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0. Epidemi
s on observable networks
Computerized age =⇒ data on large so
ial networks
(Swedish) examples:- Hospital data (relevant for MRSA): patient data- Census data: ind. data on household, address and work- Internet networks (dating sites, ...)
Networks are either stati
 or dynami




Epidemi
 model on networkDe�ne model as in uniform mixing populationsExample1. Some pre-de�ned individuals are initially infe
tious2. While individual i is infe
tious (s)he spreads the diseaseto ea
h friend independently at rate λ(or at rates λwij in weighted network, perhaps added by�external� infe
tious for
e θ)3. Latent and infe
tious periods are i.i.d. ∼ F and ∼ G(or more general if heterogeneous population)



What to do with model?Probabilisti
 analysis? NoStatisti
al inferen
e? Yes
Additional data: individual disease informationinfe
ted/not infe
ted, show-of-symptom times, ...
How to analyse data?Bayesian methods treating unobserved quantities (e.g.infe
tion and removal times) as latent variables
Output from analysis:Information about λ, F , G and other model parameters,but also potential transmission routes, ...



However
Many so
ial networks are not observed!
=⇒ These 
an be analysed using random graphs (withsome pre-de�ned properties) ...



1. Random graphs
n nodes = individuals (n assumed large)Edges between nodes re�e
t so
ial link: �friendship�Simple undire
ted graph (no self-loops or multiple edges)
Simplest example: Erdös-Rényi: Edges between individualsare present independently with probability λ/n.



Important properties of random graphs
1. Degree distribution: distribution of # friends XHow many friends do individuals have?Erdös-Rényi: X ∼ Bin(n, λ/n) ≈ Po(λ)

2. Clustering index: CAre friends of an individual friends themselves?De�nition: C =
3×# triangles# 
onne
ted tripletsor 
orresponding expe
ted proportion:

P (two friends of an individual are friends)Erdös-Rényi: C ≈ λ/n → 0



3. Assortative mixing: Degree 
orrelation rAre friends of so
ial individuals (anti-)so
ial?De�nition:
r = 1# friendships ∑

i∼j(xi − E(X))(xj − E(X))

r positive: assortative, r negative: disassortativeErdös-Rényi: r ≈ 0

Further generalisations not treated todaydi�erent types of individualmore stru
ture on graph (e.g. households)time dynami
...



Empiri
al so
ial graphs/networks:Degree distribution: heavy-tailed (e.g. power law)Clustering index: C>0Degree 
orrelation: r > 0 (most often in so
ialnetworks)
General (unsolved) goal:Given X ∼ F , C and r, 
onstru
t a random graph havingthese as degree distribution, 
lustering index and degree
orrelation r

In general not possible exa
tly, but maybe asymptoti
ally?



An example:
F arbitrary (�nite se
ond moment), C = 0 = rCon�guration model (Bollobás, e.g. 2001):1. Draw X1, . . . , Xn i.i.d from F (Xi = # stubs from i)2. If ∑

i Xi odd redo.3. Pair the stubs 
ompletely at random.4. Remove all loops and merge multiple edges.



Resulting graph is simple. If E(X) < ∞ empiri
al degreedistribution 
onverges to F , i.e. a negligible fra
tion ofedges are removed. (B,D,M-L-06)



2. Epidemi
 modelsShort term outbreakGiven so
ial graph, an infe
tious disease may spread on itSIR: sus
eptible -> infe
tious -> removed (=immune)Model:0. Initially, one randomly sele
ted individual (the index
ase) externally infe
ted. The rest are sus
eptible1. An individual who gets infe
ted be
omes infe
tious fora duration I (=infe
tious period) and is then removed.2. During the infe
tious period an indivual infe
ts his/hersus
eptible friends independently at rate λ.The epidemi
 runs its 
ourse. Let T those ultimatelyinfe
ted and T = |T | be the �nal number infe
ted.
=⇒ p = P (infe
t given sus
eptible) = 1 − E(e−λI)If I is 
onstant then infe
tions o

ur independently (This
ase is treated from now on!)



Elegant observation (Mollison?)Thin the original graph by removing ea
h edge withprobability 1 − pLet C be the 
onne
ted 
omponent of the index 
ase and
C = |C|Theorem: C = T and C = T

Why? An edge (friendship) will be used at most in onedire
tion for transmission. Whether su
h a 
onta
t willresult in transmission 
an be generated in advan
e.
Important questions1. Given F , C and r: Can a big outbreak o

ur?Equiv: Is there a giant 
omponent in thinned graph?2. (If yes on 1) What is the probability of a major outbreakand how big will it be?Equivalently: How big is the giant 
omponent?



Elegant observation: Index 
ase randomly sele
ted
=⇒ P (index belongs to giant) = relative size of giant
P (outbreak)=relative size of giant 
omponent = relativesize of outbreakRandom graph theory: There is only one giant O(n)
omponent (B,J,R-07)
P (outbreak) easier to derive (using bran
hing pro
esstheory)
An example (
ontinued)Main idea: During early stages of an epidemi
 in a large
ommunity, all friends of an infe
ted (ex
ept the one (s)hewas infe
ted by!) will be sus
eptibleQ: What is degree distribution {p̃k} of infe
ted duringearly stages?A: p̃k ∝ kpk (=kpk/E(X))



Given X̃ = k the infe
ted will infe
t Bin(k − 1, p)

=⇒ O�-spring distribution Y ∼ MixBin(X̃ − 1, p)

From theory for bran
hing pro
essesa) If E(Y ) = R0 = E(X̃ − 1)p ≤ 1 (sub
riti
al)then br-pr will die out (minor epidemi
) with prob 1
R0 = p

∑
k(k−1)kpk/E(X) = p(E(X)−V (X)−E(X)

E(X) )

b) If R0 > 1 br-pr takes o� (major outbreak) with prob
1 − qwhere q = P (br-pr dies out) smallest positive solution to
q =

∑
j P (br-pr dies out|j o�-spring )P (Y = j) =

∑
j qjP (Y = j)

q solves q = φ(q) where φ(s) = E(sY )

1 − q is also size of major outbreak (C,H,b-A-03)



3. Va

inationSuppose a va

ine giving 100% immunity is availableSuppose individuals are va

inated prior to outbreakQ: Who and how many should be va

inated su
h that
P (outbreak)=0? (�Herd immunity�)Q': Given a spe
i�
 va

ination strategy v, what is indu
edreprodu
tion number Rv (and P (outbreak) and size ofoutbreak if Rv > 1)?Answer depends on how va

inees are sele
tedIntuition: Better to va

inate �so
ial� individuals
E�e
t on graph: thinning of nodes (va

inated nodes andedges 
onne
ting to them are removed)



An exampleUniform va

ination: a proportion v of randomly sele
tedindividuals are va

inatedE�e
t on br-pr approximation:a) Infe
tious individuals have same degree distribution X̃ .b) Given degree k the individual will infe
t
Bin(k − 1, p(1 − v)) individuals
=⇒ Rv = p(1 − v)E(X̃ − 1) = (1 − v)R0

=⇒ Criti
al va

ination 
overage vc = 1 − 1/R0same as �
lassi
al� vc (P-S, V-01)
If Rv > 1 P (outbreak) and outbreak size 
an also bedetermined using identi
al methods



Another exampleA
quaintan
e va

ination: Individuals are sele
tedrandomly. A randomly sele
ted friend of ea
h individual isva

inated (if it isn't yet va

inated), until a proportion vare va

inated.This strategy is more e�e
tive be
ause va

inatedindividuals will have degree distribution X̃E�e
t on br-pr approximation and �nal size:Mu
h harder problem (C,H,b-A-03 + B,J,M-L-07)
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