
Networks, epidemis andvaination: a reviewTom Britton, Dept of Mathematis, Stokholm University
Contents:

0. Epidemis on observable networks1. Random graphsGeneral problem + an example2. Epidemi modelsGeneral problem + an example3. VainationGeneral problem + two examples



0. Epidemis on observable networks
Computerized age =⇒ data on large soial networks
(Swedish) examples:- Hospital data (relevant for MRSA): patient data- Census data: ind. data on household, address and work- Internet networks (dating sites, ...)
Networks are either stati or dynami



Epidemi model on networkDe�ne model as in uniform mixing populationsExample1. Some pre-de�ned individuals are initially infetious2. While individual i is infetious (s)he spreads the diseaseto eah friend independently at rate λ(or at rates λwij in weighted network, perhaps added by�external� infetious fore θ)3. Latent and infetious periods are i.i.d. ∼ F and ∼ G(or more general if heterogeneous population)



What to do with model?Probabilisti analysis? NoStatistial inferene? Yes
Additional data: individual disease informationinfeted/not infeted, show-of-symptom times, ...
How to analyse data?Bayesian methods treating unobserved quantities (e.g.infetion and removal times) as latent variables
Output from analysis:Information about λ, F , G and other model parameters,but also potential transmission routes, ...



However
Many soial networks are not observed!
=⇒ These an be analysed using random graphs (withsome pre-de�ned properties) ...



1. Random graphs
n nodes = individuals (n assumed large)Edges between nodes re�et soial link: �friendship�Simple undireted graph (no self-loops or multiple edges)
Simplest example: Erdös-Rényi: Edges between individualsare present independently with probability λ/n.



Important properties of random graphs
1. Degree distribution: distribution of # friends XHow many friends do individuals have?Erdös-Rényi: X ∼ Bin(n, λ/n) ≈ Po(λ)

2. Clustering index: CAre friends of an individual friends themselves?De�nition: C =
3×# triangles# onneted tripletsor orresponding expeted proportion:

P (two friends of an individual are friends)Erdös-Rényi: C ≈ λ/n → 0



3. Assortative mixing: Degree orrelation rAre friends of soial individuals (anti-)soial?De�nition:
r = 1# friendships ∑

i∼j(xi − E(X))(xj − E(X))

r positive: assortative, r negative: disassortativeErdös-Rényi: r ≈ 0

Further generalisations not treated todaydi�erent types of individualmore struture on graph (e.g. households)time dynami...



Empirial soial graphs/networks:Degree distribution: heavy-tailed (e.g. power law)Clustering index: C>0Degree orrelation: r > 0 (most often in soialnetworks)
General (unsolved) goal:Given X ∼ F , C and r, onstrut a random graph havingthese as degree distribution, lustering index and degreeorrelation r

In general not possible exatly, but maybe asymptotially?



An example:
F arbitrary (�nite seond moment), C = 0 = rCon�guration model (Bollobás, e.g. 2001):1. Draw X1, . . . , Xn i.i.d from F (Xi = # stubs from i)2. If ∑

i Xi odd redo.3. Pair the stubs ompletely at random.4. Remove all loops and merge multiple edges.



Resulting graph is simple. If E(X) < ∞ empirial degreedistribution onverges to F , i.e. a negligible fration ofedges are removed. (B,D,M-L-06)



2. Epidemi modelsShort term outbreakGiven soial graph, an infetious disease may spread on itSIR: suseptible -> infetious -> removed (=immune)Model:0. Initially, one randomly seleted individual (the indexase) externally infeted. The rest are suseptible1. An individual who gets infeted beomes infetious fora duration I (=infetious period) and is then removed.2. During the infetious period an indivual infets his/hersuseptible friends independently at rate λ.The epidemi runs its ourse. Let T those ultimatelyinfeted and T = |T | be the �nal number infeted.
=⇒ p = P (infet given suseptible) = 1 − E(e−λI)If I is onstant then infetions our independently (Thisase is treated from now on!)



Elegant observation (Mollison?)Thin the original graph by removing eah edge withprobability 1 − pLet C be the onneted omponent of the index ase and
C = |C|Theorem: C = T and C = T

Why? An edge (friendship) will be used at most in onediretion for transmission. Whether suh a ontat willresult in transmission an be generated in advane.
Important questions1. Given F , C and r: Can a big outbreak our?Equiv: Is there a giant omponent in thinned graph?2. (If yes on 1) What is the probability of a major outbreakand how big will it be?Equivalently: How big is the giant omponent?



Elegant observation: Index ase randomly seleted
=⇒ P (index belongs to giant) = relative size of giant
P (outbreak)=relative size of giant omponent = relativesize of outbreakRandom graph theory: There is only one giant O(n)omponent (B,J,R-07)
P (outbreak) easier to derive (using branhing proesstheory)
An example (ontinued)Main idea: During early stages of an epidemi in a largeommunity, all friends of an infeted (exept the one (s)hewas infeted by!) will be suseptibleQ: What is degree distribution {p̃k} of infeted duringearly stages?A: p̃k ∝ kpk (=kpk/E(X))



Given X̃ = k the infeted will infet Bin(k − 1, p)

=⇒ O�-spring distribution Y ∼ MixBin(X̃ − 1, p)

From theory for branhing proessesa) If E(Y ) = R0 = E(X̃ − 1)p ≤ 1 (subritial)then br-pr will die out (minor epidemi) with prob 1
R0 = p

∑
k(k−1)kpk/E(X) = p(E(X)−V (X)−E(X)

E(X) )

b) If R0 > 1 br-pr takes o� (major outbreak) with prob
1 − qwhere q = P (br-pr dies out) smallest positive solution to
q =

∑
j P (br-pr dies out|j o�-spring )P (Y = j) =

∑
j qjP (Y = j)

q solves q = φ(q) where φ(s) = E(sY )

1 − q is also size of major outbreak (C,H,b-A-03)



3. VainationSuppose a vaine giving 100% immunity is availableSuppose individuals are vainated prior to outbreakQ: Who and how many should be vainated suh that
P (outbreak)=0? (�Herd immunity�)Q': Given a spei� vaination strategy v, what is induedreprodution number Rv (and P (outbreak) and size ofoutbreak if Rv > 1)?Answer depends on how vainees are seletedIntuition: Better to vainate �soial� individuals
E�et on graph: thinning of nodes (vainated nodes andedges onneting to them are removed)



An exampleUniform vaination: a proportion v of randomly seletedindividuals are vainatedE�et on br-pr approximation:a) Infetious individuals have same degree distribution X̃ .b) Given degree k the individual will infet
Bin(k − 1, p(1 − v)) individuals
=⇒ Rv = p(1 − v)E(X̃ − 1) = (1 − v)R0

=⇒ Critial vaination overage vc = 1 − 1/R0same as �lassial� vc (P-S, V-01)
If Rv > 1 P (outbreak) and outbreak size an also bedetermined using idential methods



Another exampleAquaintane vaination: Individuals are seletedrandomly. A randomly seleted friend of eah individual isvainated (if it isn't yet vainated), until a proportion vare vainated.This strategy is more e�etive beause vainatedindividuals will have degree distribution X̃E�et on br-pr approximation and �nal size:Muh harder problem (C,H,b-A-03 + B,J,M-L-07)
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