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Abstract

These lecture notes are for a short course given at the London Mathematical Society
Undergraduate Summer School at the University of Glasgow, 26-27 July 2018.

1 Motivation

The aim of these notes is to give penultimate year undergraduate students a flavour of the
fashionable research area of optimal transport theory. The origin of the subject goes back to
1781 and the French engineer Gaspard Monge [7], who was interested in the problem of the
optimal way of redistributing mass, e.g., given a pile of soil, how can it be transported and
reshaped to form an embankment with minimal effort? This problem remained unsolved for
over 200 years (it was not even known whether there existed an optimal way of redistributing
mass), until some big mathematical breakthroughs in the 1980s and 1990s. Since then the
field has flourished and optimal transport theory has found applications in PDEs, geometry,
statistics, economics and image processing. There are now several excellent textbooks on
optimal transport theory for PhD students and researchers [1, 2, 5, 8, 9, 10, 11, 12, 13].
As far as I am aware, however, there are currently no textbooks targeted at undergraduate
students, and optimal transport is not typically taught at the undergraduate level in the UK.
In these lecture notes I aim to give an accessible introduction to the subject without assuming
any background knowledge in measure theory, which is usually a prerequisite.

2 Notation and Background Material

Throughout this course we will use the following notation:

• Characteristic functions. Let A ⊂ Rd. The characteristic function χA : Rd → {0, 1} is

χA(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

• Preimage. Let T : X → Y , B ⊆ Y . The preimage of B under T is the set

T−1(B) := {x ∈ X : T (x) ∈ B}.
∗Durham University
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• Probability densities. Let X ⊆ Rd. We say that f : X → [0,∞) is a probability density
on X if

∫
X f(x) dx = 1.

• Push-forward. Let X,Y ⊆ Rd and T : X → Y . Let f be a probability density on X and
g be a probability density on Y . We say that g is the push-forward of f under T , and write
g = T#f , if ∫

B
g(y) dy =

∫
T−1(B)

f(x) dx ∀ B ⊆ Y. (2.1)

In other words, the mass of the set B with respect to the density g equals the mass of the
set T−1(B) with respect to the density f .

Exercise 2.1. Let T : R→ R be the translation T (x) = x+ 1. Let f = χ[0,1] and g = χ[1,2]

be probability densities on R. Show that T#f = g. Define S : R → R by S(x) = 2x. Show
that S#f 6= g.

The following classes of functions play a very important role in optimisation problems:

Definition 2.2 (Convex and concave functions). Let I ⊆ R be an interval (possibly un-
bounded). We say that h : I → R is convex if for all λ ∈ (0, 1), x, y ∈ I, x 6= y,

h((1− λ)x+ λy) ≤ (1− λ)h(x) + λh(y). (2.2)

We say that h is strictly convex if the inequality in (2.2) is strict. We say that h is concave
if −h is convex and strictly concave if −h is strictly convex.

Equation (2.2), convexity of h, means that the graph of h on the interval (x, y) lies below
the line joining h(x) to h(y) for all x, y ∈ I. Strict convexity means the graph lies strictly
below the line. For concavity and strict concavity, the same is true with below replaced by
above.

Example 2.3. Here are some examples of convex and concave functions on R. The function
h1(x) = x2 is strictly convex, h2(x) = |x| is convex but not strictly convex, h3(x) = ax + b,
a, b ∈ R, is both convex and concave (but not strictly convex or strictly concave), h4(x) = −x2
is strictly concave, h5(x) = x3 is neither convex nor concave.

The following result is useful for checking the convexity of a function:

Theorem 2.4 (Second-derivative test). Let h : I → R be twice differentiable. Then h is
convex if and only if h′′(x) ≥ 0 ∀ x ∈ I. If h′′(x) > 0 ∀ x ∈ I, then h is strictly convex.

Exercise 2.5 (Strict convexity of h does not imply h′′ > 0). Find an example of a strictly
convex function h : R→ R such that h′′(x) = 0 for some x ∈ R.

Exercise 2.6. Show that h6(x) = x log x, x ∈ (0,∞), is strictly convex. Show that h7(x) =
x1/2, x ∈ (0,∞), is strictly concave.

We will also need the following important inequality:

Theorem 2.7 (Jensen’s inequality). Let h : I → R be convex, let f be a probability density
on [a, b], and let u : [a, b]→ I be bounded. Then

h

(∫ b

a
u(x)f(x) dx

)
≤
∫ b

a
h(u(x))f(x) dx.
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3 The Monge Problem

We are now in a position to state Monge’s optimal transport problem in modern mathematical
language:

Definition 3.1 (The Monge problem). Let X,Y ⊆ Rd. Let f be a probability density on
X and g be a probability density on Y . Let c : X × Y → [0,∞) be continuous. The Monge
problem is to find a transport map T : X → Y satisfying T#f = g such that T minimises
the cost functional

M(T ) :=

∫
X
c(x, T (x))f(x) dx.

The optimal transport cost Tc(f, g) of transporting f to g with cost function c is defined by

Tc(f, g) := inf
T#f=g

M(T ).

We write inf in the definition of Tc(f, g) rather than min since the minimum may not
exist (see Example 3.11). In this course we will consider the following fundamental questions:
Does there exist an optimal transport map T? If so, is it unique? Can we find an explicit
expression for T? If not, can we say something about the properties of T? The answers to
these questions will depend on the cost c and the probability densities f and g.

Remark 3.2 (Physical interpretation). Let’s interpret Definition 3.1 in terms of Gaspard
Monge’s original problem of redistributing (transporting and reshaping) a pile of sand or soil
to form an embankment with minimal effort: X = Y = R3; c(x, y) is the cost of moving
sand from point x to y (a natural choice is c(x, y) = |x− y|); f is the density of the original
pile of sand, i.e.,

∫
A f(x) dx is the mass of sand occupying the set A in the original pile; g is

the density of the target distribution (the embankment), i.e.,
∫
B g(y) dy is the mass of sand

occupying the set B in the embankment;
∫
X f(x) dx =

∫
Y g(y) dy = 1 is the total mass of

sand (normalised without loss of generality to be 1); T is the transport map - sand at point
x in the original pile is transported to point T (x) in the embankment; and the total cost of
moving the sand is M(T ). The constraint T#f = g represents conservation of mass - no sand
is created or lost in the transportation process:∫

T−1(B)
f(x) dx =

∫
B
g(y) dy ∀ B ⊆ Y

which means that the mass of sand transported from the original pile to B equals the mass
of the sand in the embankment at B.

Remark 3.3 (The Monge problem for more general densities). The assumptions
∫
X f(x) dx =

1,
∫
Y g(y) dy = 1 are not strictly necessary. The Monge problem can also be defined if f and

g simply have the same total mass, not necessarily equal to 1:
∫
X f(x) dx =

∫
Y g(y) dy. If∫

X f(x) dx 6=
∫
Y g(y) dy, then there does not exist any admissible map T satisfying T#f = g

and so Tc(f, g) = +∞.

The following form of the push-forward constraint is often more useful for calculations:

Lemma 3.4 (Equivalent formulation of the push-forward constraint). Let X,Y ⊆ Rd and
T : X → Y . Let f be a probability density on X and g be a probability density on Y . Then
T#f = g if and only if ∫

Y
ϕ(y)g(y) dy =

∫
X
ϕ(T (x))f(x) dx (3.1)
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for all bounded functions ϕ : Y → R.

Proof. Suppose that equation (3.1) holds. Let B ⊆ Rd and choose ϕ = χB. Then (3.1)
reduces to (2.1) and so T#f = g.

We just sketch the proof of the other direction. Suppose that T#f = g. Then equation
(3.1) holds for all characteristic functions ϕ = χB, B ⊆ Y . By linearity of the integral,
it also holds for all simple functions of the form ϕ =

∑N
i=1 aiχBi , ai ∈ R, Bi ⊆ Y . For

general bounded functions ϕ : Y → R, equation (3.1) can be proved by approximating ϕ by
a sequence of simple functions.

Exercise 3.5. Define T : R→ R by T (x) = 2− x. Let f = χ[0,1] and g = χ[1,2]. Use Lemma
3.4 to show that T#f = g.

The following example is very simple, but it illustrates the complexity of the Monge
problem.

Example 3.6. Let X = [0, 1], Y = [1, 2]. Let f(x) = 1, x ∈ X, and g(y) = 1, y ∈ Y .
We compare the transport cost of three different transport maps. Let T1 be the translation
T1(x) = x+ 1, which transports all the mass the same distance, 1. Let T2(x) = 2− x, which
flips or reflects the mass about the point x = 1. The point x = 1 is transported distance
0 while the point x = 0 is transported distance 2. We could also combine translation and
flipping, e.g.,

T3(x) =

{
x+ 3

2 if x ∈ [0, 12 ],

2− x if x ∈ [12 , 1].

Which of these maps, if any, are optimal? The answer depends of course on the cost c. Let
c(x, y) = h(y − x). We will compare the costs h(s) = s2 (which is strictly convex), h(s) = |s|
(which is convex but not strictly convex), and h(s) = |s|1/2 (which is concave for s ≥ 0). If
h(s) = s2, then

M(T1) =

∫ 1

0
(T1(x)− x)2f(x) dx =

∫ 1

0
12 dx = 1,

M(T2) =

∫ 1

0
(T2(x)− x)2f(x) dx =

∫ 1

0
(2− 2x)2 dx =

4

3
,

M(T3) =

∫ 1

0
(T3(x)− x)2f(x) dx =

∫ 1/2

0
(3/2)2 dx+

∫ 1

1/2
(2− 2x)2 dx =

31

24
.

We leave it as an exercise (Exercise 3.7) to check the values in the following table:

h(s) M(T1) M(T2) M(T3)

s2 1 4
3 ≈ 1.33 31

24 ≈ 1.29

|s| 1 1 1

|s|1/2 1 2
√
2

3 ≈ 0.94
√
3

2
√
2

+ 1
3 ≈ 0.95

For the cost h(s) = s2 we have M(T1) < M(T3) < M(T2). Therefore the translation T1 is
the best map amongst these three maps. In fact we can prove it is the best map amongst all
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admissible maps as follows: Let T be any admissible map, T#f = g. Since h is convex, then
by Jensen’s inequality, Theorem 2.7,

M(T ) =

∫ 1

0
h(T (x)− x)f(x) dx

≥ h
(∫ 1

0
(T (x)− x)f(x) dx

)
= h

(∫ 1

0
T (x)f(x) dx−

∫ 1

0
xf(x) dx

)
= h

(∫ 2

1
yg(y) dy −

∫ 1

0
xf(x) dx

)
(by (3.1) with ϕ(y) = y)

= h

(
3

2
− 1

2

)
= h(1)

=

∫ 1

0
h(1)f(x) dx

=

∫ 1

0
h(T1(x)− x)f(x) dx (since T1(x)− x = 1)

= M(T1).

Therefore M(T ) ≥ M(T1) for all admissible transport maps T and so T1 is an optimal
transport map and the optimal transport cost is Tc(f, g) = M(T1) = 1. In fact it can be
shown that T1 is the unique optimal transport map (see Section 5). In the argument above
we only used the convexity of h, but not the explicit form of h. Therefore the translation T1
is an optimal transport map for any convex cost.

For the cost h(s) = |s| we have M(T1) = M(T2) = M(T3) = 1. Can we do better
than this? The answer is no since the map h(s) = |s| is convex and so the argument above
shows that Tc(f, g) = M(T1) = 1. Therefore all three transport maps T1, T2, T3 are optimal.
Surprisingly, it turns out that any admissible transport map T is optimal: M(T ) = 1 for all
T ; see Exercise 3.9. The lack of uniqueness is due to the lack of strict convexity of h.

Finally, consider the cost h(s) = |s|1/2, which is concave for s ≥ 0. In this case M(T2) <
M(T3) < M(T1) and flipping mass is better than translating it. We will see below (Example
4.6) that T2 is an optimal transport map (in fact it is the unique optimal transport map),
whereas T1 is the worst possible transport map (Exercise 3.7).

Exercise 3.7. Check the values in the table in Example 3.6. Use Jensen’s inequality to prove
that T1 is the worst transport map for the concave cost h(s) = |s|1/2.

Exercise 3.8. Let X = [0, 1], Y = [1, 2], f = χ[0,1], g = χ[1,2], c(x, y) = h(|y − x|) with
h(s) = (s+ 1) log(s+ 1), s ≥ 0. Find an optimal transport map.

Exercise 3.9 (Non-uniqueness for linear costs). This example is taken from [11, Examples
2.14, 2.15]. Let X,Y ⊂ R be bounded and c(x, y) = h(y − x) where h : X → Y is a linear
function. Show that every admissible transport map is optimal, i.e., show that if T : X → Y ,
T#f = g, then

M(T ) = Tc(f, g).

5



Hint: Compute M(T ) and show that it is independent of T .
A similar computation shows the following: If all the mass of f lies to the left of the

mass of g, i.e., sup{x : f(x) > 0} ≤ inf{y : g(y) > 0}, then any admissible transport map is
optimal for the cost c(x, y) = |x− y| since T (x) ≥ x for all x and so c(x, T (x)) = |T (x)−x| =
T (x)− x = h(T (x)− x) for the linear map h(s) = s.

Exercise 3.10 (Non-uniqueness for non-strictly convex costs: Book shifting). This example
is taken from [11, Example 2.16]. Let X = [0, 2], Y = [1, 3], f = 1

2χ[0,2], g = 1
2χ[1,3],

c(x, y) = h(y − x) with h(s) = |s|. Let T1(x) = x+ 1 and

T2(x) =

{
x+ 2 if x ∈ [0, 1],

x if x ∈ (1, 2].

Observe that f and g have mass in common in the interval [1, 2]. The map T2 leaves the
common mass fixed and only transports mass from [0, 1] to [2, 3]. Show that T1 and T2 are
both optimal transport maps:

M(T1) = M(T2) = Tc(f, g).

In fact it can be shown using Exercise 3.9 that

T (x) =

{
S(x) if x ∈ [0, 1],

x if x ∈ (1, 2],

is an optimal transport map for any function S : [0, 1]→ [2, 3] such that S#χ[0,1] = χ[2,3].

Example 3.11 (Non-existence for a strictly concave cost with overlapping masses). Let
X = [0, 1], Y = [0, 2], f = χ[0,1], g = 1

2χ[0,2], c(x, y) = |x− y|1/2. In this case it can be shown
that there does not exist any optimal transport map; the infimum in the definition of Tc(f, g)
is not attained. It turns out that

Tc(f, g) = Tc
(
1
2χ[0,1],

1
2χ[1,2]

)
.

In other words, the cost of transporting f to g is the same as the cost of transporting 1
2χ[0,1]

to 1
2χ[1,2]. The problem here is that c is strictly concave and the masses f and g ‘overlap’; f

and g are both positive on the interval [0, 1]. Whenever c is a strictly concave metric, as it is
here (any function c(x, y) = h(|y−x|) with h : [0,∞)→ R concave and h(0) = 0 is a metric),
then it turns out that it is best to leave ‘common mass’ where it is. But since any function
must take a single value at every point, it is not possible to find a function T that both leaves
the common mass 1

2χ[0,1] fixed (T (x) = x on [0, 1]) and transports the mass 1
2χ[0,1] to 1

2χ[1,2]

(T ([0, 1]) = [1, 2]).

Exercise 3.12 (A challenging exercise: Behaviour of quadratic transport under translations).
This example is taken from [8, Remark 2.19]. Let X = Y = R and c be the quadratic cost
c(x, y) = (x− y)2. For a ∈ R, define the translation τa : R→ R by τa(x) = x− a. Let f ◦ τa
denote the composition (f ◦ τa)(x) = f(τa(x)) = f(x− a). In this exercise we show that

Tc(f ◦ τa, g ◦ τb) = Tc(f, g) + (b− a)2 + 2(b− a)(mg −mf ) (3.2)

where a, b ∈ R and

mf =

∫ ∞
−∞

xf(x) dx, mg =

∫ ∞
−∞

yg(y) dy

are the centres of mass of f and g.
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(i) Let T#f = g. Define S : R→ R by S(x) = T (x−a) + b. Show that S#(f ◦ τa) = g ◦ τb.

(ii) Show that

Tc(f ◦ τa, g ◦ τb) ≤ Tc(f, g) + (b− a)2 + 2(b− a)(mg −mf ).

Hint: Let T be an optimal transport map transporting f to g, which means that
Tc(f, g) =

∫∞
−∞ |T (x)− x|2f(x) dx. By part (i),

Tc(f ◦ τa, g ◦ τb) ≤
∫ ∞
−∞
|S(x)− x|2f(τa(x)) dx.

(iii) Use a similar argument to part (ii) to show that

Tc(f ◦ τa, g ◦ τb) ≥ Tc(f, g) + (b− a)2 + 2(b− a)(mg −mf ).

Combining (ii) and (iii) proves (3.2). Hint: Start with an optimal map T transporting
f ◦ τa to g ◦ τb. Use it to construct an admissible map S transporting f to g.

(iv) Use (3.2) to give an alternative proof that Tc(χ[0,1], χ[1,2]) = 1.

4 The Dual Problem

In this section we will see that the Monge minimisation problem can be reformulated as a
maximisation problem. This is not just a mathematical curiosity, it was an important step
along the road to solving Monge’s problem.

Throughout this section we assume that X,Y ⊂ Rd are compact (closed and bounded).
Let C(X) denote the set of continuous, real-valued functions on X.

Theorem 4.1 (Kantorovich Duality Theorem). Let f be a probability density on X, g be a
probability density on Y , and c : X×Y → R be continuous. Define D : C(X)×C(Y )→ R by

D(φ, ψ) =

∫
X
φ(x)f(x) dx+

∫
Y
ψ(y)g(y) dy.

If φ ∈ C(X), ψ ∈ C(Y ), we say that φ ⊕ ψ ≤ c if and only if φ(x) + ψ(y) ≤ c(x, y) for all
x ∈ X, y ∈ Y . Then

Tc(f, g) = inf
T#f=g

M(T ) = sup
φ⊕ψ≤c

D(φ, ψ).

Moreover, the supremum is a maximum, i.e., there exists an admissible pair (φ, ψ) such that
Tc(f, g) = D(φ, ψ), and we say that (φ, ψ) is an optimal Kantorovich potential pair.

Proof. The proof of this theorem is beyond the scope of this short course. We limit ourselves
to the proof of the ‘easy half’ of the duality equality:

inf
T#f=g

M(T ) ≥ sup
φ⊕ψ≤c

D(φ, ψ).
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Let T satisfy T#f = g and (φ, ψ) satisfy φ⊕ ψ ≤ c. Then

D(φ, ψ) =

∫
X
φ(x)f(x) dx+

∫
Y
ψ(y)g(y) dy

=

∫
X
φ(x)f(x) dx+

∫
X
ψ(T (x))f(x) dx (by (3.1) with ϕ = ψ)

=

∫
X

(φ(x) + ψ(T (x)))f(x) dx

≤
∫
X
c(x, T (x))f(x) dx (since φ⊕ ψ ≤ c)

= M(T ).

We record for future use that

D(φ, ψ) =

∫
X

(φ(x) + ψ(T (x)))f(x) dx ≤M(T ). (4.1)

In particular
D(φ, ψ) ≤M(T )

for all T satisfying T#f = g and all (φ, ψ) satisfying φ⊕ ψ ≤ c. Taking the supremum over
all admissible (φ, ψ) gives

sup
φ⊕ψ≤c

D(φ, ψ) ≤M(T ).

Then taking the infimum over all admissible T gives

sup
φ⊕ψ≤c

D(φ, ψ) ≤ inf
T#f=g

M(T )

as required.

Remark 4.2 (The constraint φ⊕ψ ≤ c). By examining the proof of Theorem 4.1 more closely
we see that the constraint φ(x) + ψ(y) ≤ c(x, y) does not need to hold for all x ∈ X, y ∈ Y ,
but only for x, y such that f > 0 in a neighbourhood of x and g > 0 in a neighbourhood of y.

Exercise 4.3 (Non-uniqueness of optimal Kantorovich potential pairs). Show that if φ⊕ψ ≤ c
and a ∈ R, then (φ+ a)⊕ (ψ − a) ≤ c and D(φ+ a, ψ − a) = D(φ, ψ). Therefore if (φ, ψ) is
an optimal Kantorovich potential pair, then so is (φ+ a, ψ − a) for any a ∈ R.

Let ∇xc denote the gradient of c with respect to its first argument. The following is a
useful corollary of the Kantorovich Duality Theorem:

Corollary 4.4. Let T be a continuous optimal transport map and (φ, ψ) be a differentiable
optimal Kantorovich potential pair, in particular M(T ) = D(φ, ψ) = Tc(f, g). Assume that c
is differentiable in its first argument. Then

φ(x0) + ψ(T (x0)) = c(x0, T (x0)), ∇φ(x0) = ∇xc(x0, T (x0))

for all x0 ∈ X such that f > 0 in a neighbourhood of x0. In particular, we have equality in
the inequality constraint φ(x) + ψ(y) ≤ c(x, y) if mass is transported from x to y = T (x).

8



Proof. Suppose for contradiction that we can find x0 ∈ X, r > 0 such that f > 0 on the
ball Br(x0) and φ(x0) + ψ(T (x0)) < c(x0, T (x0)). Then by continuity of φ, ψ, T, c we have
φ(x) +ψ(T (x)) < c(x, T (x)) in some neighbourhood of x0 where f > 0. Combining this with
equation (4.1) gives

D(φ, ψ) =

∫
X

(φ(x) + ψ(T (x)))f(x) dx <

∫
X
c(x, T (x))f(x) dx = M(T ).

But this contradicts the optimality of T and (φ, ψ).
Take any x0 ∈ X such that f > 0 in a neighbourhood of x0. Consider the map F (x) =

c(x, T (x0))− φ(x), x ∈ X. We have shown that

F (x) ≥ ψ(T (x0)) ∀x ∈ X (since φ⊕ ψ ≤ c), F (x0) = ψ(T (x0)).

Therefore x0 is a minimum point of F and so

∇F (x0) = 0 ⇐⇒ ∇xc(x0, T (x0))−∇φ(x0) = 0

as required.

We have seen that one optimisation problem, inf M(T ), can be replaced by another,
supD(φ, ψ). Why is this useful?

Remark 4.5 (Why the dual problem is useful.). Given a transport map T , how do we know
if it is optimal? The Kantorovich Duality Theorem gives us a way of checking. Given any
admissible transport map T and admissible Kantorovich potential pair (φ, ψ) we have

D(φ, ψ) ≤ Tc(f, g) ≤M(T )

by Theorem 4.1. Therefore if we can construct T and (φ, ψ) such that M(T ) = D(φ, ψ), then

D(φ, ψ) ≤ Tc(f, g) ≤M(T ) = D(φ, ψ) =⇒ D(φ, ψ) = Tc(f, g) = M(T )

and so T and (φ, ψ) must be optimal. Even if we can’t construct such a T and (φ, ψ), then
the duality gap M(T )−D(φ, ψ) ≥ 0 gives us an idea of how far T and (φ, ψ) are from being
optimal.

Example 4.6. Let X = [0, 1], Y = [1, 2], f = χ[0,1], g = χ[1,2]. The following table gives
optimal Kantorovich potentials and transport maps for the costs from Example 3.6:

h(s) T (x) φ(x) ψ(y) D(φ, ψ) = M(T )

s2 T1(x) = x+ 1 −2x 2y − 1 1

|s| T1(x) = x+ 1 −x y 1

|s|1/2 T2(x) = 2− x 1
2 (2− 2x)1/2 1

2(2y − 2)1/2 2
√
2

3

For example, for the cost h(s) = s2, then

D(−2x, 2y − 1) =

∫ 1

0
(−2x) dx+

∫ 2

1
(2y − 1) dy = −1 +

1

4
(9− 1) = 1.
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Therefore D(−2x, 2y−1) = M(x+1) = Tc(f, g) = 1, which again verifies that the translation
T1(x) = x+ 1 is an optimal transport map for the quadratic cost. Where did the potentials
(φ(x), ψ(y)) = (−2x, 2y − 1) come from? We can derive them as follows: By Corollary 4.4, if
T1 and (φ, ψ) are optimal, then

φ′(x) = cx(x, T1(x)) = 2(x− T1(x)) = −2 for x ∈ [0, 1].

Integrating gives φ(x) = −2x + a, x ∈ [0, 1]. We can choose a = 0 by Exercise 4.3. Using
Corollary 4.4 again (and again assuming that T1 is optimal) gives

ψ(T1(x)) = c(x, T1(x))− φ(x) = (T1(x)− x)2 + 2x = 1 + 2x for x ∈ [0, 1].

By setting y = T1(x) = x+ 1 we find that

ψ(y) = 1 + 2(y − 1) = 2y − 1 for y ∈ [1, 2].

It is an exercise in multivariable calculus to verify that

φ⊕ ψ ≤ c ⇐⇒ −2x+ 2y − 1 ≤ (y − x)2 ∀ (x, y) ∈ X × Y.

Hint: Find the maximum value of F (x, y) = −2x+ 2y − 1− (y − x)2 in R2.
We leave it as an exercise (Exercise 4.8) to check the other values in the table above or,

even better, to derive the optimal Kantorovich potential pairs for yourself.

Remark 4.7 (Kantorovich potentials for metric costs). Consider the special case where
X = Y and c is a metric on X, e.g., X = Rd and c(x, y) = |y− x| or c(x, y) = h(|y− x|) for a
concave function h : [0,∞)→ [0,∞) with h(0) = 0. In this case it can be shown (with a lot of
work) that there exists an optimal Kantorovich potential pair (φ, ψ) with ψ = −φ and where
φ is 1-Lipschitz with respect to c, which means that |φ(x) − φ(y)| ≤ c(x, y) for all x, y ∈ X.
For instance, if c(x, y) = |y − x|, then we can choose optimal Kantorovich potentials (φ, ψ)
such that ψ(y) = −φ(y) and |φ(x)− φ(y)| ≤ |x− y|.

Exercise 4.8. Fill in the missing details for Example 4.6.

Exercise 4.9. Derive an optimal Kantorovich potential pair for the book shifting problem
from Exercise 3.10.

Exercise 4.10. Prove that T2 is the worst transport map for the convex cost h(s) = s2 from
Example 3.6. Hint: This is equivalent to proving that T2 is the best transport map for the
concave cost h̃(s) = −s2. Verify this by constructing an optimal Kantorovich potential pair
(φ, ψ) such that D(φ, ψ) = M(T2) for the cost h̃(s) = −s2.

5 Fundamental Theorems of Optimal Transport Theory

We finish the course by stating some of the big theorems of optimal transport theory, which
came over 200 years after Gaspard Monge posed the optimal transport problem.

First note that the definition of convex functions, Definition 2.2, can be extended to
multivariable functions: We say h : Rd → R is convex if for all λ ∈ (0, 1), x, y ∈ Rd

h((1− λ)x+ λy) ≤ (1− λ)h(x) + λh(y).

The first breakthrough came for the quadratic cost:
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Theorem 5.1 (Brenier’s Theorem [3]). Let X = Y = Rd and f, g be probability densities on
Rd that vanish outside a compact set. Let c be the quadratic cost c(x, y) = (x−y)2. Then there
exists a unique optimal transport map T . Moreover, T is the gradient of a convex function,
i.e., T = ∇Φ for some convex function Φ. If d = 1 and T is differentiable, then T = Φ′ and
so T ′ = Φ′′ ≥ 0 (since Φ is convex). Therefore T is a non-decreasing function.

Note that unique in Brenier’s Theorem means that T is unique on the set where f has
positive mass.

Example 5.2. For the quadratic cost h(s) = s2 in Example 3.6, we found the optimal
transport map T1(x) = x+ 1 = Φ′(x) for the convex function Φ(x) = 1

2(x+ 1)2.

Brenier’s Theorem is actually a (nontrivial) consequence of the following theorem, which
came a few years later:

Theorem 5.3 (Strictly convex costs [6]). Let X = Y = Rd and f, g be probability densities
on Rd that vanish outside a compact set. Let c be the cost c(x, y) = h(x − y) where h is
strictly convex. Then there exists a unique optimal transport map T . If (φ, ψ) is an optimal
Kantorovich potential pair, then T and φ are related by

T (x) = x− (∇h)−1(∇φ(x))

for all x (except for a set of mass 0 with respect to f). The potential φ is not unique, but its
gradient ∇φ is.

Proof. The proof of this theorem is well beyond the scope of this course. The form of T ,
however, can be inferred from Corollary 4.4:

∇φ(x) = ∇xc(x, T (x)) = ∇h(x− T (x)) =⇒ T (x) = x− (∇h)−1(∇φ(x)).

Example 5.4. Let’s verify the formula T (x) = x− (∇h)−1(∇φ(x)) for Example 4.6. In one
dimension this reduces to T (x) = x − (h′)−1(φ′(x)). For the quadratic cost h(s) = s2 we
found T (x) = x+ 1 and φ(x) = −2x. We have h′(s) = 2s, (h′)−1 = s/2, and

x− (h′)−1(φ′(x)) = x− φ′(x)

2
= x+ 1 = T (x)

as required.

Remark 5.5 (Strictly convex costs in one dimension). One dimension is very special; for
strictly convex costs there is an explicit formula for the optimal transport map T , T is non-
decreasing and, surprisingly, it is independent of the cost c [11, Theorem 2.9]:

T (x) = F [−1]
g (Ff (x))

where Ff and Fg are the cumulative distribution functions

Ff (t) =

∫ t

−∞
f(x) dx, Fg(t) =

∫ t

−∞
g(y) dy

and F
[−1]
g is the pseudo-inverse of Fg:

F [−1]
g (x) = inf{t ∈ R : Fg(t) > x}.

This agrees with Example 3.6, where we showed that T1 is optimal for any convex cost.

11



Remark 5.6 (The cost c(x, y) = |x− y|). Unfortunately Theorem 5.3 does not include what
is possibly the the most physical cost, c(x − y) = h(x − y) with h(s) = |s|, which is convex
but not strictly convex. In this case there still exists an optimal transport map T (this was
established by [1, 4]) but, as we have seen, T is not necessarily unique.

Remark 5.7 (Strictly concave costs). If h is strictly concave then there exists a unique
optimal transport map T provided that f and g do not share any mass, i.e., for any A ⊂ Rd
such that

∫
A f(x) dx > 0, then

∫
A g(y) dy = 0 [12, Theorem 2.45]. If f and g share mass, then

there may not exist an optimal transport map; see Example 3.11.
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[10] S. T. Rachev and L. Rüschendorf. Mass Transportation Problems, Vol. II: Applications.
Sringer, 1998.

[11] F. Santambrogio. Optimal Transport for Applied Mathematicians. Birkhäuser, 2015.
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