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Abstract. Using results on Frobenius-Stickelberger-type relations for hyperelliptic curves
(Y. Ônishi, Proc. Edinb. Math. Soc. (2), 48 (2005) p.705-742), we provide certain ad-
dition formulae for any symmetric power of the curves, which hold on the strata Wk , the
pre-images in the Jacobian of the classical Wirtinger varieties. As an appendix, we give
similar relations for a trigonal curve y3 = (x− b1)(x − b2)(x − b3)(x− b4).

1. Introduction

In this paper we investigate certain types of addition laws on the Jacobian variety of
hyperelliptic curves.

For an elliptic curve C1 given by y2 = 4x3 − g2x − g3, the addition law is determined
by the addition formula

(1.1)
σ(u1 + u2)σ(u1 − u2)

σ(u1)2σ(u2)2
= −℘(u1) + ℘(u2),

where σ and ℘ are the usual functions of Weierstrass. If we apply d
du1

( d
du1

+ d
du2

) log to

both sides, we obtain addition formulae for the ℘-function, ℘(u) = − d2

du2 log σ(u).

Since we can regard (℘(u), d℘(u)
du

) as a point of the curve C1, we write the relation (1.1)
as

(1.2)
σ(u1 + u2)σ(u1 − u2)

σ(u1)2σ(u2)2
= −x1 + x2, for ua =

∫ (xa,ya)

∞

dx

y
.

We shall consider (1.1) and (1.2) as coming from two different kinds of general formulae.
Formula (1.1) was generalized to the case of higher-genus hyperelliptic curves by using
Klein’s sigma function, which is a natural generalization of the Weierstrass elliptic σ-
function to higher genera, for the case g = 2, 3 by Baker [Ba2], and for general genus by
Buchstaber et al. in [BEL].

In this article, we study addition formulae of type (1.2) over subvarieties in the Jacobian
Jg of a hyperelliptic curve where the sigma function vanishes; derivatives of sigma will
occur instead. The case n = m = g = 1 of Theorem 5.1 corresponds to (1.2).

For a hyperelliptic curve Cg given by the equation y2 =
∏2g+1

i=1 (x − bi), where the bis
are distinct complex numbers, and a smooth point ∞ at infinity, the Jacobian Jg of Cg
is a complex torus Cg/Λ with Λ ⊂ Cg a complete lattice. The Abel-Jacobi theorem says
that we have a birational map φg, depending on the choice of a basepoint in Cg, from
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the symmetric product Sg(Cg) to the Jacobian Jg. Henceforth we fix the basepoint to
be ∞ and we transform the natural stratification of Sg(Cg) to Jg. We consider the k-
th symmetric product Sk(Cg) for k = 1 and the analogous maps φk from Sk(Cg) to Jg.
We introduce subvarieties in Jg, whose 2:1 images under the level-two theta map are
classically known as the Wirtinger varieties [G],

Wk = φk[S
k(Cg)]

Then we see Wk ⊂ Wk+1 in general, and Wn = Jg if n ≥ g. The natural projection is
denoted by

κ : Cg → Jg = Cg/Λ.
For hyperelliptic curves, Riemann’s singularity theorem (cf. [ACGH] VI.1) characterizes
each Wk as the zero-locus of multi-derivatives of the Riemann theta function in the affine
coordinate u ∈ Cg = κ−1(Jg). Indeed, our choice of a base point which is a Weierstrass
point makes it possible to relate the dimension of a linear series with its degree. In general,
it is still a difficult and important question to relate the Wirtinger varieties to vanishing
properties of the theta function (cf. [G] for a survey).

By investigating the algebraic and analytic structure of the subvarieties Wk, some
among the present authors [EMO] extended the formula (1.2) to the subvarieties Wk,
based on the results in [O1], as follows.

Theorem 1.1. Let (m,n) be a pair of positive integers (m,n) such that m + n ≤ g + 1.
Let (x1, y1) · · · , (xm, ym), (x′1, y

′
1) · · · , (x′n, y′n) ∈ Cg, u ∈ κ−1(Wm), and v ∈ κ−1(Wn) be

points satisfying κ(u) = φm((x1, y1) · · · , (xm, ym)) and κ(v) = φn((x′1, y
′
1), · · · , (x′n, y′n)).

Then the following relation holds :

σ\m+n(u− v)σ\m+n(u+ v)

σ\m(u)2σ\n(v)2
= δ(g, n)

m∏

i=1

n∏

j=1

(xi − x′j),

Here σ\m is a certain (higher ) derivative of σ given in Table 1, and δ(g, n) = (−1)gn+ 1
2
n(n−1).

Note that we changed the notation of δ(g, n) from [EMO]. In this article, we generalize
this theorem for all pairs of positive integers m and n by a more direct application of
the results in [O1] than [EMO]. In an Appendix, we give similar relations for a trigonal
curve y3 = (x− b1)(x− b2)(x− b3)(x− b4) as an application of the generalized Frobenius-
Stickelberger formulae for this curve([O2]). In essence, the strategy in [O1] and [O2]
consists of comparing zero and pole-divisors of two meromorphic functions on the Ja-
cobian, and finally conclude they are equal by determining the leading term(s) of their
power-series expansions in suitable abelian coordinates. The present contribution consists
in defining the appropriate derivatives of the sigma function, and exploiting previously
found indentities to obtain a cancellation.

This article started during a visit of the authors to Tokyo Metropolitan University in
2005, supported by JSPS grant 16540002. We thank Prof. M. Guest of TMU for extending
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his department’s hospitality. We also thank Dr. J. Gibbons of Imperial College for some
comments on this work.

2. Geometrical setting of hyperelliptic curves

Let us consider a hyperelliptic curve defined by

y2 = x2g+1 + λ2gx
2g + · · ·+ λ0

together with a smooth point ∞ at infinity.
We fix a basis of holomorphic one-forms

du1 =
dx

2y
, du2 =

xdx

2y
, · · · , dug =

xg−1dx

2y
.

We also fix a homology basis for the curve X so that

H1(X,Z) =

g⊕

j=1

Zαj ⊕
g⊕

j=1

Zβj,

where the intersections are given by [αi, αj] = 0, [βi, βj] = 0 and [αi, βj] = −[βi, αj]δij.
We take the half-period matrices of X with respect to the given bases,

ω′ =
1

2

[∫

αj

dui

]
, ω′′ =

1

2

[∫

βj

dui

]
, ω =

[
ω′

ω′′

]
.

Let Λ be the lattice in Cg generated by the column vectors in 2ω′ and 2ω′′. The Jacobian
variety of X is denoted by Jg and is identified with Cg/Λ. We denote by κ the map given
by modulo Λ:

κ : Cg → Cg/Λ.

For a non-negative integer k, we define the Abel map from k-th symmetric product Sk(X)
of the curve X to Jg by,

φk : Sk(X)→ Jg, φk((x1, y1), · · · , (xk, yk)) =

k∑

i=1

∫ (xi,yi)

∞



du1

...
dug


mod Λ.

The image of φk is denoted by Wk = φk(S
k(Xg)). The mapping φg is surjective by Abel’s

theorem, and is injective if we restrict the map to the pre-image of the complement of
a specific connected Zariski closed subset of dimension at most g − 2 in Jg, by Jacobi’s
theorem (see Theorem 5.13 in [I]).
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3. Sigma function and its derivatives

In this section, we will introduce the hyperelliptic θ-functions, and the σ-function, which
is a natural generalization of the Weierstrass σ-function.

We define differentials of the second kind,

drj =
1

2y

2g−j∑

k=j

(k + 1− j)λk+1+jx
kdx, (j = 1, · · · , g)

and complete hyperelliptic integrals of the second kind

η′ =
1

2

[∫

αj

dri

]
, η′′ =

1

2

[∫

βj

dri

]
.

For this basis of the 2g-dimensional space of meromorphic differentials, the half-periods
ω′, ω′′, η′, η′′ satisfy the generalized Legendre relation

(3.1) M

(
0 −1g
1g 0

)
MT =

ıπ

2

(
0 −1g
1g 0

)
.

where M =

(
ω′ ω′′

η′ η′′

)
. Let T = ω′−1ω′′. The theta function on Cg with modulus T and

characteristics Ta + b is given by

θ

[
a
b

]
(z) = θ

[
a
b

]
(z;T) =

∑

n∈Zg
exp

[
2πi

{
1

2
t(n + a)T(n + a) + t(n + a)(z + b)

}]
,

for g-dimensional complex vectors a and b. The σ-function ([Ba1], p.336,[BEL]), an
analytic function on the space Cg and a theta series having modular invariance of a given
weight with respect to M, is given by the formula

σ(u) = γ0 exp

{
−1

2
tuη′ω′

−1
u

}
ϑ

[
δ′′

δ′

]
(
1

2
ω′
−1
u;T),

where δ and δ′ are half-integer characteristics giving the vector of Riemann constants with
basepoint at ∞ and γ0 is a certain non-zero constant. The σ-function vanishes only on
κ−1(Wg−1) (see for example [Ba1], p. 252).

Let {ϕi} be an ordered set of C ∪ {∞}-valued functions over X defined as follows

ϕi =





xi for i ≤ g,
xb(i−g)/2c+g for i > g, i− g even,
xb(i−g)/2cy for i > g, i− g odd.

(3.2)

Following [O1], we introduce a multi-index \n. For n with 1 ≤ n < g, we let \n be the
set of positive integers i such that n+ 1 ≤ i ≤ g with i ≡ n+ 1 mod 2. Namely,

\n =

{
{n+ 1, n+ 3, · · · , g − 1} if g − n ≡ 0 mod 2,

{n, n+ 2, · · · , g} if g − n ≡ 1 mod 2;
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and partial derivative over the multi-index \n

σ\n =

(∏

i∈\n

∂

∂ui

)
σ(u).

For n ≥ g, we define \n as empty and σ\n as σ itself. The first few examples are given in
the following table, where we let ] denote \1 and [ denote \2.

For u ∈ Cg, we denote by u′ and u′′ the unique vectors in Rg such that

u = u′2ω′ + u′′2ω′′.

We define
L(u, v) = tu(2η′v′ + 2η′′v′′),

χ(`) = exp
{

2πı
(
t`′δ′′ − t`′′δ′ + 1

2
t`′`′′

)}
(∈ {1,−1})

for u, v ∈ Cg and for ` (= `′2ω′ + `′′2ω′′) ∈ Λ. Then σ\n(u) for u ∈ κ−1(W1) satisfies the
translational relation ([O1], Lemma 6.3):

(3.3) σ\n(u+ `) = χ(`)σ\n(u) expL(u+ 1
2
`, `) for u ∈ κ−1(W1).

Further for n 5 g, we note that

(3.4)

σ\n(−u) = (−1)ng+
1
2
n(n−1)σ\n(u) for u ∈ κ−1(Wn), especially,

σ[(−u) = −σ[(u) for u ∈ κ−1(W2)

σ](−u) = (−1)gσ](u) for u ∈ κ−1(W1)

by Proposition 6.5 in [O1].

Table 1
genus σ] ≡ σ\1 σ[ ≡ σ\2 σ\3 σ\4 σ\5 σ\6 σ\7 σ\8 · · ·

1 σ σ σ σ σ σ σ σ · · ·
2 σ2 σ σ σ σ σ σ σ · · ·
3 σ2 σ3 σ σ σ σ σ σ · · ·
4 σ24 σ3 σ4 σ σ σ σ σ · · ·
5 σ24 σ35 σ4 σ5 σ σ σ σ · · ·
6 σ246 σ35 σ46 σ5 σ6 σ σ σ · · ·
7 σ246 σ357 σ46 σ57 σ6 σ7 σ σ · · ·
8 σ2468 σ357 σ468 σ57 σ68 σ7 σ8 σ · · ·
...

...
...

...
...

...
...

...
...

. . .

4. Generalized Frobenius-Stickelberger formula

We recall the generalized Frobenius-Stickelberger formula, which was given by one of
the authors ([O1], Theorem 7.2).

5



Definition 4.1. For a positive integer n ≥ 1 and a point (x1, y1) · · · , (xn, yn) in X, we
define

∆n((x1, y1), · · · , (xn, yn))

=

∣∣∣∣∣∣∣∣∣∣

1 ϕ1(x1, y1) ϕ2(x1, y1) · · · ϕn−2(x1, y1) ϕn−1(x1, y1)
1 ϕ1(x2, y2) ϕ2(x2, y2) · · · ϕn−2(x2, y2) ϕn−1(x2, y2)
...

...
...

. . .
...

...
1 ϕ1(xn−1, yn−1) ϕ2(xn−1, yn−1) · · · ϕn−2(xn−1, yn−1) ϕn−1(xn−1, yn−1)
1 ϕ1(xn, yn) ϕ2(xn, yn) · · · ϕn−2(xn, yn) ϕn−1(xn, yn)

∣∣∣∣∣∣∣∣∣∣

Proposition 4.2. For a positive integer n > 1, let (x1, y1), · · · , (xn, yn) in X, and
u(1), · · · , u(n) in κ−1(W1) be points such that κ(u(i)) = φ1((xi, yi)). Then the following
relation holds :

σ\n(
∑n

i=1 u
(i))
∏

i<j σ[(u
(i) − u(j))∏n

i=1 σ](u
(i))n

= εn∆n((x1, y1), · · · , (xn, yn)),(4.1)

where εn = (−1)g+n(n+1)/2 for n ≤ g and εn = (−1)(2n−g)(g−1)/2 for n ≥ g + 1.

5. The generalized addition formula

Now we are ready to describe the main result. Our motivation is found in [EEP] and
[BES]. A special case of our main result appeared in [EEP] (see formula (34) and the
analogous formula above (32)) in the process of deriving Baker’s addition formula by the
technique given in [O1] for genus 2. Another special case is the formula (3.21) in [BES].

Theorem 5.1. Assume that (m,n) is a pair of positive integers. Let (xi, yi) (i =
1, · · · , m), (x′j, y

′
j) (j = 1, · · · , n) in X and u ∈ κ−1(Wm), v ∈ κ−1(Wn) be points such

that κ(u) = φm((x1, y1), · · · , (xm, ym)) and κ(v) = φn((x′1, y
′
1), · · · , (x′n, y′n)). Then the

following relation holds :

σ\m+n(u+ v)σ\m+n(u− v)

σ\m(u)2σ\n(v)2

= δ(g,m, n)

∏1
i=0 ∆m+n((x1, y1), · · · , (xm, ym), (x′1, (−1)iy′1), · · · , (x′n, (−1)iy′n))

(∆m((x1, y1) · · · , (xm, ym))∆n((x′1, y
′
1) · · · , (x′n, y′n)))2

×
m∏

i=1

n∏

j=1

1

∆2((xi, yi), (x
′
j, y
′
j))

(5.1)

where δ(g,m, n) = (−1)gn+ 1
2
n(n−1)+mn.

To show this, we introduce the following symbol:
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Definition 5.2. Let k be a positive integer. In general, for any k points u(j) (j = 1, · · · ,
k) in κ−1(W1), we define

q(u(1), · · · , u(k)) =
σ\k(u

(1) + · · ·+ u(k))
∏k

j=1 σ](u
(j))

.

Remark 5.3. By the translational relation (3.3), we see that q(u(1), · · · , u(k))2 is a func-
tion on Sk(X). However, q(u(1), · · · , u(k)) is in general only a function on the fibre product
taken over Jg with respect to the Abel map ψk : Sk(X) → Jg and the duplication map

[2] : J̃g → Jg, where J̃g is an Abelian variety which has Jg as a 2:1 image.

Proof of Theorem 5.1. In the course of this proof, we let u(i) and v(j) be points such
that κ(u(i)) = φ1((xi, yi)) and κ(u(j)) = φ1((x′j, y

′
j)) in W1, respectively. Then we have

κ(−u(i)) = φ1((xi,−yi)) and κ(−v(j)) = φ1((x′j,−y′j)). By (4.1) and (3.4), we have

(5.2)

q(u(1), · · · , u(m),±v(1), · · · ,±v(n))

·
∏

i1<i2

q(u(i1),±u(i2))
∏

i,j

q(u(i),±v(j))
∏

j1<j2

q(±v(j1), v(j2))

=
σ\m+n(u(1) + · · ·+ u(m) ± v(1) ± · · · ± v(n))∏m

i=1 σ](u
(i))
∏n

j=1 σ](±v(j))

·
∏

i1<i2

σ[(u
(i1) − u(i2))

σ](u(i1))σ](−u(i2))
·
∏

i,j

σ[(u
(i) ∓ v(j))

σ](u(i))σ](∓v(j))
·
∏

j1<j2

σ[(±v(j1) ∓ v(j2))

σ](u(j1))σ](∓v(j2))

= (−1)g(
1
2
m(m−1)+mn+ 1

2
n(n−1))εm+n

·∆m+n((x1, y1), · · · , (xm, ym), (x′1,±y′1), · · · , (x′n,±y′n)),

and

(5.3)

q(u(1), · · · , u(m))
∏

i1<i2

q(u(i1),−u(i2)) = (−1)
1
2
gm(m−1)εm∆m((x1, y1), · · · , (xm, ym)),

q(v(1), · · · , v(n))
∏

j1<j2

q(v(j1),−v(j2)) = (−1)
1
2
gn(n−1) εn∆n((x′1, y

′
1), · · · , (x′n, y′n)).

We regard both sides of (5.1) as functions on Sm(X)×Sn(X). By (5.2) and (5.3), the left
hand side of (5.1) is equal to

(−1)gn
q(u(1), · · · , u(m), v(1), · · · , v(n)) q(u(1), · · · , u(m),−v(1), · · · ,−v(n))

q(u(1), · · · , u(m))2 q(v(1), · · · , v(n))2
.(5.4)

Using (5.2) and (5.3), we see that (5.4) is equal to

(−1)gn
∏
±∆m+n((x1, y1), · · · , (xm, ym), (x′1,±y′1), · · · , (x′n,±y′n))

∆n((x1, y1), · · · , (xm, ym))2∆m((x′1, y
′
1), · · · , (x′n, y′n))2

×Q,
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where

Q =

∏m
i<j q(u

(i),−u(j))2
∏n

i<j q(v
(i),−v(j))2

∏
±
[∏m

i<j q(u
(i),−u(j))

∏n
i<j q(±v(i),∓v(j))

∏m
i=1

∏n
j=1 q(u

(i),∓v(j))
] .

Since

(5.5) q(−u, v) =
σ[(−u + v)

σ](−u)σ](v)
=
−σ[(u− v)

σ](u)σ](−v)
= −q(u,−v)

for u, v in κ−1(W1), we have

Q = (−1)n(n−1)/2 1∏
±
[∏m

i=1

∏n
j=1 q(u

(i),∓v(j))
]

= (−1)n(n−1)/2 1∏m
i=1

∏n
j=1 q(u

(i), v(j)) q(u(i),−v(j))
.

Using (3.4) and (4.1) again, we see

(5.6)

q(u, v)q(u,−v) =
σ[(u+ v)σ[(u− v)

σ](u)2σ](v)σ](−v)

= (−1)g
σ[(u+ v)σ[(u− v)

σ](u)2σ](v)2

= −∆2((x, y), (x′, y′))

for u, v in κ−1(W1) and (x, y), (x′, y′) in X such that κ(u) = φ1((x, y)) and κ(v) =
φ1((x′, y′)). Hence we obtain

Q = (−1)n(n−1)/2(−1)mn
1∏m

i=1

∏n
j=1 ∆2((xi, yi), (x′j, y

′
j))

and have proved the assertion. �
Note that Theorem 1.1 follows as a special case, since ∆2((x, y), (x′, y′)) = −(x− x′).

Remark 5.4. We note that definition 5.2 for the q’s is behind the Frobenius-Stickelberger
relations. This is a relation that governs the automorphy factor of the σ function. In turn,
such automorphy factor defines the line bundle corresponding to the point of the Jacobian,
cf. [F], (5). The Jacobian appears in the long exact sequence of cohomology for

0→ Z→ O → O∗ → 1,

so the behavior of the automorphy factor derives from the exact sequence,

0→ Z→ C→ C∗ → 1.

Indeed, if f : C→ C∗ is a group homomorphism,

f(u(1) + u(2) + · · ·+ u(n))∏n
i=1 f(u(i))

= 1.
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Appendix : The case of purely trigonal genus 3 curves

Our technique can be generalized for the recent result on the Frobenius-Stickelberger
relation for the curve whose affine part is given by [O2],

y3 = x4 + λ3x
3 + λ2x

2 + λ1x+ λ0

where λjs are complex numbers. We denote the curve defined by this equation with a
unique point ∞ at infinity as X. In this appendix, we will give an analog for X of
Theorem 5.1.

Geometrical setting. We take a basis of the holomorphic one-forms:

du1 =
dx

3y2
, du2 =

xdx

3y2
, du3 =

dx

3y
.

We use the same symbol as in the case of hyperelliptic curves, hoping that this causes no
confusion. Then, the rest of the notation for the period matrices, the coordinate space C3

associated to the forms above, the lattice Λ in the coordinate space, the Jacobian variety
J3 = C3/Λ, the Abel maps φk and the varieties Wk, is the same as in section 2 above. The
relevant modulo-Λ map is κ : C3 → J3. The Abel-Jacobi theorem ensures that κ−1(Wk)
fills C3 for k ≥ 3 and φ3 is a birational map from S3(X) to J3. We have W1 ⊂ W2 ⊂
W3 = W4 = · · · = J3. We should be careful to note that Wk for k = 1 and 2 is not stable
under the operation of taking the additive inverse, [−1]:(u1, u2, u3) 7→ (−u1,−u2,−u3) in
J3.

Let {ϕi} be the sequence of C ∪ {∞}-valued functions over X defined by

ϕi =





x for i = 3
y for i = 4

x(i−3)/3+2 for i > 3, i ≡ 0 modulo 3,
x(i−3)/3+1y for i > 3, i ≡ 1 modulo 3,
x(i−3)/3y2 for i > 3, i ≡ 2 modulo 3.

(A.1)

We need again a sigma function σ(u) = σ(u1, u2, u3) for X; this is a theta function on
the space C3, only the quadratic form entering its definition is not the same as Riemann’s.
We omit this definition and the details, referring the reader to [O2]. Following [O2], we
define (partial) derivatives over the multi-index \n:

σ\n(u) =





∂2

∂u2
3
σ(u) for n = 1,

∂
∂u3

σ(u) for n = 2,

σ(u) for n > 2.

Let ζ be a primitive cube root of 1. The automorphism of the curve, (x, y) 7→ (x, ζy),
induces an action [ζ] on κ−1(Wn), namely, for

u = (u1, u2, u3) =

(∫ (x1,y1)

∞
+

∫ (x2,y2)

∞
+

∫ (x3,y3)

∞

)

du1

du2

du3


 ,
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we let

[ζ]u = (ζu1, ζu2, ζ
2u3) =

(∫ (x1,ζy1)

∞
+

∫ (x2,ζy2)

∞
+

∫ (x3,ζy3)

∞

)

du1

du2

du3


 .

Then [ζ]2 is induced by multiplication of the coordinates by ζ2 and [ζ]3 is the identity.
Moreover, we have

(A.2) σ([ζ]u) = ζσ(u), σ\2([ζ]u) = σ\2(u), σ\1([ζ]u) = ζ2σ\1(u).

Generalized Frobenius-Stickelberger formula. The following generalized Frobenius-
Stickelberger formula was given by one of the authors([O2], Theorem 4.3).

Definition A.1. For a positive integer n ≥ 1 and a point (x1, y1) · · · , (xn, yn) in X, we
define

∆n((x1, y1), · · · , (xn, yn))

=

∣∣∣∣∣∣∣∣∣∣

1 ϕ1(x1, y1) ϕ2(x1, y1) · · · ϕn−2(x1, y1) ϕn−1(x1, y1)
1 ϕ1(x2, y2) ϕ2(x2, y2) · · · ϕn−2(x2, y2) ϕn−1(x2, y2)
...

...
...

. . .
...

...
1 ϕ1(xn−1, yn−1) ϕ2(xn−1, yn−1) · · · ϕn−2(xn−1, yn−1) ϕn−1(xn−1, yn−1)
1 ϕ1(xn, yn) ϕ2(xn, yn) · · · ϕn−2(xn, yn) ϕn−1(xn, yn)

∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xn−2

1 xn−1
1

1 x2 x2
2 · · · xn−2

2 xn−1
2

...
...

...
. . .

...
...

1 xn−1 x2
n−1 · · · xn−2

n−1 xn−1
n−1

1 xn x2
n · · · xn−2

n xn−1
n

∣∣∣∣∣∣∣∣∣∣

.

Proposition A.2. For a positive integer n > 1, let (x1, y1), · · · , (xn, yn) in X and u(1),
· · · , u(n) in κ−1(W1) be points such that κ(u(i)) = φ1((xi, yi)). Then the following relation
holds :

σ\n(
∑n

i=1 u
(i))
∏

i<j σ\2(u(i) + [ζ]u(j))σ\2(u(i) + [ζ2]u(j))∏n
i=1 σ\1(u(i))2n−1

= ∆n((x1, y1), · · · , (xn, yn)).

The generalized addition formulae. For our trigonal curve X, the following general-
ized addition formulae hold over Wk.

Theorem A.3. Assume that (m,n) is a pair of positive integers (n,m ≥ 1). Let (xi, yi)
(i = 1, · · · , m), (x′j, y

′
j) (j = 1, · · · , n) be in X and u ∈ κ−1(Wm), v ∈ κ−1(Wn) be points

such that κ(u) = φm((x1, y1), · · · , (xm, ym)), κ(v) = φn((x′1, y
′
1), · · · , (x′n, y′n)), Then the

10



following relation holds :

σ\m+n(u+ v) σ\m+n(u+ [ζ]v) σ\m+n(u+ [ζ2]v)

σ\m(u)3 σ\n(v)3

=

∏2
i=0 ∆m+n((x1, y1), · · · , (xm, ym), (x′1, ζ

iy′1), · · · , (x′n, ζ iy′n))
(
∆m((x1, y1) · · · , (xm, ym))∆n((x′1, y

′
1) · · · , (x′n, y′n))

)3

×
m∏

i=1

n∏

j=1

1

∆2((xi, yi), (x′j, y
′
j))

2
.

(A.3)

Proof. This is proved by the same way as Theorem 5.1. �
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