Bilinear operators and the power series for the Weierstrass σ function.

J C Eilbeck and V Z Enolskii*
Department of Mathematics
Heriot-Watt University
Edinburgh EH14 4AS, UK

January 6, 2000

Abstract

We use the bilinear operator formalism to derive a new representation of the power series for the Weierstrass σ function.

It is not generally known that Baker solved a number of nonlinear integrable partial differential equations in 1907 [2]. In the course of an investigation of ultra-elliptic functions, he wrote certain relations between them, in which with hindsight it is possible to recognise some integrable hierarchies of soliton theory. Among other things, he introduced the bilinear operator method, a technique more recently discovered independently (and extensively developed) by Hirota (cf. [5]). Baker was concerned with the σ function associated with a genus two hyperelliptic algebraic curve, in today's language such a function is known as the τ function of the curve. It is the natural generalization of the classical genus one σ function introduced by Weierstrass in his study of elliptic functions. Our work is a part of a general programme (Buchstaber et al. [3, 4]) to extend Baker's work to algebraic curves of higher genera, but it is amusing to note that Baker's techniques gives an elegant formula for the power series expansion of the elliptic σ function. The derivation seems to be technically simpler than that given by Weierstrass [7] and appears to be new. This small but instructive application forms the basis of this short note.

First we present a few words to enlarge on our historical remarks. On page 88 of [2] we find a set of partial differential equations, the first of which is

$$
\begin{equation*}
\wp_{2222}=6 \wp_{22}^{2}+\frac{1}{2} \lambda_{3}+\lambda_{4} \wp_{22}+4 \wp_{21} . \tag{1}
\end{equation*}
$$

The $\wp ' s$ are functions of two variables and the subscripts 1,2 denote partial differentiation with respect to variables 1 and 2 respectively. Putting variable

[^0]$1=t^{\prime}, 2=x$ and differentiating with respect to x gives
$$
\wp_{x x x x x}=12 \wp_{x x} \wp_{x x x}+\lambda_{4} \wp_{x x x}+4 \wp_{t^{\prime} x x}
$$

Now take $\lambda_{4}=0, t^{\prime}=-4 t, u(x, t)=\wp_{x x}(x, t)$, to get

$$
u_{t}+12 u u_{x}+u_{x x x}=0,
$$

the well known KdV equation. The connection between Baker's work, the KdV equation, Hirota's bilinear form, and vertex operator techniques was first pointed out in [3].

In Baker's approach, $\wp_{i, j}$ and $\wp_{i, j, k, \ell}$ are defined as

$$
\wp_{i, j}=-\frac{\partial^{2}}{\partial z_{i} \partial z_{j}} \ln \sigma\left(z_{1}, z_{2}\right), \quad \wp_{i, j, k, \ell}=-\frac{\partial^{4}}{\partial z_{i} \partial z_{j} \partial z_{k} \partial z_{\ell}} \ln \sigma\left(z_{1}, z_{2}\right),
$$

where $\sigma\left(z_{1}, z_{2}\right)$ is a genus two σ function associated with the hyperelliptic curve $y^{2}=\lambda_{0}+\lambda_{1} x+\lambda_{2} x^{2}+\lambda_{3} x^{3}+\lambda_{4} x^{4}+4 x^{5}$. In order to develop a power series for this function, Baker shows that it is a solution of the following equation

$$
\frac{1}{3} \Delta_{h}^{4} \sigma \sigma^{\prime}=\text { lower order terms }
$$

where $\Delta_{h}=h_{1}\left(\partial / \partial z_{1}-\partial / \partial z_{1}^{\prime}\right)+h_{2}\left(\partial / \partial z_{2}-\partial / \partial z_{2}^{\prime}\right)$, and $\sigma^{\prime}\left(z_{1}, z_{2}\right)=\sigma\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$, with the usual convention that z_{i}^{\prime} is replaced by z_{i} after the derivatives have been carried out. In this formulation, (1) is recovered as the term with coefficient h_{2}^{4}. With some further powerful algebraic techniques, Baker derives a power series for $\sigma\left(z_{1}, z_{2}\right)$ which is convergent for all finite $z_{1}, z_{2} \in \mathcal{C}^{2}$.

We now apply these technique to the genus one case. The Weierstrass σ function is connected to the Weierstrass elliptic function \wp by

$$
\begin{equation*}
\wp(x)=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \ln \sigma(x) \tag{2}
\end{equation*}
$$

where $\wp(x)$ satisfies the well known relations

$$
\begin{align*}
\left(\frac{\mathrm{d} \wp(x)}{\mathrm{d} x}\right)^{2} & =4 \wp(x)^{3}-g_{2} \wp(x)-g_{3} \tag{3}\\
\frac{\mathrm{~d}^{2} \wp(x)}{\mathrm{d} x^{2}} & =6 \wp(x)^{2}-\frac{1}{2} g_{2} . \tag{4}
\end{align*}
$$

Clearly (4) is just the derivative of (3) and contains no new information, however we will find it useful to use both equations. We note also that Mitra [6] found it convenient to use both (3) and (4) to derive coefficients of the power series expansion of the Weierstrass \wp-function, although his method is otherwise unrelated to our own.

In his original 1882 paper [7], Weierstrass carried out some remarkable manipulations to derive new equations involving the derivatives of the equations with respect to the parameters g_{2} and g_{3}. These modular equations are very
important in their own right. With their help he arrived at the following double summation formula

$$
\sigma(z)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m, n}\left(\frac{g_{2}}{2}\right)^{m}\left(2 g_{3}\right)^{n} \frac{z^{4 m+6 n+1}}{(4 m+6 n+1)!}
$$

where the $a_{m, n}$ satisfy the recurrence relation
$a_{m, n}=3(m+1) a_{m+1, n-1}+\frac{16}{3}(n+1) a_{m-2, n+1}-\frac{1}{3}(2 m+3 n-1)(4 m+6 n-1) a_{m-1, n}$
with $a_{0,0}=0$ and $a_{i, j}=0$ if $i<0$ or $j<0$. These formulas are reproduced in Abramowitz and Stegun ([1], §15.5.6-8.).

For our alternative approach we first note that if (2) is inserted into (4) we get the following differential equation for $\sigma(x)$

$$
-\sigma_{x, x, x, x} \sigma+4 \sigma_{x, x, x} \sigma_{x}-3 \sigma_{x, x}^{2}+\frac{1}{2} g_{2} \sigma^{2}=0
$$

where $\sigma_{x}=\mathrm{d} \sigma(x) / \mathrm{d} x$, etc. It is not difficult to show that this can be written in bilinear form as

$$
\begin{equation*}
\left(\Delta^{4}-g_{2}\right) \sigma \sigma^{\prime}=0 \tag{5}
\end{equation*}
$$

where $\Delta=\mathrm{d} / \mathrm{d} x-\mathrm{d} / \mathrm{d} x^{\prime}$. Since σ is an odd function, conventionally normalized with the first term in its expansion given by x, we write

$$
\sigma(x)=x+\sum_{n=1}^{\infty} c_{2 n+1} x^{2 n+1}
$$

Inserting this into (5) and collecting terms in $x^{2 n}$ we find

$$
\begin{equation*}
\Delta^{4} \sum_{i=1}^{n+2} x^{2 n+5-2 i}\left(x^{\prime}\right)^{2 i-1} c_{2 n+5-2 i} c_{2 i-1}=g_{2} \sum_{i=1}^{n} x^{2 n+1-2 i}\left(x^{\prime}\right)^{2 i-1} c_{2 n+1-2 i} c_{2 i-1} \tag{6}
\end{equation*}
$$

where $c_{1}=1$, and we have anticipated the following result that follows after some algebraic manipulation

$$
\Delta^{4} x^{n}\left(x^{\prime}\right)^{m}=\Delta^{4} x^{m}\left(x^{\prime}\right)^{n}=b_{n, m} x^{(n+m-4)}
$$

with
$b_{n, \ell}=(n+\ell)^{4}-6(n+\ell)^{3}+(11-8 n \ell)(n+\ell)^{2}+(24 n \ell-6)(n+\ell)+16 n \ell(n \ell-2)$,
so (6) becomes after putting $x^{\prime}=x$

$$
\sum_{i=1}^{n+2} b_{2 n+5-2 i, 2 i-1} c_{2 n+5-2 i} c_{2 i-1}=g_{2} \sum_{i=1}^{n} c_{2 n+1-2 i} c_{2 i-1}
$$

Because of the symmetry of the $b_{n, m}$ this leads to, when n is even

$$
\begin{equation*}
b_{2 n+3,1} c_{2 n+3}=-\sum_{i=1}^{n / 2} b_{2 n+3-2 i, 2 i+1} c_{2 n+3-2 i} c_{2 i+1}+g_{2} \sum_{i=1}^{n / 2} c_{2 n+1-2 i} c_{2 i-1} \tag{7}
\end{equation*}
$$

and when n is odd

$$
\begin{align*}
b_{2 n+3,1} c_{2 n+3}=- & \sum_{i=1}^{(n-1) / 2} b_{2 n+3-2 i, 2 i+1} c_{2 n+3-2 i} c_{2 i+1}-\frac{1}{2} b_{n+2, n+2} c_{n+2}^{2}+ \\
& +g_{2} \sum_{i=1}^{(n-1) / 2} c_{2 n+1-2 i} c_{2 i-1}+\frac{g_{2}}{2} c_{n}^{2} \tag{8}
\end{align*}
$$

now $b_{2 n+3,1}=4(n-2)(2 n+3)(2 n+1)(n+1)$, so for $n \geq 0, n \neq 2$, equations (7), (8) can easily be solved for $c_{2 n+3}$ in terms of coefficients of lower order. In particular we find immediately from the cases $n=0$ and $n=1$ that $c_{3}=0$ and $c_{5}=-g_{2} / 240$ respectively. The case $n=2$ gives no information about c_{7} due to the vanishing of $b_{2 n+3,1}$, and all higher cases for $n>3$ require this coefficient. It should not be a surprise that we cannot solve the whole series immediately since (5) does not involve g_{3}. (It is interesting that Baker finds a similar problem in the genus two case at this point).

To solve for c_{7}, we need to insert the series into the σ equation corresponding to (3). Balancing the terms in x^{7} we find that $c_{7}=-g_{3} / 840$. Now we can proceed with (7) and (8) for $n>2$ to give the remaining $c_{2 n+3}$ coefficients up to any desired order. In explicit form these are finally as follows. For odd $n \geq 1$

$$
\begin{gathered}
c_{2 n+3}=\frac{1}{b_{2 n+3,1}}\left(\sum_{i=1}^{(n-1) / 2}\left(-b_{2 n+3-2 i, 2 i+1} c_{2 n+3-2 i} c_{2 i+1}+g_{2} c_{2 n+1-2 i} c_{2 i-1}\right)\right. \\
\left.-6(n+2)(n+1) c_{n+2}^{2}+\frac{g_{2}}{2} c_{n}^{2}\right),
\end{gathered}
$$

where we have inserted the explicit equation for $b_{n+2, n+2}$. For even $n, n \neq 2$

$$
c_{2 n+3}=\frac{1}{b_{2 n+3,1}} \sum_{i=1}^{n / 2}\left(-b_{2 n+3-2 i, 2 i+1} c_{2 n+3-2 i} c_{2 i+1}+g_{2} c_{2 n+1-2} c_{2 i-1}\right),
$$

with $b_{n, \ell}$ and c_{1}, c_{7} as defined above.

Acknowledgements

We thank M. Hassner for drawing our attention to the original Weierstrass paper [7], and V. M. Buchstaber and D. V. Leykin for useful discussions. VZE is grateful to the Royal Society for the support of fellowship.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions. Dover, 1965.
[2] H. F. Baker. An introduction to the theory of Multiply Periodic Functions. CUP, 1907.
[3] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin. Hyperelliptic Kleinian functions and applications, volume 179, pages 1-34. Advances in Math. Sciences, AMS Translations, series 2, Moscow State University and University of Maryland, College Park, 1997.
[4] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin. Rational analogues of Abelian functions. Funct. Anal. Appl., 33:1-12, 1999.
[5] R. Hirota. Bilinearization of soliton equations. J. Phys. Soc. Japan, 51:323331, 1982.
[6] S. C. Mitra. On the expansion of the Weierstrassian and Jacobian Elliptic Functions in powers of arguments, Bull. Calcutta Math. Soc. 17:159-172, 1926.
[7] K. Weierstrass. Zur Theorie der elliptischen Funktionen. Mathematische werke von Karl Weierstrass; herausgegeben unter Mitwirkung einer von der Königlich preussischen Akademie der Wissenschaften eingesetzten Commission., 2:245-255, 1894. Originally published in Sitzungsberichte der Akademie der Wissenshaften zu Berlin, 443-451, 1882.

[^0]: *Permanent address: Theoretical Physics Division, NASU Institute of Magnetism, 36-b Vernadsky str., Kiev-680, 252142 Ukraine

