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Interests

• Invasion – threshold? R0?

• Spread – velocity / duration? final size?

• Persistence? – pattern? control?

Example Foot and mouth disease outbreaks
in the UK, 1967-8 and 2001









1967-8: spatial with jumps
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• spatial with jumps

2003: SARS
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• individual or mass-action?

• stochastic or deterministic?

Networks allow us to model the more realistic
individual stochastic case.
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Population space

• mean-field

• metapopulations

• spatial

• small-world

Shall look at examples of each

via random graph / network descriptions



Simple random graph

N individuals, each pair linked with probability p



Simple random graph

Here R0 ≡ Np is < 1



R0

The basic reproductive ratio of an epidemic
is the mean number of new infections made by
an infected individual in a mostly susceptible
population



Here R0 ≡ Np is > 1



Results for simple random graph:

Giant component exists iff R0 > 1.
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Results for simple random graph:

Giant component exists iff R0 > 1.

Diameter of giant, T ∼ log N .

Final size (and probability of a large outbreak)
are both given by the largest solution of

z = 1− exp(−R0z)



Deterministic mass-action equivalent,

a differential equation model (‘SIR’):

Ṡ = −cSI

İ = cSI − dI

Ṙ = dI



Results for ‘SIR’:

Large outbreak always occurs if R0 ≡ c/d > 1,

duration T ∼ log N ,

and the final size z is given by



Results for ‘SIR’:

Large outbreak always occurs if R0 ≡ c/d > 1,

duration T ∼ log N ,

and the final size z is given by

z = 1− exp(−R0z)



Structural choices for network models

• Directed or undirected?

• Degree – fixed? Poisson? ‘scale-free’?

• Large-scale structure

(mean-field to spatial)



Note The case of Poisson degree is special –
it corresponds to independence among an indi-
vidual’s contacts, allowing use of the undirected
Simple Random Graph as a model



Note Should in and out links be indepen-
dent?

For undirected graphs, they are only indepen-
dent in the SRG case. For any other degree
distribution, the effective mean number of con-
tacts is ‘size-biased’.

Example: the ‘scale-free’ case, with pn ∼ n−3,
has R0 = ∞.





3 Metapopulation models



3.1 Context

Applications

• household / group – e.g. flu, measles

• neighbour / long distance – e.g. North Sea
seal epidemics



3.2 Cases of interest

Pre-specified groups

m groups of size n, N = mn

• n large (Watson 1972)

• m large – ‘households’

• m and n large – ‘epidemics among giants’

• variable group size, e.g. households of sizes
ni (1 ≤ i ≤ m)



Theory

• household / group – previously treated as
‘local + external’ (e.g. Becker 1979)

• other cases – not previously treated. Can
extend ideas used in the homogeneous mix-
ing case:

– random graphs

– Sellke construction

– etc.



Groups determined by a local process

e.g. ‘Great circle’ epidemic



For the great circle, local contacts produce con-
nected components with size distribution given
by

π?
k = kpk−1(1− p)2

Note : π?
k = P(an individual belongs to a group

of size k)



Unified approach

Whichever case we have, if we think of local
contacts first, these in both cases determine a
‘realised local structure’, which we can think of
as pre-determined when we go on to consider
global contacts.



3.3 Amplification

Consider first the process including only global
contacts, with reproductive ratio R0 = Nq.

Relative to this ‘global-only’ process, local con-
tacts have an amplifying effect. If we infect one
individual in a local clump this results in global
contacts from all members of the clump.



Hence the overall reproductive ratio is

RT = R0µ

where µ is the mean size of component to which
a random individual belongs.

• Generalizes to directed graphs, and to more
levels of mixing

• RT >> R0 when local groups are both
large and above threshold



4 Spatial models

Nearest-neighbour

. . . or more general dispersal distribution



Time 0 Time 1









Velocities of stochastic spatial models are hard
to calculate.

It is known that stochastic and deterministic
nonlinear models have qualitatively different
conditions for finite velocity:

• Deterministic case: probability of long-distance
contact must fall off at least exponentially.

• Stochastic case: only require finite vari-
ance





Approximations using deterministic models

Provided the dispersal distribution falls off at
least exponentially, spatial deterministic mod-
els do provide reasonable approximations.

Many examples have been studied, especially
diffusion equations (KPP, Fisher, Skellam, . . . )



Breakthrough in late 1980s: the R&D kernel
approach of Diekmann (and others) shows how
linear theory can find velocities for a wide range
of nonlinear models.

All you need is the reproduction and dispersal
kernel K that describes the space-time
distribution of the infections made by an indi-
vidual in a mostly susceptible population.



Breakthrough in late 1980s: the R&D kernel
approach of Diekmann (and others) shows how
linear theory can find velocities for a wide range
of nonlinear models.

All you need is the reproduction and dispersal
kernel K that describes the space-time
distribution of the infections made by an indi-
vidual in a mostly susceptible population.

Can think of K as a space-time version of R0



Three advantages of the R&D kernel approach:

• Much easier to calculate

• Not restricted to DEs and diffusion equa-
tions

• Can look at the broad dependence of the
velocity on basic components

(e.g. is it ∼ log(R0), ∼
√

R0 or ∼ R0 ?)





5 Small worlds

Threshold: RT = R0µ > 1 (as for metapopu-
lation model)

T reduces from ∼ N to ∼ log N as the number
of global links increases



‘Small world’ phenomenon:

The proportion of global links required to re-
duce T to ∼ log N is surprisingly small.



‘Scale-free’ models:

A related study is of models with very high
variability in the number of contacts per indi-
vidual.



T = 3



T ≈ 3



T = 2







6 Two recent examples

Pair approximations to spatial models

In 2001, two British groups attempted real-
time modelling and prediction of the Foot-and-
mouth epidemic.

A Cambridge-based group used a spatial micro-
simulation.

The other group used a pair approximation to
avoid the difficulties and complexities of a fully
spatial model.

Pair approximations try to use local correla-
tions to capture spatial structure.



Pair approximations

Reconsider the deterministic SIR:

Ṡ = −cSI

İ = cSI − dI

Ṙ = dI



More accurately

Ṡ = −c[SI]

İ = c[SI]− dI

Ṙ = dI

˙[SI] = c([SSI]− [SI]− [ISI])− d[SI]



More accurately

Ṡ = −c[SI]

İ = c[SI]− dI

Ṙ = dI

˙[SS] = −2c[SSI]
˙[SI] = c([SSI]− [SI]− [ISI])− d[SI]
˙[SR] = · · ·
˙[II] = · · ·



For closure, use

[ABC] ≈ (1− 1

n
)
[AB][BC]

[B]

×(1− φ + φ
[AC]

[A][C]
)

where the clustering parameter φ is

P (ac|ab & bc)

(Keeling 1999)



Example hexagonal lattices (HBFs)

φ = 6/15 = 0.4

So does G(6, 0.4), the random graph with de-
gree 6 and clustering parameter φ = 0.4, have
T ∼

√
N ?



SIR (dashed line) and its pair approximation (solid line),
for φ = 0, 0.2, 0.4.

Also, spatial SIR (‘S’) and ordinary deterministic SIR

(‘?’).



We conclude that local structure is a poor guide
to global structure.

The pair approx is good for ‘typical’ G(6, φ)
graphs, but such graphs are much closer to
mean-field – with T ∼ log N – than spatial.



We conclude that local structure is a poor guide
to global structure.

The pair approx is good for ‘typical’ G(6, φ)
graphs, but such graphs are much closer to
mean-field – with T ∼ log N – than spatial.

Yet there are spatial examples of G(6, φ) – HBFs
– with T ∼

√
N !



The resolution of this paradox is that the non-
mean-field cases are of negligible probability –

HBFs, even as small as N = 150,
are Adams-improbable.



‘We are now cruising at a level of 225,000 to 1
against and falling, and we will be restoring
normality just as soon as we are sure what is
normal anyway.’

(Adams 1979)





Badgers and cattle TB

A cause of major controversy in Britain since
the 1970s.

The Krebs Report (1997) proposed, among other
things,



Badgers and cattle TB

A cause of major controversy in Britain since
the 1970s.

The Krebs Report (1997) proposed, among other
things, an experiment (!), with 10 sets of 3
areas, to compare three strategies:

• proactive

• reactive

• survey only





The reactive part of the experiment was stopped
in 2003, because it was making TB incidence
significantly worse (estimated effect: +30%).



The reactive part of the experiment was stopped
in 2003, because it was making TB incidence
significantly worse (estimated effect: +30%).

Preliminary results for the proactive part were
published in late 2005, showing a significant
favourable result, . . .



. . . but . . .





. . . consistent with the reactive result.





The structuralist ethic

Only trust a model if you

• understand how it was put together

• can test each component



Limits of prediction



Limits of prediction

Avian flu in humans currently has an R0 of
∼ 0.02.
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