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ABSTRACT

The study of energy transport and storage in proteins was revolutionized over ten
years ago when Davydov proposed a new nonlinear theory of interacting amide-I
vibrations and localized sound waves on the protein o-helix, giving stable pulse-like
waves called solitons. Further studies were carried out by Scott and and his group at
Los Alamos. More recently, attention has shifted to the study of solitons in
crystalline acetanilide (ACN), a material with polypeptide chains similar to those on
the protein «~helix, The work on ACN has now been extended to a general theory of
self-trapped pulses on regular and irreqular lattices. 1In general, stationary and
travelling solitons on regular lattices are now reasonably well understood, but much
work remains to study the energetics of irreqular lattices such as globular proteins.

1. INTRODUCTION

The fundamental mechanism which we seek to model here is the transport and storage of
energy on biologically important macro-molecules. We assume energy is released in a
concentrated form at or near a site A on the molecule, usually in units of 0,49eV by
hydrolysis of adenosine triphosphate (ATP) to ADP, This energy is stored at site A
or travels to site B, arriving in a localised packet. On arrival at B the energy
packet may be used to initiate some reaction, or it may be trapped and stored to bring
about some conformational change. Alternatively, the energy may initially arrive at
the molecule in a diffuse form, spread out over many atomic sites, and become focused
at a few sites,

The presence of moving or stationary packets of energy may affect the transport of
other enerqgy pulses, It is possible that different sites on a molecule can be
switched from one state to another by these pulses in a rough analogy with the working
of an electronic or optical computer or a dendrite tree on a nerve axon.

I shall leave more detailed speculation on these topics to other authors in this
volume. The main concern in this paper is the study of the formation and transport
of such localized energy packets. Here the key word is "localized". Until recently,
it was assumed by biologists that the energy in any initially concentrated packet
would become dispersed on a time scale of 107!? sec.,, too quickly on the biological
time scale for this energy to be transported from one site to another or to be put to
productive use. This will occur whenever the molecule is modelled well by a linear
system, such as a chain of linear springs (harmonic oscillators). Davydov was the
first to point out in 1973 [1,2] that a nonlinear model might be more appropriate in
many cases, and such systems would support a mobile concentrated pulse of energy that
did not disperse in time, Such an entity had been observed in other physical
systems, and was known as a solitary wave or soliton. (The first sighting was in
1834 in the form of a solitary wave on a canal near the present site of Heriot-Watt
University, by John Scott Russell, a Scottish mathematician and engineer),

Some readers of this paper may not be familiar with the terms soliton or solitary
wave, so a short description may be appropriate. The two terms are not quite
synonymous, but for our purpose we can regard them as essentially the same, Basically
a solitary wave or soliton is a wave with a single "hump" which travels along at
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constant shape and speed in the absence of perturbations, and which is extremely
stable to interactions with other pulses, It usually has a bell~shaped outline as
shown in the Fig. 1 below

Fig. 1

Mathematicians often reserve the word "soliton" for pulses which maintain their exact
shape after collision, but physicists adopt a weaker condition of approximate
stability, which we will follow here. Generally the soliton occurs in systems where
there is nonlinearity and dispersion: it maintains a dynamical balance between the
nonlinearity tending to sharpen the pulse and the dispersion causing the pulse to
spread out. A more detailed description of the soliton will be found in one of the
many books on the subject (c.f. [3]); a survey of the role of solitons in chemistry
has been given by Collins [4].

The paper is laid out as follows. In Section 2 we survey briefly some work on
Davydov solitons on «-helix proteins and in Section 3 we describe some calculations on
stationary solitons on a '"model protein", crystalline acetanilide (ACN). A
generalization of this study leads to a generic equation, the Discrete Self-Trapping
equation, outlined in Section 4. Finally in Section 5 we describe some recent work
on the dynamics of solitons on folded chains, and suggest a model, based on the
discrete Nonlinear Schrddinger (NLS) equation, which leads to a qualitative
understanding of solitons on the «-helix and ACN, and points the way to a theory of
soliton dynamics on globular proteins,

2, DAVYDOV SOLITONS ON THE o~HELIX

In a short section we can only hope to capture the flavour of this line of research,
referring the reader to the original literature for details., The theory of solitons
on the protein «-helix was originally proposed by Davydov and co-workers [1,2]. A
more recent survey of the work of the Kiev school will be found in [5]. The theory
was taken up by Scott and co-workers in the USA: some references are [6-12]. An
excellent introductory article to this topic has been published by Lomdahl et al.
[13]. This latter paper in particular contains many informative figqures which lack of
space precludes including in this article,

The basic ideas behind Davydov's theory are as follows., As suggested in Section 1,
energy arrives in packets of abkout 0.49eV by the hydrolysis of ATP to ADP, This
energy is stored and transported as localized packets based on the amide-I (C=0)
resonance, which has a quantum energy of 0.205eV, Linear theory suggests that this
energy would be dispersed due to dipole~-dipole coupling between the bonds in the order
of 10 *%sec, Davydov suggested that dispersion could be avoided by the following
mechanism:

(a) introduction of localized amide-I bond energy induces longitudinal sound
waves on the helix;

(b) longitudinal sound acts as a potential well to trap the bond energy and
prevent its dispersion,

The coupling between the longitudinal sound waves and the amide-I bond energy is, as
we shall see below, a nonlinear term in the equations: schematically this mechanism
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can be represented the a feedback loop shown in Fig. 2

(a)

Loocalized
Anide-I
enerqgy

Longitudinal
sound waves

(b)
Fig. 2

The structure of the o«helix is such (7] that there are, to a first approximation,
three “spines" of linear chains of hydrogen-bonded peptide groups along the helix.

=0 -+ H-N-C=0 °*° H-N-C=0 *°-H-N-C=0 *** H-N-C=0 °°°

(Here we use wlinear" in its geometrical sense: the chain forms a rough straight
1ine, but the interactions within the chain are nonlinear functions of amide-I bond

energy and longitudinal sound energy).

Space does not allow us here to discuss the details of the Davydov model: we go
directly to the resulting equations

ih énoz = [Eo + WX (ﬂn'l'l,u = 511-1,«]]&!1«

-dJ [an'*'l,cx + an—l,«] + L{an,o&l + an,«-l} (2.1a)
+ Xz[[?n+1,a - ﬂno;]anﬂ,a + [?nq - 5n—1,;}an-1,;]

2@

W - W(ﬂn+1,o. - 2po * ﬂn—l,a] = Xi[‘an"‘l;a‘z - \an—l.alz}

% % %

* X, [anq[an'l'l,c: = an—l,«] + [an“i'l,c( = an-l,«]ana] (2.1b)
1 0 2

W= 3 L [Mﬂfm + W(ﬂna - Bn—l,a] ]o (2.1c)
n,a

Equation (2.1a) describes the propagation of amide-I vibrations via dipole-dipole
interactions, and (2.1D) describes the propagation of longitudinal sound., The total
longitudinal sound energy is defined in (2.1c). The notation used in equations (2.1)
is as follows, The dots represent differentiation with respect to tinme, i.e.
a = da/dt, § = dzpsat?. The double subscript refers to the numbering (n) of each
amide group along the spine labelled by «. Here «*= 1,2 or 3 and n = 0,1,2,..-0pax-
The complex gquantity 2ne is the bond occupation amplitude, i.e. lapgl® = an.2fio
is the probability of finding a quantum of bond energy E, at group n on spine «a.
The real quantity Bpq is the displacement of the amide group n on spine « from
its equilibrium position. M is the mass of the unit cell and w is the linear
restoring force per unit of hydrogen bond stretching. The terms with coefficients J
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and L represent the effects of dipole-dipole couplings between the amide-I bonds,
with the J ‘term representing interactions along the spine and the L term
representing interactions between different spines. The nonlinear coefficients ¥,
and ¥, represent anharmonicity in the longitudinal hydrogen bonds.

In the study of Hyman et al. [6], equations (2.1) were numerically integrated with

Npay = 200 and other constants fixed as described in the reference., The numerical

me%hod used was a third order Adams-Bashford-Moulton predictor-corrector method
operating in PECE mode [14]. The only coefficients that were varied were the
nonlinear coefficients yx, and X, which were set equal ¥, =¥, =x and varied in
the range 0 ¢ ¥ < 10 (x 107'! newtons).

A convenient graphical summary of some of the results is given by the computer film
upavydov solitons on the alpha-helix" [15], shown with the oral presentation of this
talk., In the film, initial conditions (t = 0) were one quantun of amide-I energy on
each of the three spines at n =0 (sympetric excitation) and the quantities graphed
are the bond energy U, and the sound energy Vp

N 2
Up = ilanalzl Vp = i[ﬁﬁq + {Pn+1,« - Bnq] ] (2.2)

in normalized units. Fig.3 shows two frames redrawn from the film, with two
different values of ¥, x = 2 and ¥ =6, at t =350,

The sound enerqgy forms two distinct components: a "fast" component travelling at the
limiting sound speed v(w/M), essentially independent of the bond energy, and a
nglow" pulse coupled to the bond energy and moving at the same speed. In Fig., 3a,
the bond energy is clearly dispersing over a large number of sites, whereas in Fig.
3p, the pulse has stayed localized and is propagating along the helix with a fixed
shape and speed. Further studies show that there is a clear threshold at about
¥ = 3(x 107! newtons) below which no soliton forms and the initial energy disperses.
The estimated actual value of ¥ is = 3.5, so it is reasonable to expect Davydov
solitons on real «-helix protein.

The initial calculations of Hyman et al. have been refined by later work by Scott and
co-workers by adding to the model extra terms, proper inclusion of the spiral nature
of the helix, etc,, and these studies further support the hypothesis that the true
value of ¥, =y is compatible with soliton formation. However these later studies
have shown that ¥, << ¥, and that the ¥, terms are not significant in the

calculation,

one other feature of the refined model is that if x is too high, a stationary
soliton is formed near n = 0 which does not propagate down the chain., We shall
return to this point in Section 5.

3, STATIONARY SOLITONS IN ACN

Experimental evidence for solitons on the «-helix is sparse and open to alternative
interpretations, The best evidence for the existence of solitons in proteins comes
from the study of the spectrum of a v"model protein®, the cystalline polymer
acetanilide ((CH,CONHC.H()y), or ACN, As first noted by Carieri (c.f.[16]), ACN
possesses a chain of hydrogen-bonded peptide groups whose bond length and angles are
very close to those in natural proteins, The resulting experimental study is
described by Gratton elsewhere in this volume. A theoretical study [17] of this
system along the lines of the Davydov model for the a-helix leads to a set of
equations with similar features to (2.1). The main physical differences are that the
detailed molecular structure is somewhat different in ACN, and in the latter theory
the coupling of the amide-I bond is to optical rather than acoustic phonons.

The numerical study of soliton dynamics on ACN can be carried out in much the same way
as for the o-helix, A new observation, shown both theoretically and numerically for
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Fig. 3 pavydov Solitons on the «-helix: (a) X 7 0.2; (P) X7 0.6
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ACN, is that energy initially spread out over a large number of sites is focused or
self-trapped into a concentrated pulse or soliton. However the main thrust of this
study of ACN was an investigation of the detailed spectrum of stationary soliton
states as a function of the nonlinear parameter y in the problem, This was carried out
by the investigation of "stationary states" with the form aj(t) = opexp{iovt}: here
ap(t) 1is, as before, the probability of finding a quantum of energy on the nth
amide-I bond., Numerically, this involves use of path-following techniques of the
sort developed by Keller et al. [18]. This study reveals the possibility of soliton
formation which gives a plausible explanation for an otherwise anomalous line in the
infrared absorption spectrum of ACN.

4, THE DISCRETE SELF-TRAPPING EQUATION

Numerical and theoretical analysis of the Davydov equations (2.1) suggest that the
solitons travel slowly with respect to the speed of longitudinal sound waves. This
suggests neglecting the kinetic energy of the sound waves by assuming fn =0 [13],
whereupon Bp = Bp-1 = ~ X, lagl®/¥. Assuming also that ¥, = 0 as discussed in
Section 2, and assuming for the moment that L =0, we get the nonlinear differential-
difference equation for one spine.

. d
[m’&E - Eo]an * J[an+1 + an_l] + ylag|?ay = 0 (4.1)

where y = y*/W. The term E, can be transformed out by the phase change
ap » apexp(-iE,t/h), and hereafter we will choose units in which h =0, so that
(4.1) becomes in vector form

in + ydiag[|a, |?,]a,|%s...]JA + €MA =0 (4.2)

where A(t) is a complex n-vector with components (a,,a,,...;8y); the matrix
diag[..] is a diagonal matrix with diagonal elements (la [?s.cerlapl?);s e = 3, and
the n x n matrix M has elements

my =1 if |i-31 =1, my© 0 otherwise, (4.3)

If L#0 in (2.1) then (4.2) can still be used if the excitation is symmetrical on
each spine by absorbing the L term into the E. term: if this is not the case then
(4.2) is still obtained but with a more complica%ed matrix M and A enumerated over
each amide-I bond on each spline,

The soliton equation for ACN can also be transformed into (4.2) with a different
choice for M (block tridiagonal in this case). This suggests that (4.2) has more
general applications and deserves further study., It turns out that (4.2), which has
been named the Discrete Self-Trapping (DST) equation, is also useful, in the case of
small n, as a model for the nonlinear vibratioms of small molecules [19].

Space precludes a detailed discussion of the properties of solutions of the DST
equation here - the reader is referred to [20,21]. One particular result will be
useful for the next section, For large y, with M given by (4.3), the DST equation
hae stable stationary soliton solutions of the sort shown in Fig.4a, with most of the
energy located on cne site. There is also an unstable stationary soliton of the sort
shown in Fig.4b, with the greater proportion of the energy split over two sites.

|an]2 1

(a) Fig. 4. ()
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Such solutions have also been recorded for the ACN problem [17] and for other lattice
nodels [22].

5. SOLITONS ON GLOBULAR PROTEINS

In comparison with the work on solitons on the «-helix and on ACN, 1ittle work has
been carried out on the more aifficult problem of the nonlinear dynamics of globular
proteins. One of the few publications in this field is a description by Lomdahl [23]
of a general purpose computer program .GLOP" which calculates the evolution of the
energy of amide-I bonds on an arbitrary globular protein, requiring as input only the
coordinates of the protein. In effect, this code calculates the appropriate elements
of the matrix M in the DST equation (4.2) and integrates the equation in time. The
most ambitious calculation reported is that on the enzyme lysozyne, consisting of 129
peptide groups. When two quanta of energy were placed on adjacent sites on that part
of the protein which has «~helix structure, the energy stayed localized on the a~helix
part. In some other runs, energy placed on a non «~helix part dispersed. However
detailed analysis of results is difficult in such a complicated structure,

In order to draw out the salient features of such calculations, I have recently
performed some trial calculations on a simplified protein model described by the
discrete Nonlinear Schrddinger Equation, This system is basically (4.1), i.e, the
DST equation (4.2), with M given by (4.3) plus some added terms and Npay = 50. If,

for example, we also have mj4= 1 if i - 3| = Dpay ~ 1, then this represents a
simple circular chain shown “in Fig., 5a. (The = closed chain has no physical
significance, and is merely a mathematical convenience to save us from worrying about
what happens at the end of the chain), If we add another pair of nonzero elements,
say mj4 = C if i,j = 13,37 and 37,13 represents a twisted circular chain as shown
in Fig. 5b.
| <::::::::::::::::::::::::> | (:::::::::::)<:::::::::::>
Fig 5.

At the cross-over point, n = 13 and 37, the two halves of the chain are close enough
to interact via the dipole-dipole coupling.

(If we make a continous approximation to the discrete NLS equation, we recover the
normal Nonlinear Schrodinger equation, a partial differential equation with exact
mathematical soliton solutions, cf. [3,4,71).

Experiments on launching a soliton on the simple circular chain were conducted with a
fixed input energy and the nonlinear parameter vy varying. For a range of vy
values, a soliton-like pulse was seen to travel round the chain, one example being
shown in Fig. 6a. 1f y was too small, the energy dispersed and no soliton was
seen., If y was too large, the soliton was pinned by the discreteness of the
lattice and did not move. This lattice pinning has a simple qualitative explanation.
For the soliton to get from a configuration shown in Fig. 4a on one site to a similar
configuration on the next site, it must go through a intermediate configuration of the
cort shown in Fig, 4b. It is straightforward to show that the energy gap between
these two states (the Peierls-Nabarro barrier, cf. [24]), is proportional to y for
large y in the case of the DST equations, Thus with a fixed amount of energy
input, if y is large enough, the soliton has insufficient energy to penetrate this
barrier.
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(b)

t T

Fig. 6 Soliton propagation in a discrete NLS model, y = 3.4, ¢ =1
(a) circular chain, (b) folded chain, ¢ = 0.75, t cross-over points
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In the case of the twisted chain shown in Fig. 5b, energy from a soliton travelling
round the chain can "leak across" at the cross-over point, If ¢, the cross-chain
interaction is large, sufficient energy may disperse to destroy the integrity of the
soliton altogether. If ¢ is small, the soliton may travel round almost unchanged.
For some intermediate values of c, the soliton may get trapped at the cross-over site.
One example is shown graphically in Fig. 6b, where an initial pulse injected into the
chain is trapped by the cross-over point at n = 13 and 37. (It is important to note
that there are three separate trapping effects at work here: (a) the self-trapping
(focusing) of the pulse due to nonlinear effects, (b) pinning due to the discreteness
of the lattice, and (c) site trapping at cross-over points and other special sites in
inhomogeneous lattices.)

These results on the simple discrete NLS model replicate results found on the more
complicated «-helix and ACN lattices, and to some extent the results of Lomdahl's
study of lysozyme., This suggest that the discreteness of the lattice, and the details
of the interactions between different parts of the chain, are important factors in any
nodel for solitons on proteins.

6, CONCLUSION

Much progress has been made on understanding stationary and travelling solitons on
regular lattices such as the o-helix and ACN, and there is increasingly good
experimental evidence for such modes, For the more difficult problem of the globular
protein, some preliminary investigations have been carried out, but much remains to ke
done before a convincing theory can emerge.
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