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Modular forms
e Central in number theory: few but ubiquitous
e [ CSLy(Z), x characteron I', k€ Z, 7 € h = {z + iyly > 0}

e f modular of weight k£ and character x if for (Z’ Z) cl,

at + b

(C ) = x(7) (er + ¥ f(7)

e f analytic on b, cusps of h/I". If vanishes at cusps called
cusp form.



Genus 1 case

e . C C lattice, E=C/L, z € C,

1 1
(2= A2 N2

1 2n—2
:z_2+ Zenz :
n>2

1
< 0F£NE

o(az,al) = a %p(z, L),

etch Lr=7ZP%Zr. If p(z,7) = p(z,L;), for (CCL Z) € SL»(Z)

z at + b

- 2 _ 2
orrd or ¥ d) = (ect74+d)“p(z, Z(at+b)DZ(cT+d)) = (ct+d)“p(z,T)

o(



at + b
ct + d

en(7) = en(Lr) = en( ) = (e + d)2nen(7)

e ¢, IS forced to be a modular form, because of modularity of
© AND that of z

e Forces coefficients of defining equation for F,
()% = 4p> — gop — g3
to be modular (go> = 60e5, g3 = 140e3)



Application

Rubin and Silverberg (following Gross, Stark) used modular
coefficients of elliptic curve to count points on elliptic curves
over finite fields.

Apply to “CM" method.

Goal is to build modular models of genus 2 curves (do history
later)

Nick Alexander (Silverberg student) is using to generalize
Rubin-Silverberg to genus 2.



Siegel modular forms of genus 2

e [ C Sps(Z) Consists of:
. A B
e Integral 2 x 2 matrices (C D)
+(A B\ (0 —I\[(A B\ (0 —I
C D)\I O C D) \I 0]

o v = (é g) € act on hy via yor = (Ar + B)(Cr+ D)~ 1.



e k€ Z, x a character of I'.

e Siegel modular form of degree 2 on [ of weight k£ and char-
acter x, is holomorphic functions f on ho satisfying

F(yor) =x(Mir(NFf(r),

for any v = (é g) c I, where j,(7) =det(CT+ D).

e Build with theta functions.



T heta Functions

o T Ehy, abec LI, z€CY.

e Theta function with characteristic [Z] is

a _ £ 2mrit +b
Q[b](sz) — Z e (n+a)T(n+a)4+27i*(n4a)(z )
nez9
o [Z] is a theta characteristic. It is even or odd depending

on whether 9[2](2,7) is an even or odd function, i.e., where

edmiab — 11



Transformation formula

A B
v = <C D) € Spoy(Z), a,b € RI, z € CI, T € by,

v . _
9 [Z] ({(Cr+D) Lz, 70m) = (7, a,b)j (1) /2T HCTHDI 02

C(’Y’ a, b) — p(f}/)ﬁ(f% a, b)7
k(v,a,b) = em(t(Da—C’b)(—Ba—|—Ab_|_(AtB)O)_tab)

p(~v) = an eighth root of 1,
a K _ D -C a 1 (CtD)o
bl T\=B A )b T2 [(AtB)g]"

For matrix M, (M)g is column vector of diagonal entries of M
jv(m)1/2 is a choice of branch of square root of j,(r).

‘,j] (27,



g—=—1, Jacobi’s Derivative Formula

1/2
1/2

1/2

o 7€ b, 0510, 7) = —=0[g](0, 0L ,71(0, TI6L, ) ,1(0. 7).

1/2

* )5
0

L1 /2

] is the lone odd theta characteristic mod 1, and [8],

1, [1(/)2] represent the 3 even theta characteristic mod 1.

e For v € I', the map [Z] S [Z]’Y mod 1 gives an action on

theta characteristic mod 1 that preserves the parity of theta
characteristics.



Quick proof

e Transformation formula shows both sides of formula to the
eighth power are modular forms of weight 12 for I'. Their
Fourier expansions show they are cusp forms. There is a
unique such up to constants. The Fourier expansions give the
constant.

e Formula was generalized by Rosenhain to 7 € ho, by Thomae
to 7 the period matrix of hyperelliptic curves, and by Igusa
to all 7 € hy. Still active area (Farkas & Kra, Grushevsky &
Manni.)
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g—=—2: Rosenhain’s Theorem

THEOREM: If §;, « = 1,2, are distinct odd theta characteristics,
then there are even theta characteristics ¢, 1 < k < 4, depending
on the ¢;, such that

00[9;](0, 1)

8z]

| = £n° H 0ler] (0, 7).

Det; «; j<ol

o Let T =Spu(Z), Fs={ye[6]Y =[6] mod 1}

e Unlike genus 1, both sides of formula only modular on

5, N5, (so not on all of I, which would be “level 1")

11



First goal will be to describe a version of Rosenhain’s formula
that is modular for all of I.



Set up

e [ here are 10 even theta characteristics mod 1 for degree 2
theta functions. Choose representatives for these mod 1 and
define

D(r) = H 0[e] (O, 7).

€ even

e Let Z be orbit of 7{o = 0 in ho under action of Sps(Z). Then
D(7) has a zero of order 1 on Z and no other zeroes. (So
D(7) # 0 precisely when 7 is the period matrix of a curve of
genus 2.)

e D is up to a constant the Siegel modular form (with character
v ) on I and weight 5.

12



Definition of X|[d]

e For an odd theta characteristic 4, set

92109 0[56](z, )

X[8](z, 1) = 9[5](z,7)3Det1§z‘,j§2[ 5202
i0%;j

]7

which a computation with partial derivatives shows is entire.

e X[6] was not chosen out of thin air. The function g%fgiﬁ;%
plays a pivotal role in the function theory of the abelian va-

riety Ar = C2/(Z? + tZ%) when D(7) # 0.
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Degree 2 generalization of Jacobi’s formula

THEOREM: For any odd theta characteristic 0, Dets =

00[6](0,7)  80[5](0,7)
Det (

0z 0z —
0x[5](0,7) axmfom) = £27°D(7).
0z1 0zo

14



Sketch of Proof

Transformation formula show Dets is Siegel modular form
(with character) on 'y that vanishes on Z, and ' permutes
the Dets.

Since holds for ALL odd theta characteristics 6, Dets/D(7)
is holomorphic, so Siegel modular form of weight O, i.e., a
constant.

Constant from the lead term of Taylor expansion in 71o.

Must employ Jacobi’'s derivative formula to find constant!
(Similar argument gives quick proof of Rosenhain’s theorem.)
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Analytic jacobian

Start with genus 2 curve

C:y? = x° + bia* + box> + bzx? + bgx + bs

(oo = point at infinity.)

Differentials of the first kind p1 = dx/y, up = zdx/y.

Symplectic basis for H1(C,Z), A and B-loops generators.

Form period matrices

w = [wi;], v = [w

/

1

j]) T=w

1

/
w
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Analytic jacobian, continued
Get 7 € . Set L = wZ? @ w'Z2
J=C?/L

Embed C — J via

P
P%/ (u1,p0) mod L
O

Image is a divisor @, which is zeros of a theta function with

odd characteristic.
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Torelli
e Can recover C from (J,©).

e Rosenhain form (\; = ratio of Thetanullwerte)

y? = a(z — 1)(z— A1) (z — A2)(z — A3)

(coefficients modular on ﬂ?: 5, index 720 in I")
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e Guardia form

y? = z(z* + ax> + bz? + ¢

(roots involve derivatives of theta functions)

(coefficients modular on I's, N, index 30 in IM)

e Our result has coefficients modular on [

(index 6 in IN)

e Done by viewing C as zeroes of a theta function, and by
using “‘modular parameters"
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Set up

Start with 7 such that D(7) # 0. Set L, = Z?r @ Z2.

Pick odd theta characteristic §, & zeroes of 0[6](z,7) in C2.

Descends to divisor © on A; = C?/L,.

Get precisely those (Ar,®) not product of elliptic curves

Means A, is a jacobian of a curve of genus two

Means that © is smooth
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Modular parameters

o For yerlyg, (*)

0[6](H(Cr+D) Lz, yor) = Cg(7)jy () 1/ 26 Z(CTH+D) " CZg 5] (4 1)

o Set u; =0, 1[0](0,7)z1 + 0, 2[6](0,7)22, the linear term, so
u] = CGg(1)iy (1) ?uy

(We let subscript indices z,ijk... denote partial derivatives
with respect to the correspondingly indexed variables in z.)

e To avoid sign ambiguities, set £y = uj /ug
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o Let x(v) = (u?)z/det(C’T + D)u%

e character of 'y of order 4: x2 = 1.



Modular parameters (continued)
e H = Hessian, h = det H. So X[8](z,7) = 0[8](z, 7)3h(log 0[5](z, T)).

e Taking logs and hessians of (*) gives

h(log 0[8](*(CT+D) "1z, v01)) = jy(7)? det(u+H(log 0[5](z,7))),
where y = 27i(Cr 4+ D)~ 1C

e Hence X[§](((CT+ D)~ 1z,vo07) =

0(7)3(7)j (7) 237 2(CTHD) 102 51 (2 )3 det(u+H (log 0[5] (2, 7))).
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e Now

0[6](z,7)> det(u+H(log 0[6](2,7))) = X [6](z, T)+6161(2, ) gy (2, 7),

where gy(z,7) is analytic.

e So if up =X, 41[6](0,7)z1 + X, 5[6](0, )22,
the linear term of X [6](z,7), then

ud = (1) (1) (uz + 9+(0, T)u1).



Recap

e Have I acting on C2 x h, via v = (é g) e [ sending (z,7)
to ({(Ct 4+ D) 1z, 4(1)).

e Let (z1,20) be the complex coordinates on C2. We intro-
duced new coordinates:

00[6]1(0,7)  90[6](0,7)

(ug,up) = (aX[gf’(lo,T) 3X[(?5]Z€O,7-)> t(21,22) = M'(21, 22).
(921 822

e [ he theorem tells us that these are parameters for C2.
23



u] = lyuy,ud = P(y)ly (ua + By (T)uy).

e The point is that although the pair (21, 22) transform like a
vector valued modular function, w1 transforms like a modular
function, and u, almost does.

e First order of business is to modify the definition of uy to
a parameter which actually does transform like a modular
function.



Taylor expansion of theta function in «
° Taklng Hessian in definition of X with respect to u gives:
(27T6D(7'))2X[5] (u 7_)
016 (u, 7) (016w, 11 (u, T)O[8] 20w, 7) — 01814, 12(ut, 7)2)
~0[6]y,11 (uy 7)0[6] 4 2 (1, )% — 0[8]y 20 (1, 7)O[6). 1 (u, T) %+

20[6]y,12(u, 7)0[6]4,1(u, 7)0[6]y,2(u, 7).

o Comparlng linear terms gives the linear term of 0[d], 2o (u, )
—uz/ (472 D(7)?)

e Hence 0[6](u,7) = u1—|—?u1u% — u%/(lelQD(T)Q) + ...

24



Handwaving over messy details

-2
412D (1)2

e Have QU,QQQ(O,T) =

e Studying the cubic and quintic terms in the expansion of (*)

. 9 51(0,
gives w1 = uy, and wy = up — 1 9“’2222222[35%(]0(T)72)u1 are modular.
u, 3

o For v ey,
w}_/ — E’lea w%/ — ¢(7)£77’w27

SO wi1 and wo are our desired “modular" parameters.

25



Modular model of the curve

e Since we took D(7) # 0, we have © is a smooth curve C of
genus 2, A, is the Jacobian of C, and what we seek is to use
the function theory on A, to define a model for C' entirely in

terms of .

e © goes through origin, and can expand there via the implicit
function theorem to solve identically for

w1 = p(wz) = w3/(127°D(1)?) + ... = Y a;(r)wh
1>3

26



where p is a power series containing only terms of odd degree
(i.e., a; = 0 for even 1) since 0[6](w, ) is an odd function.

e Worth noting that ag(7) = 0. In fact, we formed w, by
modifying u, by the unique multiple of w1 that makes ag(7)
vanish

e Since wi and wp are modular, the a; are modular, too.



Defining the z-coordinate

Since 0[d](w, ) vanishes on ©, first derivatives have the same

factor of automorphy:

For w € C2, X\ € L, have a linear function ry(w):
O8] (w + A, 7) = Q8] (w, T)

i=1,2, wE€ O, 0[]y i(w+ A7) =eNW9[5], ;(w,T).

Hence w € 8,

r(w) = z(w,7) = —0[0]y,1(w, 7)/20[8] 2(w, T)
gives a function on ©.

27



Properties of z

A is jacobian of (', so Riemann’s vanishing theorem —
For a generic point v € ©, and w a variable point,

0[6](v + w, ™) = O for precisely 2 choices of w mod L~

Since 6y, 1[0](w, ) and 6, 2[6](w, T), have same factor of au-
tomorphy as 6[§](w, 7), also have 2 zeros on © mod L.

For 0, 0(w) = —w3/4x12D(7)% 4 ..., both at origin,

so x is a function on C with a double pole at oo (as we will
call the origin as a point of C) and nowhere else.
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Expansion of z coordinate at origin.

Since lead term about the origin of 6, 1[0](w,T) is 1, expan-
sion of x is

(47°D(7))?
> + Z Cangn'
w5 n>0

con, determined by agp,,41 and are modular.

In particular ag = 0 means cg = 0

Take derivative of 9[6]((p(w2),w>),7) = 0.

Get dwq/dws = p'(ws) = 1/2z(w) [see dedong].

29



o Get for all v €Iy,

z(w?,7(1)) = x(Nir(7) 2 (w, 7),

e z transforms like a Jacobi-Siegel form for w € © and v € I



Defining the y-coordinate

dx /dwq, is function on C', poles only where x has poles or wq
IS not a local parameter.

Since © is smooth only happens where 0, 2[0](w,7) = O,
which is just the origin.

SO dx/dwi = (dx/dwy)/(dwy/dwy) has a pole of order 5 at
infinity and no other poles on C.

Compute

dx _ d 9[5]w,1(p(w2)7w277) —
dw1 dwy 20[6]w 2(p(w2), w2, T)

30



1
20, 2(p(w2), wp)?

dwo

[0 2(p(w2), w2) (04 11(p(w2), w2) + 04 12(p(w2), wQ)El)

dwo

—0y,1 (p(w2), w2) (0, 12(p(w2), w2) + 0 22(p(w2), wz)wl)]

1
20y 2(p(w2), wp)3

[—0..2(p(w2), w2)%0,y, 11 (p(w2), w2)+20y, 12(p(w2), w2)0y, 1(p(w2), wn)

0,1 (p(w2), w2)?0, 22 (p(w2), wo)]

(here we suppress the [§] and 7 from the notation to improve
readability)



Expansion of y-coordinate
e Numerator is just X[§](w, T) restricted to ©,
e We denote this quotient by y(w)/167°D(r), w € &

e SO y(w) = y(w, ) is a function on C, and tranforms for v € I'5
as

y(w?, (1)) = £:°y(w, 1),

and the expansion at oo of y is

71.6 - 5
=*DE)®

w5
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Defining equation
Note that x is an even function on C' and y is an odd function.

From expansions, there are b; € C, such that

y? = f(z) = 2° + byz* + brz> + b3z? + bax + bs.

Since y is odd it vanishes at the 5 points W, of order 2 on J
which lie on ©

f(x) has distinct roots a;, 1 <17 <5, and the equation gives
an affine model for C. (Equation gives a recursion to find all
co,, @S @ polynomial in ¢p,ca,cg and cg.)
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Finding Weierstrass points

e These a; = x(W;) are determined by the criterion that ©; =
T;}/Z,@ is zeroes of an odd theta function 6[§;](w, 7)

0l 0180
(2 29w,2[5](Wi7 ’7‘) o 2%@[51.](07 7_)

Writing “(u1,u0) = M'(z1,22), “(w1,wp) = N'(z1,22), we ,
tr 0 O\ _tag—1t( 0 O tr & 8.\ _ ta—1t; 0
have (a—mag—@ ="M (3—2173—2,2)1 and (3w173w2)— N (3—10173—@)7

SO a; =

0. d] (0,7
018,10, 7) + G20 2 015,10, 7)

255-0[5:1(0, )
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0X[6](0,7)90[6;](0,7)  0X[6](0,7) 90[9;](0,7)

17 o, D21 D21 0zp 1 0y4,20202[6](0,7)
2 _0000](0.1) 990,](0.) 1 DIBIOIPIBIO) 20 6y 200[6](0, 7)2
022 0z1 0z1 02> ’

_ J(X[6]1(0,7),0[6,](0,7)) 1 64,22222[](0,7)
2J(0[5]1(0,7),0[5;](0, 7)) 20 6y,222[5](0,7)? "

which is a modular function of weight 3 (automorphy factor
W(v)ey(7)°) on TN Ty

e [ his follows from the transformational properties of x

e Here J is jacobian matrix with respect to zq, 25.

e Will find an alternative expression for a;.



Weierstrass points from Thetanullwerte

e J(0[5](0,7),0[6;](0,7)) is given by Rosenhain’s generalization
of Jacobi’'s derivative formula. Let n; = 9; — 0. Then

J(0161(0,7),0[6:](0, 7)) = £n2 ] 0[6 + n; + 1;1(0),
which vanishes only if D(r) = 0. L?lz&ez\/vise
J(0[6:1(0,7),06;1(0, 7)) = £m0[6+n;+n;1(0,7) ] 0l5+ne+m](0).
One calculates for i # j, {1,2,3,4,5} = {zfijz]m} that

JJ(X[cS](o,r),@[@;](o,T)) _ J(X[9](0,7),018;](0, 7))

2J(0[6](0,7),0[5;](0, 7)) 2J(0[5](0,7),0[5;](0, 7))
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_ JX16](0,7),0[6](0, 7)) J(816:] (O, 7), 819,51 (0, 7))
2J(0[5](0,7),0[5;](0,7))J(0[5](0,7),0[5;](0, 7))

_ #m20[8 + i + 1510, 7) [, 04, 010 + i + m1 (0) (27°D (7))
(F=72 [zt 016 + 13 + 0] (0)) (72 [Tz 016 + 1 + 1] (0))

= +740[5+1,+10] (0, 7)20[5+n,+1m] (0, 7)20[5+11+1m] (0, 7)2.



e co(7) = 0 implies that b; = 0, (i.e., that 32 _; a; = 0)
Hence a; = £ Y j2ia; — a; =

_ 1 J(X[8](0,7),006](0, 7)) S J(0[6;](0,7),0[6;]1(0, 7))
10.J(6[6](0,7),0[6,](0,7))) 1=; J(06](0, 7),0[5;1(0, 7))

=a*Y £ [ 606+ n+nd(0,7)2
JE kgl

e T his gives another way to use analytic functions to solve
quintic equations!
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Applications

e Easy proof of Thomae's Theorem in genus 2.

(ai~a;) (ax—ap) (ag—am) (am—ar) = —g16D(r)*0l6+n;+7,)(0,7)*

(for our model, det(w) = D(7).)

e Quick derivation of cross-ratios of branch points:

a; —ap i9[5 + 1, + 161(0, 7)20[6 4+ n; + nm] (0, 7)?

a; — ay 016 4+ n; + 11 (0, 7)20[6 4 n; + mn](0,7)2
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Relationship to function theory on J
e Haven't needed sigma function yet!

o For yerly

0181(*(CT + D) Yw,y o 1) = k(y,8)j(r) /2™ (Wg[6] (w, 7),

gr(w) is a quadratic form whose coefficients depend on .

e Modify 0[] (w, 7) by a trivial theta function so that the quadratic
form appearing in the transformation formula vanishes.

o[6](w, ) = wl—wg’/127712D(7')2—|—w1 (al1w%—|—2a12w1w2+a22w%)—|—...
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Let g = <a11 a12>_
aiz2 ano
DEFINE o[8](w, 7) = e~ w1g[§](w, 1)

Expansion at the origin is just wy —w3/12712D(7)% + ...

Resulting transformation

o[8]7({(CT 4+ D) tw,y o 7) = k(v, 8)jy (7)1 20 [8] (w, T)

Every coefficient in the expansion of ¢ in w1 and wo is a
modular function of half-integral weight on [;.



e Other advantage of o over 0: if we define

02 log o [8](w, T)
811}7;8’(1)]'

X[0](w, ) = Dety1<; j<ol ],

then o[8](w, 7)3X[6](w, ) = wo + ...

as before, but now transforms like a Siegel-Jacobi form of
weight 2, i.e., for any v € I,

X[8]1¢(CT + D) 1w, ~(7)) = det(Cr + D)? X [6](w, 7).
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Hyperelliptic p-functions

First let us multiply w1 and w» by 27°D(7) and divide o(w, ) by
27°D(7) so that the expansion at the origin is just:

w1 —wg’/3 =+ ...

Fori,j = 1,2, let p;; = aw aw log o [6](w, 7).

o(w, 7) = w1+ ...
o(w,7) =14 ...
ox(w, ) = —w% + ..

o11(w,7) =0+ ..., o1o(w,7) =0+ ...
39



ooo(w, ) = —2wo + ...
02(w,7)g911(w,7) =14...
o2 (w, ) p12(w, 7) = w3 + ...

o2 (w, T) oo (w, T) = 2wiwy + ...

e Hence 1,911,012, 22 are a basis for the 4-dimensional space
L(20O).

e Definition in terms of partial derivatives then shows that oo

is the unique function f € L(2©) up to affine transformation

such that there exist g,h € L(20©) such that g/f|lg = =2,

h/fle = —z, and up to affine transformation, the unique
such g and h are o171 and gp1-o.



Algebraic jacobian

e A is birational to the symmetric product c(2) so functions on
A are symmetric functions in two independent generic points

(z1,y1) , (z2,y2) on C.

e Basis for L(2@) IS 1, X22 =T —|— o, X12 = —I1T9, Xll =

X00X$y 4+ 2b1 X7, — b X020 X15 — 2b3X15 + by Xoo + 2bs — 2y190
(1 — 22)2 '

e One can check that X11/Xoolo = 22, X12/Xoo|g = —x.

So there exist constants «yj, B;; such that p;; = a;; X5 + Bi;
for +,9 =1,2.
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Finding the «;;

The a5 €an be found by taking independent complex variables
2,z and looking at the lead terms in the expansions of both Xij
and p;; in terms of s = z + 27/ and p = 22z’ gotten by setting

(x1,91) = (p(2),2), (x2,42) = (p(2),2"), w= (p(2)+p(z), z+2").
For example, o(w) = 0 if 2z = 0,2/ = 0, or 2/ = —z. So the
expansion of o is divisible by p and s. On the other hand its lead
term is the lead term of p(z) 4+ p(z") — (z + 2/)3/3 which is ps.
So o(w)/ps is an invertible power series. Note that ox(w) and
ooo(s) are divisible each by s, and their lead terms are —s? and
—2s, SO the expansion of @on(w) = Z%(s2 — 2p 4+ ..). Likewise

Xop = —45 + pé, = 1(s2—2p+..). Hence ayy = 1. Similar

calculat[i)ons show that a11 = a1p = 1. Determining 3;; takes a
little more work.
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Finding the g;;

Given the expansions we have, one can give Baker's proof of
Baker’'s formula:
o(u4+v)o(u —v)

o(u)20(v)?
On the other hand, general theory gives that a function on Ax A
with the same divisor as either side of Baker's formula is

= p11(v)—p11(w)+p12(u)p20(v)—p12(v) P22 (u).

X11(v) — X11(u) + X12(u)Xo2(v) — X12(v)Xoo(u),

which shows that (1o = (B2 = 0. It turns out that pq7 and
X171 differ by a multiple of b3. One can redefine o, so that they

coincide.
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Zeta functions

Gi(w) = ?((5)’)) fori = 1,2, w € C? are quasiperiodic functions,
but do not restrict to functions on ©.

Rather, for w € ©, &(w) = % are quasiperiodic

(with twice the quasiperiods of (;.)
Hence their derivatives are functions on C.

A currently messy calculation shows that dlgg(w) = —2ux.
w2
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e Like in genus 1, x is a derivative of a quasi-periodic function.

e Gives another way to invert the abelian integral in genus 2!



