal{K}_2 + 2 D_a^2 \ln \Theta(\mathbf{z}) = 0 \end{aligned}$$

Associated system of n-NLS^s and reduction condition

n-NLS^s:
$$i \partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n s_k |\psi_k|^2 \right) \psi_j = 0$$
 $j = 1, \dots, n$

Associated system of n-NLS^s and reduction condition

n-NLS^s:
$$i \partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n s_k |\psi_k|^2 \right) \psi_j = 0$$
 $j = 1, \dots, n$

Associated system of n-NLS^s

$$i \partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n \psi_k \, \psi_k^* \right) \psi_j = 0$$
$$-i \, \partial_t \psi_j^* + \partial_x^2 \psi_j^* + 2 \left(\sum_{k=1}^n \psi_k \, \psi_k^* \right) \psi_j^* = 0$$

Associated system of n-NLS^s and reduction condition

n-NLS^s:
$$i \partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n s_k |\psi_k|^2 \right) \psi_j = 0$$
 $j = 1, \dots, n$

Associated system of n-NLS^s

$$i \,\partial_t \psi_j + \partial_x^2 \psi_j + 2 \left(\sum_{k=1}^n \psi_k \,\psi_k^* \right) \psi_j = 0$$
$$-i \,\partial_t \psi_j^* + \partial_x^2 \psi_j^* + 2 \left(\sum_{k=1}^n \psi_k \,\psi_k^* \right) \psi_j^* = 0$$

Reduction condition

$$\psi_j^* = s_j \, \overline{\psi_j}$$

Assumptions

1 \mathcal{R}_g compact Riemann surface of genus g>0

- **1** \mathcal{R}_g compact Riemann surface of genus g>0
- $f: \mathcal{R}_g \longrightarrow \hat{\mathbb{C}}$, a (n+1)-sheeted covering of the sphere

- **1** \mathcal{R}_g compact Riemann surface of genus g>0
- $f: \mathcal{R}_g \longrightarrow \hat{\mathbb{C}}$, a (n+1)-sheeted covering of the sphere
- a_1, \ldots, a_{n+1} distinct points such that $f(a_i) = f(a_k)$

- **1** \mathcal{R}_g compact Riemann surface of genus g>0
- $f: \mathcal{R}_g \longrightarrow \hat{\mathbb{C}}$, a (n+1)-sheeted covering of the sphere
- a_1, \ldots, a_{n+1} distinct points such that $f(a_i) = f(a_k)$

Theorem

Theorem

The following functions for j = 1, ..., n are solutions of the associated system of n-NLSs

$$\psi_j(x,t) = A_j \frac{\Theta(\mathbf{Z} - \mathbf{D} + \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathbf{Z} - \mathbf{D})} \exp i(-E_j x + N_j t)$$

$$\psi_j^*(x,t) = \frac{q_2(a_{n+1},a_j)}{A_j} \frac{\Theta(\mathsf{Z} - \mathsf{D} - \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathsf{Z} - \mathsf{D})} \exp i(E_j x - N_j t)$$

where

Theorem

The following functions for j = 1, ..., n are solutions of the associated system of n-NLS^s

$$\psi_j(x,t) = A_j \frac{\Theta(\mathsf{Z} - \mathsf{D} + \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathsf{Z} - \mathsf{D})} \exp i(-E_j x + N_j t)$$

$$\psi_j^*(x,t) = rac{q_2(a_{n+1},a_j)}{A_j} rac{\Theta(\mathsf{Z} - \mathsf{D} - \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathsf{Z} - \mathsf{D})} \exp i(E_j x - N_j t)$$

where

$$Z = iV_{a_{n+1}}x + iW_{a_{n+1}}t$$

 $E_i,\ N_i$ depend on a_i and a_{n+1} , and $\mathbf{D}\in\mathbb{C}^g$, $A_i\in\mathbb{C}^*$ are arbitrary constants.

Theorem

The following functions for j = 1, ..., n are solutions of the associated system of n-NLS^s

$$\psi_j(x,t) = A_j \frac{\Theta(\mathsf{Z} - \mathsf{D} + \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathsf{Z} - \mathsf{D})} \exp i(-E_j x + N_j t)$$

$$\psi_j^*(x,t) = rac{q_2(a_{n+1},a_j)}{A_j} rac{\Theta(\mathsf{Z} - \mathsf{D} - \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathsf{Z} - \mathsf{D})} \exp i(E_j x - N_j t)$$

where

$$Z = iV_{a_{n+1}}x + iW_{a_{n+1}}t$$

 $E_i,\ N_i$ depend on a_i and a_{n+1} , and $\mathbf{D}\in\mathbb{C}^g$, $A_i\in\mathbb{C}^*$ are arbitrary constants.

Fay's identities

Theta functional solutions of the associated system

Proof.

Proof.

$$i \partial_t \psi_1 + \partial_x^2 \psi_1 + 2 \left(\sum_{k=1}^n \psi_k \psi_k^* \right) \psi_1 = 0$$

Proof.

$$i \partial_t \psi_1 + \partial_x^2 \psi_1 + 2 \left(\sum_{k=1}^n \psi_k \psi_k^* \right) \psi_1 = 0$$

 $a = a_{n+1} \text{ and } b = a_1$

$$D_{a_{n+1}}' \ln \frac{\Theta(\mathbf{z} + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(\mathbf{z})} + \ D_{a_{n+1}}^2 \ln \frac{\Theta(\mathbf{z} + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(\mathbf{z})} +$$

$$\left(D_{a_{n+1}} \ln \frac{\Theta(z + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(z)} - K_1\right)^2 + K_2 + 2 D_{a_{n+1}}^2 \ln \Theta(z) = 0$$

Proof.

$$i \partial_t \psi_1 + \partial_x^2 \psi_1 + 2 \left(\sum_{k=1}^n \psi_k \psi_k^* \right) \psi_1 = 0$$

 $a = a_{n+1}$ and $b = a_1$

$$D_{a_{n+1}}' \ln \frac{\Theta(\mathbf{z} + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(\mathbf{z})} + \ D_{a_{n+1}}^2 \ln \frac{\Theta(\mathbf{z} + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(\mathbf{z})} +$$

$$\left(D_{a_{n+1}} \ln \frac{\Theta(z + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(z)} - K_1\right)^2 + K_2 + 2 D_{a_{n+1}}^2 \ln \Theta(z) = 0$$

②
$$\sum_{k=1}^{n+1} \mathbf{V}_{a_k} = 0$$
 and thus $D_{a_{n+1}}^2 = -\sum_{k=1}^n D_{a_{n+1}} D_{a_k}$

Proof.

$$i \partial_t \psi_1 + \partial_x^2 \psi_1 + 2 \left(\sum_{k=1}^n \psi_k \psi_k^* \right) \psi_1 = 0$$

1 $a = a_{n+1}$ and $b = a_1$

$$D_{a_{n+1}}' \ln \frac{\Theta(\mathbf{z} + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(\mathbf{z})} + D_{a_{n+1}}^2 \ln \frac{\Theta(\mathbf{z} + \int_{a_{n+1}}^{a_1} \omega)}{\Theta(\mathbf{z})} +$$

$$\left(D_{a_{n+1}}\ln\frac{\Theta(\mathsf{z}+\int_{a_{n+1}}^{\mathsf{a}_1}\omega)}{\Theta(\mathsf{z})}-\mathcal{K}_1\right)^2+\ \mathcal{K}_2+2\ D_{a_{n+1}}^2\ln\Theta(\mathsf{z})=0$$

②
$$\sum_{k=1}^{n+1} \mathbf{V}_{a_k} = 0$$
 and thus $D_{a_{n+1}}^2 = -\sum_{k=1}^n D_{a_{n+1}} D_{a_k}$

Definitions

ullet \mathcal{R}_{g} is called real if it admits an anti-holomorphic involution

$$au: \mathcal{R}_{m{g}}
ightarrow \mathcal{R}_{m{g}} \quad au^2 = 1$$

Definitions

 \bullet \mathcal{R}_{σ} is called real if it admits an anti-holomorphic involution

$$au: \mathcal{R}_{m{g}}
ightarrow \mathcal{R}_{m{g}} \quad au^2 = 1$$

• The set of fixed points forms connected components which are called the real ovals of the involution au

Definitions

ullet \mathcal{R}_{g} is called real if it admits an anti-holomorphic involution

$$au: \mathcal{R}_{m{g}}
ightarrow \mathcal{R}_{m{g}} \quad au^2 = 1$$

- The set of fixed points forms connected components which are called the real ovals of the involution au
- Denote by $\mathcal{R}_{g}(\mathbb{R})$ the set of fixed points. It consists of kdisjoint topological circles, $0 \le k \le g+1$

Examples

• Curve with g+1 real ovals: $au(z,w)=(\bar{z},\bar{w})$

$$w^2 = \prod_{k=1}^{2g+1} (z - \lambda_k), \ \lambda_k \in \mathbb{R}, \ \lambda_1 < \ldots < \lambda_{2g+1}$$

Real ovals are over the intervals $[\lambda_1, \lambda_2], \dots, [\lambda_{2g+1}, +\infty]$

Examples

ullet Curve with g+1 real ovals: au(z,w)=(ar z,ar w)

$$w^2 = \prod_{k=1}^{2g+1} (z - \lambda_k), \ \lambda_k \in \mathbb{R}, \ \lambda_1 < \ldots < \lambda_{2g+1}$$

Real ovals are over the intervals $[\lambda_1, \lambda_2], \dots, [\lambda_{2g+1}, +\infty]$

• Curve without real oval: $\tau(z, w) = (\bar{z}, \bar{w})$

$$w^2 = -\prod_{k=1}^{g+1} (z - \lambda_k)(z - \overline{\lambda_k})$$

Examples

ullet Curve with g+1 real ovals: au(z,w)=(ar z,ar w)

$$w^2 = \prod_{k=1}^{2g+1} (z - \lambda_k), \ \lambda_k \in \mathbb{R}, \ \lambda_1 < \ldots < \lambda_{2g+1}$$

Real ovals are over the intervals $[\lambda_1, \lambda_2], \dots, [\lambda_{2g+1}, +\infty]$

• Curve without real oval: $\tau(z, w) = (\bar{z}, \bar{w})$

$$w^2 = -\prod_{k=1}^{g+1} (z - \lambda_k)(z - \overline{\lambda_k})$$

Definition

The complement $\mathcal{R}_g \setminus \mathcal{R}_g(\mathbb{R})$ has either one or two connected components

Definition

The complement $\mathcal{R}_g \setminus \mathcal{R}_g(\mathbb{R})$ has either one or two connected components

ullet \mathcal{R}_g is a dividing surface if $\mathcal{R}_g(\mathbb{R})$ separates \mathcal{R}_g

Definition

The complement $\mathcal{R}_g \setminus \mathcal{R}_g(\mathbb{R})$ has either one or two connected components

- ullet \mathcal{R}_g is a dividing surface if $\mathcal{R}_g(\mathbb{R})$ separates \mathcal{R}_g
- ullet \mathcal{R}_g is non-dividing if $\mathcal{R}_g \setminus \mathcal{R}_g(\mathbb{R})$ remains connected

Symmetric homology basis (V. Vinnikov's paper 1993)

Symmetric homology basis (V. Vinnikov's paper 1993)

There exists a canonical homology basis

$$(\mathcal{A},\mathcal{B})=(\mathcal{A}_1\ldots\mathcal{A}_{m{g}},\mathcal{B}_1\ldots\mathcal{B}_{m{g}})$$
 such that

$$\left(\begin{array}{c} \tau\mathcal{A} \\ \tau\mathcal{B} \end{array}\right) = \left(\begin{array}{cc} \mathbb{I}_{g} & \mathbb{0}_{g} \\ \mathbb{H} & -\mathbb{I}_{g} \end{array}\right) \left(\begin{array}{c} \mathcal{A} \\ \mathcal{B} \end{array}\right)$$

Theta-functional solutions of n-NLSs

Assumptions

 $lackbox{0}{} \mathcal{R}_g$ real dividing compact Riemann surface of genus g>0

- **1** \mathcal{R}_g real dividing compact Riemann surface of genus g>0
- $f: \mathcal{R}_g \longrightarrow \hat{\mathbb{C}}$, a (n+1)-sheeted covering of the sphere

- **1** \mathcal{R}_g real dividing compact Riemann surface of genus g>0
- $f: \mathcal{R}_g \longrightarrow \hat{\mathbb{C}}$, a (n+1)-sheeted covering of the sphere
- a_1, \ldots, a_{n+1} distinct points such that $f(a_i) = f(a_k)$

Assumptions

- **1** \mathcal{R}_g real dividing compact Riemann surface of genus g>0
- $f: \mathcal{R}_{\sigma} \longrightarrow \hat{\mathbb{C}}$, a (n+1)-sheeted covering of the sphere
- a_1, \ldots, a_{n+1} distinct points such that $f(a_i) = f(a_k)$
- $\tau a_i = a_i$ with local parameters satisfying $\overline{k_{a_i}(\tau p)} = k_{a_i}(p)$

Assumptions

- **1** \mathcal{R}_g real dividing compact Riemann surface of genus g>0
- $f: \mathcal{R}_g \longrightarrow \hat{\mathbb{C}}$, a (n+1)-sheeted covering of the sphere
- a_1, \ldots, a_{n+1} distinct points such that $f(a_i) = f(a_k)$
- $\tau a_i = a_i$ with local parameters satisfying $\overline{k_{a_i}(\tau p)} = k_{a_i}(p)$
- $\mathbf{O} \quad \mathbf{D} \in \mathbb{R}^g$

Theta-functional solutions of n-NLSs

Theorem

Theorem

For
$$j = 1, \ldots, n$$
 let $s_j = sign(q_2(a_{n+1}, a_j))$

Theorem

For
$$j = 1, ..., n$$
 let $s_j = sign(q_2(a_{n+1}, a_j))$

$$\psi_j(x,t) = \sqrt{|q_2(a_{n+1},a_j)|} \frac{\Theta(\mathsf{Z} - \mathsf{D} + \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathsf{Z} - \mathsf{D})} \exp i(-E_j x + N_j t)$$

are smooth solutions of n-NLSs.

Theorem

For
$$j = 1, ..., n$$
 let $s_j = sign(q_2(a_{n+1}, a_j))$

$$\psi_j(x,t) = \sqrt{|q_2(a_{n+1},a_j)|} \frac{\Theta(\mathsf{Z} - \mathsf{D} + \int_{a_{n+1}}^{a_j} \omega)}{\Theta(\mathsf{Z} - \mathsf{D})} \exp i(-E_j x + N_j t)$$

are smooth solutions of n-NLSs.

Question for the audience

- What is the general form of a dividing algebraic curve?
- → Construction of M-curves by Harnack's method

Degenerate Riemann surfaces

Degeneration to genus g-1

- We pinch the A_g -cycle into a double point
 - $ightarrow P_1,\, P_2$ after desingularization

- ullet We pinch the ${\cal A}_g$ -cycle into a double point
 - $\rightarrow P_1, P_2$ after desingularization
- Normalized holomorphic differential ω_g becomes differential of third kind with simple poles at P_1 and P_2

- ullet We pinch the \mathcal{A}_g -cycle into a double point
 - $\rightarrow P_1, P_2$ after desingularization
- Normalized holomorphic differential ω_g becomes differential of third kind with simple poles at P_1 and P_2
- ullet Component \mathbb{B}_{gg} of the diagonal part of \mathbb{B} tends to $-\infty$

- ullet We pinch the \mathcal{A}_g -cycle into a double point
 - $\rightarrow P_1, P_2$ after desingularization
- Normalized holomorphic differential ω_g becomes differential of third kind with simple poles at P_1 and P_2
- ullet Component \mathbb{B}_{gg} of the diagonal part of \mathbb{B} tends to $-\infty$

Degeneration to genus zero

ullet Components of the diagonal part of ${\mathbb B}$ tend to $-\infty$

Degeneration to genus zero

Fav's identities

ullet Components of the diagonal part of $\mathbb B$ tend to $-\infty$

• Putting
$$D_k = \frac{1}{2}\mathbb{B}_{kk} + d_k$$

$$\Theta(Z-D) \longrightarrow$$

$$\sum_{\mathbf{m} \in \{0,1\}^g} \exp \left\{ \sum_{1 \leq i < k \leq g} \mathbb{B}_{ik} \, m_i m_k + \sum_{k=1}^g m_k \left(Z_k - d_k \right) \right\}$$

$$i \partial_t \psi_1 + \partial_x^2 \psi_1 + 2 \left(\sum_{k=1}^4 s_k |\psi_k|^2 \right) \psi_1 = 0$$

$$i \partial_t \psi_2 + \partial_x^2 \psi_2 + 2 \left(\sum_{k=1}^4 s_k |\psi_k|^2 \right) \psi_2 = 0$$

$$i \partial_t \psi_3 + \partial_x^2 \psi_3 + 2 \left(\sum_{k=1}^4 s_k |\psi_k|^2 \right) \psi_3 = 0$$

$$i \partial_t \psi_4 + \partial_x^2 \psi_4 + 2 \left(\sum_{k=1}^4 s_k |\psi_k|^2 \right) \psi_4 = 0$$

Figure: Bright 2-solitons of 4-NLS^s with s = (1, 1, 1, 1)

 $|\psi_1|$

 $|\psi_2|$

Figure: Breather of 4-NLS^s with s = (-1, -1, 1, -1)

Figure: Rational breather of 4-NLS^s with s = (1, 1, 1, 1)

 $|\psi_1|$

 $|\psi_2|$

Figure: 4-rational breather of 4-NLS^s with s = (1, 1, 1, 1)