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Exercise 2.1. Let T': R — R be the translation T'(x) = = + 1. Let f = Xjo,1] and g = X[1,2)
be probability densities on R. Show that T#f = g. Define S : R — R by S(z) = 2z. Show

that S#f # g.

Exercise 2.5 (Strict convexity of h does not imply h” > 0). Find an example of a strictly
convex function h : R — R such that A”(z) = 0 for some x € R.

Exercise 2.6. Show that hg(x) = zlogz, x € (0,00), is strictly convex. Show that hr(z) =
z'/2, z € (0,00), is strictly concave.

Exercise 3.5. Define T: R — R by T'(z) = 2 — . Let f = x[o) and g = x[12)- Use Lemma
3.4 to show that T#f = g.

Exercise 3.7. Check the values in the table in Example 3.6. Use Jensen’s inequality to prove
that 77 is the worst transport map for the concave cost h(s) = |s|'/2.

Exercise 3.8. Let X = [0,1], Y = [1,2], f = xp,1, 9 = X[1.2» ¢(7,y) = h(ly — z[) with
h(s) = (s+1)log(s+ 1), s > 0. Find an optimal transport map.

Exercise 3.9 (Non-uniqueness for linear costs). Let X, Y C R be bounded and c¢(z,y) =
h(y — x) where h : X — Y is a linear function. Show that every admissible transport map is
optimal, i.e., show that if T': X — Y, T#f = g, then

M(T) =T(f, 9)-
Hint: Compute M (T') and show that it is independent of T'.

Exercise 3.10 (Non-uniqueness for non-strictly convex costs: Book shifting). Let X = [0, 2],
Y =1[1,3], f = 3Xj0.2s 9 = 5X[.3) c(,y) = h(y — &) with h(s) = |s|. Let T1(z) =z + 1 and

To(x) z+2 ifzel01],
€Tr) =
? x if 2 € (1,2].

Observe that f and g have mass in common in the interval [1,2]. The map T» leaves the
common mass fixed and only transports mass from [0, 1] to [2,3]. Show that 77 and 75 are



both optimal transport maps:

M(Ty) = M(Tz) = Te(f. 9)-

Exercise 3.12 (A challenging exercise: Behaviour of quadratic transport under translations).
Let X =Y = R and ¢ be the quadratic cost ¢(z,y) = (r—y)?. For a € R, define the translation
Ta : R = R by 74(z) = x—a. Let for, denote the composition (for,)(x) = f(7.(x)) = f(z—a).
In this exercise we show that

Te(f 0 Tasg o) = Te(f,9) + (b — a)* + 2(b — a)(mg — my) (0.1)

where a,b € R and

my = /oo af(x)dz, mg = /OO yg(y) dy

—00 —0o0

and the centres of mass of f and g.
(i) Let T#f = g. Define S : R — R by S(z) = T'(z — a) +b. Show that S#(fo1,) =gom.
(ii) Show that
Tif 0 rasg o m) < Telfog) + (b— 0 +2(b — a)(my — my).

Hint: Let T be an optimal transport map transporting f to g, which means that
Te(f.9) = [%5 IT(x) — 2|* f(z) dz. By part (i),
oo

Te(foTg,gom) < / |S () —m\2f(7a(x)) dzx.

(iii) Use a similar argument to part (ii) to show that
Te(f o marg o) = Te(f,9) + (b= a)” + 2(b — a)(my — my).

Combining (ii) and (iii) proves (0.1). Hint: Start with an optimal map T transporting
f o1y to gomy. Use it to construct an admissible map S transporting f to g.

(iv) Use (0.1) to give an alternative proof that 7.(x[0,1), x[1,2)) = 1-

Exercise 4.3 (Non-uniqueness of optimal Kantorovich potential pairs). Show that if (¢, )
is an optimal Kantorovich potential pair, then so is (¢ + a,1 — a) for any a € R.

Exercise 4.8. Fill in the missing details for Example 4.6.

Exercise 4.9. Derive an optimal Kantorovich potential pair for the book shifting problem
from Exercise 3.10.

Exercise 4.10. Prove that T is the worst transport map for the convex cost h(s) = s? from
Example 3.6. Hint: This is equivalent to proving that 75 is the best transport map for the
concave cost B(S) = —s2. Verify this by constructing an optimal Kantorovich potential pair
(¢,4) such that D(¢,1p) = M(T5) for the cost h(s) = —s2.



