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0. Setting and problems

Motivation — A crash course on GIT

(smooth) Curves = Compact Riemann Surfaces

Automorphisms: Genus zero, one are exceptional
(infinite group).

Moduli space M, for genus 0 is one point, for
genus 1 is described by one parameter, the j-invariant.

Weierstrass form:

y2 = 423 + box? + byx + be,
7= (b3 — 24by)3 /A,
A = —b3bg — 8b3 — 27b3 + 9bobybg, bg := (babs —b3) /4,
Legendre normalization:
y* = (z —1)(z - N),
§ =252 A+ 120200 — 172,
but the map from the A line to M; is 6 : 1, with fibre

given by {A, (1 — ), %, )\il Axl}, with the exception

of the fibres over 5 = 0,1728 which consist of 2, 3
points respectively.

The problem of classifying sets of k points in P! is
equivalent to that of classifying binary forms of degree

k:

f = CI,()AXvéC -+ a,lXé“_le + ...+ aka,

2



under the natural action of SL(2) on P!. This action
induces naturally an action on the projective space of

the coefficients: (aq,...,ax) € P".

Fact I. [Newstead, Prop. 4.13] A binary form of
degree k is stable (semi-stable) if and only if no point
of P! occurs as a point of multiplicity > —’2‘3 (> g) for
the given form.

Fact II. In the case of binary quartics that pos-
sess a simple root, after normalizing them: X3X; +
aXoX; + bX{ by putting one root ‘at infinity’ [1,0],
the two invariants: I = —%,J = —% generate the

ring of invariant polynomials, %2 generates the ring of |
invariants inside the ring of regular functions of the
affine variety P*\(A = 0), where A = I3 — 27J? is
the discriminant of the other three roots, so the geo-
metric quotient of P*\(A = 0) may be identified with
the affine line. In terms of the cross-ratio A of the
four points, three of which are normalized to be [1,0],
[0,1] and [1,1], or rather, of the six different values
{A1—), %, Axl, )\il, 11)\} that are obtained permut-
ing the points in all 24 possible ways, the invariant
becomes:

2A = 1D(A=2)(A+1)\* 3072
< A —1) ) A

This is a coarse moduli space; it is not fine as can
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be seen from the quotient morphism J{ : PA\(A =
0) — A!; indeed, in a neighborhood of 0 in A! (or, of

—%), the identity factors through J{, a coordinate x

on A! could be written as the quotient f;, with f, g
polynomials and g # 0. In this GIT context, the issue
is that the stabilizers at those points are larger than
at all other points.

The moduli space of elliptic curves is defined by
the further choice of a point on the curve of genus 1,
but as we saw it is also parametrized by A!. Taking
oo as the origin, the curve in Legendre form is: y? =
z(x — 1)(x — A), with A the same as above. There
are six possible values of A (as above) over one elliptic
curve, whose j invariant is

B2 A+ 1)
S VIP WL R

unless 7 = 0 (which has only two corresponding \’s,
corresponding to the equianharmonic set of four points
and to elliptic curves with 6 automorphisms) or j =
1728 (A = -1, 2, %, corresponding to harmonic quadru-
ples, for which the curve has 4 automorphisms).
Analytic counterpart: the moduli space M, is de-
scribed via the Siegel upper-half space §)4; for g = 1,

the 7’s in the (standard) fundamental domain cor-
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responding to curves with automorphisms are ¢ and
e2m/3

In higher genus, analogous statements are not com-
pletely known. What unifies our mix of examples is
the issue of defining equations for subvarieties of M,.
One central question is the determination of the co-
homology ring ®r>oH"(M,), significant in physical
theories.

One example (surveyed in [FontanariP]) would
serve to reduce the calculation of homology groups to
the boundary and yield an induction procedure. We
recall some classical notation.

‘The Riemann theta function is the fundamental
(e.g., as solution of the heat equation) analytic func-
tion on C9 x §),, defined as:

¥ (z,Q) = Z exp(2mtnQn + mtnz).
nez9

The Abel map A, embeds the curve in the Jaco-
bian and sends the s-fold symmetric product of the
curve, S°X, to W?® C JacX; the model depends on
a choice of (normalized) basis of the first homology
Hy(X,Z), which gives a ‘dual’ basis of holomorphic
differentials wy, ...,w, on X, the period matrix 2 gives
a model for the Jacobian, JacX = C9 /A, A := [+,
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i, v € Z9; The Jacobian together with a principal po-
larization can be identified with € € §),. The Abel
map is then:

P s P;
A:P— (W1, ey wg)y, Pr4...+Ps — Z/ (wW1y-eey Wyg)
Fo i=17Fo
Riemann’s Theorem: If ¢(e) # 0, then e = A(D)+
A(Kx) for a unique D € S9X andi(D)(= H*(X, D)) =
0, Kx the canonical divisor. If 9(e) =0 and s is least
such that 1 <s<g—1=9W?®—-W?3—e)#0, then
for some D € S97'X,i(D) =s, e = A(D) + A(Kx),
and all partial derivatives of ¥ of order < s (but not
s) vanish at e.

This theorem tells us that the Jacobian is prin-
cipally polarized, namely the zero-divisor Oy of ¥ has
a one-dimensional space of sections, spanned in fact
by 1); Lefschetz’ theorem says that the linear system
- |30 | embeds the Jacobian into projective space; theta
functions with characteristics [n/k, m/k], n,m € Z9,
provide a basis of global sections for |kOg|. More gen-
erally, for two complex g-vectors «, 3, the theta func-
tion with characteristics [o, 8] is defined as:

¥ [g} (2) = Z exp(mit (n+a)Q(n+a)+2m’ (n+a)(z+86)).



A basis for |20y] is given by 1¥* [g] (2) with a2 + (5 a

point of order two on the Jacobian; there are 2971 (29 +
1) even and 2971(29 — 1) odd such points, where the
even are those such that 4a- 8 = 0 mod 2, equivalently
the dimension of space of sections of the correspond-
in% theta divisor is even; the image of the Jacobian in
P2"°~1 under the |20¢| map is called the Kummer va-
riety; the “thetanulls” are the values of these functions
at z = 0: they give a local immersion of Jacobians into
the moduli space of ppav’s.

We denote by H, the subvariety of points that
correspond to hyperelliptic curves. It was known to
Riemann that one vanishing (even) thetanull charac-
terizes hyperelliptic curves among curves of genus 3,
and to Weber that two such vanishings characterize
hyperelliptic curves in genus 4.

Conjecture (“p — 2 conjecture”, “which is most
probably false” [Accola]) The defining equations of #,,
are given by the vanishing of p —2 even characteristics.



Accola also considers the stratification ©" of Te-
ichmiiller space, given by those surfaces where a theta
function with period-2 characteristics vanishes to or-
der r+1 at 0 € CP. He proves a “modified” p — 2
conjecture in genus 5 [Part III, §4]: a point belongs
to the hyperelliptic locus if and only if the theta func-
tion vanishes to order two at three half-periods, and
to order one at their sum. Moreover, he proves the
p — 1 conjecture in genus 3, but “must allow (...) one-
quarter integer theta characteristics”.

Based on this, he later modified the conjecture: It
would be very appealing to find p — 2 hypersurfaces in
Teichmiiller space (or whatever covering of the moduli
space of smooth curves of genus p one prefers) and
have the intersection of the hypersurfaces be precisely
the hyperelliptic locus.

Note: For genus one there are no vanishing thetan-
ulls. The next-studied loci are given by vanishing
derivatives of theta with odd characteristics, but again:

1/2 0 0 1/2
0’ — —70 0
(Jacobi’s derivative formula), is not zero for any 7. |

PROBLEMS
e Covers of tori



e What groups may act on a curve of genus g,
and what groups occur as automorphism groups (for
a given genus).

e Equations for loci of covers of tori and curves
with automorphisms; structure of loci (singularities,
components)

Group theory: Two main methods
Method I: Fuchsian groups
Method II: Hurwitz spaces



1. Invariant theory

The locus of curves with automorphisms is a proper
subvariety, singular locus of M if g > 3, whereas:

The components of the singular locus of M3 are:
S5(3,0;1,1,1,1,2); S(7,0;1,1,5); S(2,1;1,1,1,1).

|Cornalbal determines the irreducible components
of the singular loci: to state Cornalba’s method and re-
sult, we recall his notation for S(p, ¢’; a1, ..., ay), where
p is a prime number and a; are positive integers with
>.a; = p: These are the points of M, correspond-
ing to curves X that are p : 1 covers of a curve X’
of genus ¢’, totally ramified at n points (including the
case n = 0), so that 2—2¢g = p(2 —2¢') + n(p — 1); the
curve is (the normalization of one) defined by a section
of a line bundle O(} aiqi)%. Equivalently, these are
curves with an automorphism of order p, since the data
of S(p,g’; a1, ...,a,) determine the curve up to isomor-
phism. First, recall that for genus 2, the singular locus
of the moduli space is one point, corresponding to the
Zyo curve y* = x(x°—1), which is S(5,0;1,1, 3) in Cor-
nalba notation, not to the one with maximum number
of automorphisms! This curve, among the ones with
extra automorphisms, has the peculiarity of being iso-
lated, whereas the others occur in families, as can be
seen from the table: as observed by Igusa, the D;5 and
the Dg families are both specializations of the V; fam-
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ily; the Z3 x Dg curve is a specialization of either one
of the 1-dimensional families; and the GL2(3) curve is
a specialization of the Dg family.

[Igusa] determined the singular point of My by
computing the Zariski tangent space in the local ring
given by the I invariants. When g > 4, by a standard
argument of local deformation and the theorem on the
purity of the branch locus, one knows that Sing(M,)
is indeed the set of curves with extra automorphisms;
in particular, is is a union of its largest components,
corresponding to automorphisms of prime order, and
Cornalba determines the inclusions among them. The
argument to show that they are in fact components is
similar to the one used for Hurwitz spaces, namely: for
g > 2, a parameter count shows that S(p,¢’; a1, ..., a,)
has dimension 3¢’ —3+n. The moduli spaces M, (case
n = 0), as well as those parametrizing couples: (genus-
g curves X', p-torsion point in JacX’) are irreducible;
and if X; € S(p, X', Dy, L;),0 <t <1, is a family of
p-fold covers of X’ defined as above by a line bundle L,
whose p-th power is O(D;), D; = a1¢:1(t) + a2q2 + ... +
Gngn, and g;(t) moves in a closed loop of homology
class &, then L equals Lo ® M, where M is the p-

torsion point in JacX’ corresponding to %.

Genus 2.
Problem: description of the sublocus £4 C M,
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namely the curves X which admit a cover 7 : X — E
of degree d, where E is an elliptic curve, or L' when

the cover is minimal

The two questions already give different subloci

Group  Curve P Matrix
i 1
i P=@-d)@ - -1 |] 2
| 2
i 1
Do el -ad)e-a?) [T Z
12 7
2r T |-
2 _ (13 _ . 3\(3 _ 3
Da  pe@-d@-a?) T ]
"2 i
Zs x Dg y?=2z%-1 f ﬁ]
V3 V3
[ 1442 1
GLy(3) y?=z(z*-1) i _1131
|2 5
2 5 1-¢* ¢
Zio y* =z(z° — 1) 2 h

271

where ( = €75

is a primitive fifth root of unity. The

corresponding curve does not cover an elliptic curve.
[Demirbas]| uses methods of [Igusa] to list the hy-
perelliptic curves with automorphisms and the groups,
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in genus 3 and 4, over an algebraically closed field of
characteristic 2. Next project: find the singular loci
of Hs, H4, not complete in [Lgnsted|; Igusa’s method
would require at a minimum the knowledge of the ring
of invariants and covariants of 8, 10 points on the line,
respectively. According to [Newstead]|, it is known only
for d = 4,5,6,8 points; but in the case of 8, we need
covariants besides and [Shioda] does not succeed in
giving complete relations. Alternative strategy: [Cor-
nalba’s method via Galois extensions of curves [re-
cent work by K. Altmann|. Both are computer-algebra
based works-in-progress.

Note: The ring of invariants and covariants for
- pencils of binary cubics were computed recently (over
C), using Klein’s coordinates on the Grassmannian of
points in P°, and have applications to instanton theory
[Newstead].
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2. PDEs

As reported in [GesztesyHoldenMichorTeschl]|, in the
early 1950s close-to-periodic and soliton solutions were
obseﬁ\fed in lattice models with non-linear interaction.

In [Toda], a model that supports exact periodic
and soliton solutions was introduced, a nonlinear lat-
tice with exponential interaction:

xtt(n7 t) — e(x(n_lat)_x(nat)) —_ e(x(nat)_x(n"i_lat)),

(n,t) € Zx R

This turned out to be a completely-integrable,
nonlinear partial differential-difference equation.

Original Solution (Genus One Case)

Let X be an elliptic curve given by

2= 2% + Xax® + Mz + Ao

X: iqf =y
= (z—e1)(z —e2)(z — e3),

Wlth 6’8 n (C and )\2 = —(61 -+ €9 -+ 63) = 0.
Note: We do not pursue the issue of real-valuedness
of the solutions [Kodama).
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The Weierstrass elliptic o function associated with
the curve X is connected with the Weierstrass g and
¢ functions by

o) =~ logo(w), C(u)=

the coordinate u in the universal cover of the Jacobian
Jac(X) =J is given by

(@:9) o

with z(u) = p(u), 9(u) = p'(u) and co the point at
infinity of X.

The Jacobian is given by Jac(X) = C/(Zw' + Zw'")
- using the double period (w’',w”).

log o(u),

The key to obtain a p function solution of the
Toda lattice is the addition formula,

ol _ o(v+u)o(u—v)
AR TP 0)

By differentiating the logarithm of this formula with
respect to u twice, we have

dcfﬂ log[p(u) — p(v)] = pu+v) — 20(u) + ou—v).
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For a constant number ug, by letting
u=nuyg+1t+1ty, v=up,
we compute

— 4 Tog[p(nug + t + to) — p(uo)]
= [p((n + L)ug + t + to) — p(uo)]
—2[p(nug +t) — p(uo)]
+[p((n — 1)ug + t) — p(uo)]-

By letting

| Va(t) := —p(nug +t+tg), V.:= —p(up)
gn ‘= — log[Vn(t) — VvC]’ '

we have

d2
_ﬁqn — G_Qn-l—l _ 26_(177, _|_ 6"“]77,—1 (fn — ]_, 2, .. )

For ¢, = Qn — Qn—la then (Qn — 2?21 qn T QO)a Qn
obeys the Toda lattice equation:

d2
ﬁ@n — eQn_Qn-l—l _ eQn—l_Qn (n — ]_, 2, . )

- Here we assume (Jg = 0 which corresponds to the base
point of the oscillation.
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By letting tg = —w’, we have the relation:
o(t+nug—w") = (e1—es) dn((e1—es) /% (u+nug))%+e1,

which provides the connection with Toda’s original so-
lution for ey, e, e3 € R.

In detail, for the hyperelliptic case, we exhibit 6,
and the o function as a generalization of the Weier-
strass elliptic ¢ function.

Let X be a genus-g hyperelliptic curve defined by

X :y?=fz) =2 4 dgpx®9 + -+ Xg

together with a smooth point co at infinity. Let the
affine ring related to X be R, := Clz,y]/(v* — f(z)).
Here \’s are complex numbers. We fix a basis of holo-

: i—1 .
morphic one-forms v = w—zy@ (t=1,...,9). We

also fix a homology basis for the curve X so that

g
H\(X,Z) = &j_,Za;j & @Zﬁjv
71=1

where the intersections are given by [a;, ;] = 0, |8, 5;]
0 and |oy, B;] = —[Bi, @j]d:;. We take the half-period

/
matrix w = [:j,, ] of X, with respect to the given basis

where



Let A be the lattice in CY generated by the column
vectors in 2w’ and 2w”. The Jacobian variety of X is
denoted by J and is identified with C9/A. For a non-
negative integer k, we define the Abel map from the
k-th symmetric product Sym*X of the curve X to J,

w: Sym*X — J by,

'I"

ko p(x,yi)
w((1,41), -5 (@k, Yk)) = Z/ . | mod A.
=1 Vé- ]
The image of w is denoted by Wy, = w(Sym*X,). The
mapping w is surjective when k = g by Abel’s theorem,
and is injective if we restrict it to the pre-image of
the complement of a specific connected Zariski closed

subset of dimension at most g — 2 in J, by Jacobi’s
theorem.

We define differentials of the second kind,




For these bases the half-periods w’,w"”,n',n"” satisfy
the generalized Legendre relation

a[s wr-5 V)

I, O 2 11, O
/ "
where I = [w/ w,, ]
nmon

Let T = o' 'w”. The theta function on C¢ with
modulus T and characteristics Ta + b for a,b € C9 is
given by

a
0 [b] (;T) =
Z 6[271"1,(% ' (n4a)T(n+a)+ * (n+a) (z—l—b))] '

nez9

The o-function is an analytic function on C9, is associ-
ated to the theta function, and has modular invariance
of a given weight with respect to I9:

t " 1
o(u) = vo exp (—% un'w'—lu) 6 [fs, ] (§w'_1u; T) ,

where ¢’ and 6" are half-integer characteristics giving
the vector of Riemann constants with basepoint at oo
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and 7y is a certain non-zero constant. The o-function
vanishes simply on x~*(W,_1), where the map & is the
natural projection, x : C9 — J.

The Kleinian p and ¢ functions are defined by

= — i logo(u), ¢ = 810 o(u)
@”_ 8u7,8u] AN Z_auq; 8 .

Let {¢;(x,y)} be an ordered set of CU{oc }-valued
functions over X defined by

" for ¢+ < g,
di(z,y) = ¢ 2li=9)/21+g for :+ > gandi— g even,

¢Li—9)/2]y, for 1> g and 7 — g odd.

We note that {¢;(x,y)} is a basis of R, as a C vector
space.

Following [Onishi], we introduce a multi-index ™.
For n with 1 < n < g, we let §™ be the set of positive
integers ¢ such that n+1 <4 < g with ¢ =n+ 1 mod
2. Namely,

hn_ n+1ln+3,...,9—1 for g — n = 0 mod 2
o ln,n+2,...,9 for g —n =1 mod 2

and partial derivative over the multi-index 1"

0
Oyn = Han o(u).

1€
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For n > g, we define §” as empty and oy~ as o itself.
The first few examples are given in Table 1, where we
let # denote f' and b denote b2.

Table 1
g O = 0p1 Oy = Op2 0y3 Op4 gy5 oye  Oy7 Oys
1 o o o o o o o o
2 09 o o o o o o o
3 09 03 o o o o o o
4 094 03 o4 o o o o o
5 0924 O35 04 o5 o o o o
6 0246 035 04 O O O O o
7 0246 0357 o4 Os57 O¢ O7 O o
8 02468 0357 0468 Os7 O O7 08 O
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For u € C9, we denote by v and u” the unique
vectors in RY such that

’U,—Qtw/’u,/—l—Qt " //
We define
L(’U,,’U) :tU(Qtn,U/+2t " //)

x(0) = exp [m (%’5" — gl 4 %W")] (e {1,-1})

for u, v € C9 and for £ (= 2%W'¢ +2%WW'"¢") € A.
Then oyn(u) for u € k=1 (W) satisfies the periodicity
relation:

1
oyn (u+£€) = x(€)oyn (u) exp L(u—|—§€, ¢) for u € k71 (Wy).

For n < g, oyn(—u) = (=1)"9t37(=Dg . (u) for u €
k=1 (W,), especially,

(o

Key for the result are addition formulas of the hyper-
elliptic o functions [EilbeckEnolskiiMatsutaniOnishiP]
which generalize the genus-1 case.

—oy (u) for u € k71 (Ws)
(=1)90y(u)  for u € k™1 (W)
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Generalized Frobenius-Stickelberger deter-
minant.

For a positive integer n > 1 and (z1,¥1), -, (Tn, Yn)
in X,, we define the Frobenius-Stickelberger determi-

nant, \I’n((mla y1)7 Tt (mna yn)) =

1 ¢1(3317 Y1) e ¢n—2(331, Y1) ¢n—1(331, Y1)
1 $1(z2,y2) o Pr_a(®2,12) Pn—1(z2,y2)
i ¢1(37n—.17yn—1) ’ ¢n—1($n.—layn—1)
1 ¢1(mnayn) e ¢n—2(mnayn) ¢n—1(mn>yn)

We prove the following theorem:

For a positive integer n > 1, let (x1,v1), ..., (Tn, Yn)
in X, and ™, ..., u(™ in k=1 (W}) be points such that
u® = w((z;,v;)). Then the following relation holds:

oy (Z?:l u(z)) Hi<j oy (u(z) — u(]))
[Lizy oy (u®)n
= En\Ijn((mla y1)7 T (ﬂin, yn))7

where €, = (=1)9T"(**t1/2 for n < ¢
and €, = (=1)27=96-1/2 for n > g+ 1.
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The Picard group of the curve X has the following
addition structure:
For given Pi,---, P, € X, we define

. U1 (P Q1. -, Q)
nP;P7°°'7Pn = lim
H ( 1 ) Qi—P; \Ijn(Qb’Qn)

for distinct @;’s.
For given Py,...,P, € X, we have @;,...,Qy
with £ = g for n > g and £ = n otherwise, such that

Pi+P+.. 4P, +Q1+Q2+...4Q¢— (n+£)oo ~0

as a non trivial zero of u,(P;Pi,...,P,). For each
Q; = (z;,Y;), by letting —Q; = (z;, —y;), we have the
addition property,

Pi+Py+...+P,—noo ~ (—=Q1)+...+(—Qp)— (=)0

The hyperelliptic involution ¢ : (z,y) — (z,—y)
induces the [—1]-action on J, u — —u.

In this sense, since we fix the base point oo, we
use the notations, n(x,y) for a point (z,y) = P € X,
addition (z,y)+(«',y"), and equality “="; for example
(z,y)+(=',y') # (z+2',y+y') and 2(z,y) # (2z,2y)
in general We note that for every P € X, 2P =
— Z?g 1~ Q; for some points Q;’s.
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We give the addition formula for the hyperelliptic
o functions:

Assume that (m,n) is a pair of positive integers.
Let (zs,y:) (6 =1,...,m), (2%,y;) (j=1,...,n)in X
and u € k' (Wpn), v € k~1(W,) be points such that
U = w((xhyl)? T (xrmym)) and v = w((x/hy/l)? T (x;wy;z

Then the following relation holds:
O'hm+n (U —|‘ ’U)O'hm+n (U — ’U)
Uhm (U)ZO'hn (’0)2
Hf}:O \Ijm—l-n((x7 Y)7 (X/a (—1)7:5’/))
[ (%, ¥)) ¥ (', y))]?
<1113

1=17=1

= 6(g, m,n)

2((26, i), (25, 95))

where (g, m,n) = (—1)9+zn(n=1)+mn

For m = g and n = 2 we derive the Corollary
[KodamaMatsutaniP]:

Let (z:,y:) € Xy (0 = 1,...,9), (},9;) € X,
(j =1,2), u € C9, v:= ol +22 € k71 (W,), and
vl € k=1 (OWy) (j = 1,2) be points such that v =

’LU((LEI, y1)7 S (xg7 yg)) and v[j] — ’UJ((.’,C;, y;))7 (.7 —
1,2). Then the following relation holds:

o(u+v)o(u—v)
o(u)?oy(v)?

= —=(u,v),

25



where =(u,v) is equal to

(zzl B xQ)F/(xZ)>

and F(z) := (x —z1)(x—x3) - (x —x4) and F'(x) :=
OF (x)/0x.

The proof is a Vandermonde:

Mlm

Mw

’I,:

1 1 xi_l

1 To “ o x2_1 14
A(:cl,:cg,...,xg): . ) . . — H

S i,j=1,i

1 xy xﬁ_l

we have Uyyo((z1,91), .- (2g,¥q), (1, 2Y1), (2, £45))
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g
1 x Ty Y1
g
1 x5 x5 Y2
1 =z L Yg
1 x4 ']+,
1 29 'y +v,

[Baker| proved:
Let (z;,y;) € X i =1,...,9) and u € CY such
that x(u) = w((z1,y1),...,(z4,Y4)). The following
1

relation holds for generic . (i = 1,2),

2
g g 1 -
i1 i
Y pi(wah

= F(z)F(z5) (Z (2} — xi)(ﬂ?zi— xz‘)F’(mi)>




where
g . .
f(z1,22) = Zwiwéo\%—l—l(wl + 2) + 2X2;).
i=0
We can conclude:

o(u—+v)o(u—v) _
o(u)?oy(v)?

/
, — 2
f(xl 552 y1y2 }:} :@w ,z 1w,23 1,

(77 — 23)? i=1 j=1

which correspond to a formula in [Fay], underlying the
“trisecant identity”.

Note: When vl = ¢l

o(u + 20! (u — 20l1)
TP (T

g
ZZ@'&J(U AN
1=1 5=1

= — lim E(u,v),

where 82

fi2(z) = fo(( )) f11,2($)7
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g

f11,2(x) = Z(i2)\2i+1$2i_1 +4(7 — 1))\22-1:273).
’ i=0

When v!2l =0 or (x5, y5)

0,

o(u + v (u — vl

o (u)?a, (vI)?
g
1+7—2
i =Y pgi(w)zy T =
=1
F(z}) = — (2} — z1) () — 22) -+ - (21 — 7)
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‘Algebraic’ differential operators on the uni-
versal cover of the Jacobian:

For 5 =1 or 2, define:

4 y1—1 a
D; 7 Ouy
1=1
1 zy - aﬁ_l 2910,
1 1 2o --- azg_l 2920,
BERCHEC PR Tt 2yg0,,
1z - a:;-g_l 0

=Y
F’a: (z', — z;) Ox;’

1=1 Z J
then for 5,7/ = 1 or 2,
[Dj,Dj/] = Dij/ — Dj/Dj = 0.
Also: For v9) = w(zs,y;) with j =1,2,

0 1 & ,io1 O
83:;- A le Ov(d)i

For h e T'(C9,0(CY)) and j =1, 2,

0
oz’

Djih(u+v9) i= 25— h(u+ v) = Djh(u + v9).

/
J
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One checks:

1
Dilogo(u+v) = 5 (D1 log E(u,v) + Dy log Z(u,v))

+ Dy log o(u) + Dis log 0y (v),

1
D1Dslogo(u+v) = §D1D2 log Z(u, v)

1
un _2_D1D2, log E(u,v) + D1 D2 log o (u)

1
= §D1D2 log Z(u, v)

1
+ §D2D1/ log E(u,v) + D1D3 log o (u)

Now we can give the o function solution of the
Toda lattice equation:

Let (z;,y;) € X (1 = 1,...,9), (z},y1) € X
u € €9, and vl € xk~1(W;) be points such that
u=w((Z1,y1), ", (xg>yg)) and olt = w((x,by,l))
Define ¢ := 20!, D; = 0,(c) Dy,
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and t := (t117t127 - ,tlg) e C9 with

Then with the coordinate change u = nc+ t+ + ¢

~D?log (V(t +nc+t4) — Ve(c))
=V(t+ (n+ De+th) —2V(t +nc+th)
+V(t+ (n— Ve +th).

And Hirota’s bilinear equation,

VD30 (t + nc + t+)
)D1o(t + nc + t+)
V.(c)o(t +nc+t+)?
—o(t+ (n+1)c+ tl)a(t +(n—1Dc+tH) =0.

o(t+nc+t+
—Dio(t+nc+t+

By letting V,,(t + t+) := V(t + nc+ t+) and gn(t) :=
—log (Vn(t +t+) = Ve(c)),

D%qn(t) — 6_Qn+1 _ 26_Qn + 6_Qn-—1.
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Aside. In [ChoNakayashiki|, the related problem of
finding the D-module structure of the space of abelian
functions of a ppav (J, ©) is posed, in the case that ©
is non-singular,

0 0

D .= C[(‘?zl ) eeey azg].
The starting point is the observation that the classical
Frobenius-Stickelberger formula gives the D-module
structure of the ring of elliptic functions generated by
1 and p, specifically in the C-basis 1, p, ', 9", ...
More generally [MatsutaniP], let X be a Burchnall-
Chaundy curve whose affine equation is given by f(z,y) =
H(y)—h(zx), where H(y) € Cly], h(z) € C[z], deg, H(y) =
r and deg, h(z) = s, (r < s). Then

1) we have a derivation of R, the ring of functions
regular on X \oo, given by, |

d
D:=H'(y)——:R— R,

X

where H'(y) = 0H(y)/dy,
2) d’U,l =

is a holomorphic one form, (D, du;) =
() < )

3) For smallest positive integers p and ¢ satisfying

1
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. yr—p—lxq—ldx .
the relation ps — qr = 1, du, := is a
’ H'(y)

holomorphic one form, <5’—’ dug) = 1.
Zoo

This gives R[D] the structure of a differential ring,
and we can derive some algebraic relations:
For an integer n > 1, we define

i D2¢1 D2¢2 D2¢n ]
PO = et D.¢1 D.¢2 D .Cbn
L D"¢1 D"¢y --- D"¢,

It follows easily from the assumptions that ngg ) is an
element of R.
If h(z) € Q[z], for an integer m > s,

Dy € Qly, Dyy, D2y, ..., D2y, 1/H'(y)].

If the polynomials h, H have rational coefficients, for
every positive integer n, we have

Y0 € Qly, Dyy, D2y, ..., DSyl.
entails that some of {zp&”)}i:l,...,t (t > s, n; # ny if

i # j) are not algebraically independent and might
satisty a relation. In fact, in the case of genera g = 1
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(r = 2,s = 3) [Weber, p.196-200] and g = 2 (r =
2,s = 5) [BradenEnolskiiHone], [Cantor|, [Matsutani|,
wé;‘) ’s obey the following relations: g = 1 case:

(m—1) (n) w(m) (n+1)
w(m—l—n)w(m n) __ — det w o ro o$n 00 .
SN IMCENO

and g = 2 case: &2 PP =

IR L A - W
I e S TR ot S i (A
| pTyplnmd) plm gl ima2),

This suggests the possibility of recursion relations and
difference equations.

Division polynomials F,,(x,y) arise in expressing
the coordinates of nP in terms of those of P, a point
of an elliptic curve in Weierstrass form.

Kiepert (1873) and Brioschi (1864) published al-
gebraic equations for the n-division points of an elliptic
curve, in terms of the Weierstrass p-function and its
derivatives with respect to a uniformizing parameter,
or another elliptic function, respectively.

For an elliptic curve X : y? = 423 — gox — g3 and
an integer n > 2, an elliptic function 1,, can be defined
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[WW, Ch. XX, Misc. Ex. 24] by

where o(u) is the Weierstrass o-function. The o-function
has a simple zero at each point of the period lattice
[WW, Ch. XX 20-42|, and the following can be proved
similarly:

The n? — 1 zeros of 1, correspond to the group
of points of period n minus the origin on the torus
corresponding to X.
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[Kiepert]| showed that the w-functions have the
following representation, v, (u) =

p'w) ') - e (w)
(—1)n-1 e"(w) ") - ™ (u)

(1121 (n — 1)1)2 : AN :
(1) (1/2) L0/

2l (n—1)

IL', y, .o (:L'I_(n_3)/2j+y), (:L'I_n/2j)’

z! y// . (3;[(”—3)/2J+y)” (an/2J )//
2D D (plee9)/2)y (1) (gln/2]y )

where g is the Weierstrass gp-function,

|7 |+ is equal to O for a real number r < 0 and to the
floor function |[r| for r > 0, and the derivatives are
taken with respect to wu.
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[Brioschi] gave another expression for the ¢-functions
for n > 2, ¢, (u) =

n—1 1

6yn(n—l)/2 H E

k=|(n+2)/2]

Ye(n)x T Y(L(n)+e(n))x
y Ye(n)+1)z YL (n)+He(n)+1)z
Y(Lm)+en)z(8) Y@Ln)+em)e(v)

where € is a &+ sign, {(n) = n — 2[(n — 3)/2] — 1,
L(n)=|(n—3)/2|4+, and ,, is n-th derivative in z.
When n = 2, indeed o(2u)/c(u)* = —y [WW,
Ch. XX, Misc. Ex. 24]; the empty product should be
interpreted as 1.
The hyperelliptic version of the %, function for
genus g over w(X,) = kW, is defined by

@Dn(u) — 3 -

A zero u of 1, is a point such that nu € ='W, _;.
The translation formula for o shows that ,, is

defined on the curve, hence belongs to Iy, so it can

be viewed as a generalization of a division polynomial.
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By taking a certain limit of the o expressions (when
the points of the divisor coincide) we can give v, in

terms of ¢;’s in R,.

In [MatsutaniP] we gave a Kiepert-type formula.

Let n > 1 be a positive integer. For

8¢1 8¢2 a¢'n,—1
ouq ouq Oui
82y 82 o 0% pn_1
Ou? ou? ou?
Yn(u) = €n g ' ' '
" 1p, "y " L1
ul~t ul~t dul ™t

~with ¢; = 1 and ¢, 4 is a plus/minus sign, the van-
ishing of ¢, on P € X in is a necessary and sufficient
condition for w(n - P) to belong to W,_;.

Moreover, let n(> g), k(< g) and £ :=g—k — 1
be non-negative integers. The vanishing of 1,1y, ...,

Vnt1, Yny V-1, «-., Yn_p, at a point P of X is a
necessary and sufficient condition for w(n-P) to belong

to Wy.

The Brioschi-type expression of the ,-function
[Cantor, Matsutani8] is similarly,

~

Yn(u) =

S

n{n— 2
{ €n,g (29) (n=1)/2. T((gi_g)_l)/z (y7 '(;i_a;) n#g (2)
(n—g)/2

39
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Here ), , is a plus/minus sign and 7™ is a Toeplitz

determinant [Matsutanil],
d
T(m) — | =

g[m+n_1] g[m+n_2] .o g[m+1] g[m]
gimtnl  ghminil L pimtd) gfme)
g[m+2n—3] g[m+2n—4] . g[m+n—1] g[m+n——-2]
g[m+2n—2] g[m+2n—3] . g[m+n] g[m+n—_L]

TI(T% (g(s), %) = 0 where m and n are positive inte-
gers, g(s) is a function of an argument s and

1d

]y .
g7 (s) n! dsm

(s).

Noting for y? = f(z) that y?>*~1d"y/dz™ is a poly-
nomial in z coprime to f(z) in general, the function
yn(@m+2n=3)lm) £ ) is an element of C[z] and co-
prime (in the sense of having no zeros in common) to

y? = f(x). In conclusion, v, (u) can be expressed by

Wy = (Qy)g(gﬂ)/QOén(iU) for n — g =odd
n — (2y)g(g_1)/2an(x) for n — g =even |
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where o, (x) is a polynomial in x and coprime to y.
As shown in [Cantor]|, the degree of o, (x) is

( —g)—g(2
g(n+g)(n 29) 929+1) o _oda
deg(am) = < )
9(n+9)(n—9g) n — g =even .
We define

®, :={P € X | P is a zero of o, },
and for n > g,
Ep = B g1 N NP 1 N NPy N NPyt

One should note here that there is no guarantee that
=, 1s not empty.

[KacvanMoerbeke] gave a solution of the periodic
Toda system:
The Hamiltonian of the Toda lattice equation is

N N
1 .
H=3 kE_l: P; + k§—1: exp(Qr — Qr+1)-

where P, = Pryn and Qp = Qran. For Flaschka’s
coordinates, ar = exp(Qr — Qrr1) and by = — Py, the
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equation of motion of H is reduced to

(d

270k = ar(bgr1 — bi),
\ d
—b;. = — —=1.2.....N).
\dtbk ar — Qk_1, (k=1,2,...,N)

The Hamiltonian system admits the time inver-
sion t — —t, which is identified with the hyperelliptic
involution of X.

For brevity, we introduce the notation

(TL) (ttl) p— O'(t—l—nC‘l‘tJ_)7 O'(c) = O'b(c)y
g
(M @ttty = 2 TG+ ne+ ),
=1
1
¢ = '2“D1' log o,(¢),

g

pl9(th) = fra(ah).

The periodic solution of the Toda lattice are ex-
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pressed by

ot (¢ ¢ o (=D (¢ 1)

o™ (t;t4) e
o= (t;¢L) >°
=W (1) - ¢V ) - ¢,

b, = D;log

The proof follows from the definition of a’s and
b’s, by calculation time derivatives, and:

Py — Py = (158 — 2¢™ (85 ¢1) + ¢ D (15 ¢h)

Ps — Py = (W (1) — 2¢®) (4;¢5) + P (;h)
Py— P =(® (¢; tL) 2C(2) (¢; tL) + C(l)(t tL)
Py — Py = (@ (t;th) — 2¢W (¢ + ¢O (45 4H)

P, = ¢ (t540) = ¢ (54— (¢ (8 41) ¢ O (5 1) + Po.
The total momentum should be invariant and thus
Py =—(¢M(t;th) = ¢t t1)) + po.

where pg is a constant corresponding to ¢(®).
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Let 2N > g+ 1. For a hyperelliptic curve of genus
g which has a point (2,¥]) € Zan, V(u) is a periodic
solution of the Toda lattice equation such that V(u) =
V(u+ Nec) with ¢ = 2w(z], y7).

Genus-1 example: For b,, we have the formula:

Clut v) = () — ¢(v) = LW =8(0)

For periodic Toda with period N = 3 and N = 4,
we choose a simple case (note that in genus-1, every
elliptic curve has points of any finite order, so the =,
are never empty): X : y?2 = 2 — z. Then the division
polynomials are given by

Y1 =1,

o = —2y,

Y3 = 3z* — 622 — 1,

Y = —2y(x® +1)(2? + 2z — 1)(2* — 2z — 1),

Vs = 3221 — 18722 — 64zt + 2210 4 32027 — 2332°
+ 320z — 522% — 642° — 61z* + 5022 + 1.

We have a N = 3 and g = 1 for 25 = (1/3)v/9 + 6+/3
and a N = 4 and g = 1 soliton for 5 = v2+ 1 or a
zero of 4.
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Poncelet and Toda curves as subvarieties of M,
and M N—1-

Poncelet’s theorem is a classical result ot projec-
tive geometry:

Let C and D be two smooth conics generally situated
in the projective plane so that C contains D.

For an integer N > 2, if there exists a closed N-
polygon inscribed in C' and circumscribed about D,
then for every point P in C there exists an N-polygon
whose vertices are on C' and include P, and whose
sides are tangent to D.

The result was recently connected with the John
boundary problem [BurskiiZhedanov|, and explicit for-
mulas for the vertices of the polygon were given in the
case of two parabolas, in terms of the p-function. The
fact that the sequence of vertices is obtained by addi-
tion of a fixed point on an elliptic curve is then quite
explicit. The genus-1 periodic Toda lattice was de-
rived.

Let C be given by the homogeneous equation y? =
rz, and parameterized by [z,z%,1]. The sequence of
2
vertices of an N-polygon is given by IV points [asgo) : asgo) ,1]
(t=1,...,N).
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Let D be given by [z,y, z]A[z,y, 2]* = 0,, where
a1 a as |
A= asg as ag |,
ar ag ag

and we assume as = 0.

The dual conic D* of D is given by
(X,Y,Z]A71X,Y, Z]' = 0. A pair (P,L) € C x D*,
P € L, satisfies

xX +yY +22 =0,

for P = [x,y,z] and L = [X,Y,Z]. This incidence
relation is given by the elliptic curve F;
2 ].

we = [m,m2, 1]A[m,m2, 1]t,
as + a4

where

w = \/diﬂ (h@)% _ hz(m)) |

and h(x)’s are polynomials in . |GriffithHarris| showed,
by Cayley’s determinantal condition, that Poncelet’s
problem is equivalent to finding the matrix A and a
point (z,w) belonging to E; that satisfies the equa-
tion of Kiepert and Brioschi, ¢y ((x,w)) = 0.
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For such A, Poncelet’s condition is equivalent to
the fact that for the vertex

P, = [zn,72,11 € C, z, = p((n—Dup+t), (n=1,...,N)
satisfies the N-periodic Toda lattice for all ¢:
2
—ﬁ UO)]
= [p((n + uo +t) — p(uo)] — 2[p(nuo +t) — p(uo)]
+p((n — Duo +1) — p(uo)],

log[p(nug +1t) — p

where
B /(w,'uJ) dr B /(w§°),w§°’) dx
v o 2w’ o = . 2w
Here z\0) = o((n — 1)ug) for every n.

Assuming that the periodic Toda lattice gives a
generalized Poncelet condition in higher genus, we com-
pute the Kac-van Moerbeke spectral curve to express
the Poncelet closure algebraically.

The Lax matrix for the periodic Toda lattice is
given by [KacvanMoerbeke]:

i bll 1 0 S a,NfLD_l i
a1 bs 1 0
£ — . . . . .
0 an—2 bn_1 1

n ’UAJ anN-—1 bN -
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The characteristic equation for £ defines the hyperel-
liptic curve:

det(L — z) = — (fw+M_p(z)) =0,

w

which gives the affine curve of genus N — 1,
N

Xn_q: W — P(z)w + Hai = 0.
i=1

Here P is given by
P(z) := Ay n(2) — Ay N1 (2),

where
b 1 0 oo 0
Om  bmt1 1 e 0
AP | - . L
0 U bp_o bpn_1 1
0 -+ v a,_o b,
Note: In McKeanvanMoerbeke], the curves that

support solutions of the N-Toda system are shown to
be dense in moduli, by an analitic argument, non-
vanishing of the differential of a map that takes the
N-curves to their period matrix.
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3. Thetanulls

In [PShaskaWijesiri] we were able to write equa-
tions for all the subloci of M5 that have a given auto-
morphism group in terms of thetanulls. The method
we used was partly aided by a Computer Algebra Sys-
tem (CAS); we expressed the branchpoints of an alge-
braic equation of the curve in terms of thetanulls,using
classical Thomae’s formulas; for example, we work out
an equation for every curve of genus two:

0702 0702
v =z (x—1)(z— —é g)(insozx—l— —é ?2’042)
0505 050

where

2 n2 2 n2 4  p4 4 4
329293;“3194, o2 4 203+0?2’—20404—|—1:0.

The 6; are thetanulls corresponding to a Gopel system
in the group of 16 points of period two of the Jaco-
bian. We then use coordinates for My due to [Igusa]
and their expressions in terms of the branchpoints of
the curve due to [Shaska] to cut out the loci. We man-
age to apply this procedure to a cyclic curve of genus
3 because of the recent generalization of Thomae’s for-

mulas to Zs curves [EisenmannFarkas|, [Kopeliovich],
[Nakayashiki], [Shepherd-Barron].
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G AP recently enabled K. Magaard, S. Shpectorov,
T. Shaska and H. Vélklein (2002) to find all possi-
ble automorphism groups of curves of genus g as well
as the equations of the curves. Method: monodromy,
Hurwitz spaces classified by signature-group pairs; Ga-
lois action on function field. ,

Goal: give equations for the loci in terms of thetan-
ulls (after classical ideas of Riemann, Krazer, and cur-
rent work by H. Farkas and R.D.M. Accola)

Thanks to the determination of the automorphism
group, we can handle the cases of hyperelliptic curves
and curves of genus 3.

Sample results (method: determine the action of
the groups on the space of holomorphic differentials):

Let X be a genus 3 hyperelliptic curve and G =
Aut(X). Then, V4 C G if and only if there are quarter
periods f1, f2, h1, he € Jac(X) such that

i) the groups Hy :=< fi, fo > and Hp, :=< hy,hy >
are both isomorphic to Cy X Cs  vanishin

ii) all elements of H; and Hy, are/<cheta—nulls

111) Hf N H;, = .
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Let X be a genus 3 non-hyperelliptic curve and
G = Aut(X). Then, V4 C G if and only if there are
quarter periods f1, f2, h1, h2, g1, g2 € Jac(X) such that

1) 2f1 = 2h1 = 291

ii) the groups Hy :=< fi1, fo >, Hp :=< h1, hg >,
Hg, :=< g1, 92 > are all isomorphic to C4 x C4

iii) all elements of Hy, Hy, H, are/(theta—nulls

Vanishing

Let X be a genus 3 non-hyperelliptic curve, {2 its
period matrix, and G = Aut(X) its group of auto-
morphisms. Then, ('3 C G if and only if there exist

vanishie'n

two 1/6—periods;theta-nulls fi, fo € Jac(X) such that
3f1=3f2 and [2f1, f1 + fo| = 1.
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4. AgM

Here X is the Klein quartic: XY3+Y Z3+2X3 =
0. JacX is not just isogenous, but isomorphic over
Q(e?™/7) to the product of three isomorphic elliptic
curves.

The classical arithmetic-geometric mean (AgM)
for elliptic curves has recently been generalized to genus
3, the last genus for which such an algorithm is possi-
ble. Using, on the one hand, the algebraic construction
of the genus-3 AgM [LehaviRitzenthaler|, on the other,
the dictionary between the period lattice and the alge-
braic representation of curves of genus 3 with split Ja-
cobian [HoweLéprevostPoonen], [Farrington] compares
the curve resulting from this algorithm with a con-
struction for the AgM image of X using the curve’s
split Jacobian and the elliptic curve AgM.
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For genus 2, the classical construction of the AgM
by Richelot and again the period-matrix representa-
tion are used to show [PFarrington]:

Let Ey and Fj be elliptic curves over C with real
roots and Gy C (Eg x Fy)[2] the graph of a group
isomorphism 1 between Ey[2] and Fp[2] that is not
induced by an isomorphism of the curves. Let C be
the genus-2 curve whose Jacobian JC' is isomorphic to
the quotient polarized variety (Eo x Fy)/Go and C’
be the AgM of C, with Jacobian JC'. Let E; and
F; be the AgMs of the elliptic curves with respect to
the subgroups corresponding under ¢ and Gy C (Fq X
F1)[2] the group corresponding to Gg. The following
diagram commutes:

(Eg X Fu)/Go — JC

AgM 1 * ¢ AgM.
(E1 XFl)/Gl — JC'
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