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Abstract

We use the bilinear operator formalism to derive a new representation
of the power series for the Weierstrass σ function.

It is not generally known that Baker solved a number of nonlinear integrable
partial differential equations in 1907 [2]. In the course of an investigation of
ultra-elliptic functions, he wrote certain relations between them, in which with
hindsight it is possible to recognise some integrable hierarchies of soliton theory.
Among other things, he introduced the bilinear operator method, a technique
more recently discovered independently (and extensively developed) by Hirota
(cf. [5]). Baker was concerned with the σ function associated with a genus two
hyperelliptic algebraic curve, in today’s language such a function is known as the
τ function of the curve. It is the natural generalization of the classical genus one
σ function introduced by Weierstrass in his study of elliptic functions. Our work
is a part of a general programme (Buchstaber et al. [3, 4]) to extend Baker’s
work to algebraic curves of higher genera, but it is amusing to note that Baker’s
techniques gives an elegant formula for the power series expansion of the elliptic
σ function. The derivation seems to be technically simpler than that given by
Weierstrass [7] and appears to be new. This small but instructive application
forms the basis of this short note.

First we present a few words to enlarge on our historical remarks. On page
88 of [2] we find a set of partial differential equations, the first of which is

℘2222 = 6℘2
22 +

1
2
λ3 + λ4℘22 + 4℘21. (1)

The ℘’s are functions of two variables and the subscripts 1, 2 denote partial
differentiation with respect to variables 1 and 2 respectively. Putting variable
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1 = t′, 2 = x and differentiating with respect to x gives

℘xxxxx = 12℘xx℘xxx + λ4℘xxx + 4℘t′xx

Now take λ4 = 0, t′ = −4t, u(x, t) = ℘xx(x, t), to get

ut + 12uux + uxxx = 0,

the well known KdV equation. The connection between Baker’s work, the
KdV equation, Hirota’s bilinear form, and vertex operator techniques was first
pointed out in [3].

In Baker’s approach, ℘i,j and ℘i,j,k,` are defined as

℘i,j = − ∂2

∂zi∂zj
lnσ(z1, z2), ℘i,j,k,` = − ∂4

∂zi∂zj∂zk∂z`
lnσ(z1, z2),

where σ(z1, z2) is a genus two σ function associated with the hyperelliptic curve
y2 = λ0 + λ1x+ λ2x

2 + λ3x
3 + λ4x

4 + 4x5. In order to develop a power series
for this function, Baker shows that it is a solution of the following equation

1
3

∆4
hσσ

′ = lower order terms,

where ∆h = h1(∂/∂z1−∂/∂z′1) +h2(∂/∂z2−∂/∂z′2), and σ′(z1, z2) = σ(z′1, z
′
2),

with the usual convention that z′i is replaced by zi after the derivatives have been
carried out. In this formulation, (1) is recovered as the term with coefficient h4

2.
With some further powerful algebraic techniques, Baker derives a power series
for σ(z1, z2) which is convergent for all finite z1, z2 ∈ C2.

We now apply these technique to the genus one case. The Weierstrass σ
function is connected to the Weierstrass elliptic function ℘ by

℘(x) = − d2

dx2
lnσ(x), (2)

where ℘(x) satisfies the well known relations(
d℘(x)

dx

)2

= 4℘(x)3 − g2℘(x) − g3, (3)

d2℘(x)
dx2

= 6℘(x)2 − 1
2
g2. (4)

Clearly (4) is just the derivative of (3) and contains no new information, how-
ever we will find it useful to use both equations. We note also that Mitra [6]
found it convenient to use both (3) and (4) to derive coefficients of the power
series expansion of the Weierstrass ℘-function, although his method is otherwise
unrelated to our own.

In his original 1882 paper [7], Weierstrass carried out some remarkable ma-
nipulations to derive new equations involving the derivatives of the equations
with respect to the parameters g2 and g3. These modular equations are very
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important in their own right. With their help he arrived at the following double
summation formula

σ(z) =
∞∑
m=0

∞∑
n=0

am,n
(g2

2

)m
(2g3)n

z4m+6n+1

(4m+ 6n+ 1)!

where the am,n satisfy the recurrence relation

am,n = 3(m+1)am+1,n−1+
16
3

(n+1)am−2,n+1−
1
3

(2m+3n−1)(4m+6n−1)am−1,n

with a0,0 = 0 and ai,j = 0 if i < 0 or j < 0. These formulas are reproduced in
Abramowitz and Stegun ([1], §15.5.6–8.).

For our alternative approach we first note that if (2) is inserted into (4) we
get the following differential equation for σ(x)

−σx,x,x,xσ + 4σx,x,xσx − 3σ2
x,x +

1
2
g2σ

2 = 0,

where σx = dσ(x)/dx, etc. It is not difficult to show that this can be written
in bilinear form as

(∆4 − g2)σσ′ = 0, (5)

where ∆ = d/dx−d/dx′. Since σ is an odd function, conventionally normalized
with the first term in its expansion given by x, we write

σ(x) = x+
∞∑
n=1

c2n+1x
2n+1.

Inserting this into (5) and collecting terms in x2n we find

∆4
n+2∑
i=1

x2n+5−2i(x′)2i−1c2n+5−2ic2i−1 = g2

n∑
i=1

x2n+1−2i(x′)2i−1c2n+1−2ic2i−1

(6)
where c1 = 1, and we have anticipated the following result that follows after
some algebraic manipulation

∆4xn(x′)m = ∆4xm(x′)n = bn,mx
(n+m−4)

with

bn,` = (n+ `)4−6(n+ `)3 +(11−8n`)(n+ `)2 +(24n`−6)(n+ `)+16n`(n`−2),

so (6) becomes after putting x′ = x

n+2∑
i=1

b2n+5−2i,2i−1c2n+5−2ic2i−1 = g2

n∑
i=1

c2n+1−2ic2i−1
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Because of the symmetry of the bn,m this leads to, when n is even

b2n+3,1c2n+3 = −
n/2∑
i=1

b2n+3−2i,2i+1c2n+3−2ic2i+1 + g2

n/2∑
i=1

c2n+1−2ic2i−1 (7)

and when n is odd

b2n+3,1c2n+3 = −
(n−1)/2∑
i=1

b2n+3−2i,2i+1c2n+3−2ic2i+1 −
1
2
bn+2,n+2c

2
n+2 +

+g2

(n−1)/2∑
i=1

c2n+1−2ic2i−1 +
g2

2
c2n (8)

now b2n+3,1 = 4(n − 2)(2n+ 3)(2n + 1)(n + 1), so for n ≥ 0, n 6= 2, equations
(7), (8) can easily be solved for c2n+3 in terms of coefficients of lower order. In
particular we find immediately from the cases n = 0 and n = 1 that c3 = 0 and
c5 = −g2/240 respectively. The case n = 2 gives no information about c7 due to
the vanishing of b2n+3,1, and all higher cases for n > 3 require this coefficient. It
should not be a surprise that we cannot solve the whole series immediately since
(5) does not involve g3. (It is interesting that Baker finds a similar problem in
the genus two case at this point).

To solve for c7, we need to insert the series into the σ equation corresponding
to (3). Balancing the terms in x7 we find that c7 = −g3/840. Now we can
proceed with (7) and (8) for n > 2 to give the remaining c2n+3 coefficients up
to any desired order. In explicit form these are finally as follows. For odd n ≥ 1

c2n+3 =
1

b2n+3,1

(n−1)/2∑
i=1

(−b2n+3−2i,2i+1 c2n+3−2i c2i+1 + g2c2n+1−2i c2i−1)

−6(n+ 2)(n+ 1) c2n+2 +
g2

2
c2n

)
,

where we have inserted the explicit equation for bn+2,n+2. For even n, n 6= 2

c2n+3 =
1

b2n+3,1

n/2∑
i=1

(−b2n+3−2i,2i+1 c2n+3−2i c2i+1 + g2c2n+1−2 c2i−1) ,

with bn,` and c1, c7 as defined above.
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