THRESHOLD PARAMETERS FOR A MODEL WITH HOUSEHOLDS AND WORKPLACES

Mathematical models for emerging infections in socially structured populations

Lorenzo Pellis

Department of Infectious Disease Epidemiology Imperial College London

Edinburgh, 13-18 May 2007

Imperial College London

(日)

Aims Households model

Aims of the PhD

- To develop an SIR model to describe the spread of an airborne disease in a population partitioned into households and schools/workplaces
- To determine one or more threshold parameters for the model
- To assess the effectiveness of the school/workplace closure as a control policy in the case of an emerging outbreak

Further restrictions:

- Single outbreak \Rightarrow no demographic effects
- Analytically tractable model ⇒ deep insight and quick real-time reaction Imperial College

> E = 990

ヘロト ヘアト ヘビト ヘ

Aims Households model

Households model and infections

Aims Households model

 R_* : the basic reproduction number for households

It is possible to prove (Wald's identity for epidemics) that

Formula for R_*

 $R_* = R_g \left(1 + \mu_H \right)$

Note:

- R_* is linear in R_g
- The whole complexity of the local process is "squeezed" into μ_H

Model Vaccinatior

Households-workplaces model and infections

Model Vaccination

The concept of clump

Definition of clump

A clump is a set of individuals infected through a chain of local epidemics

- Ball and Neal (2002) gave a condition under which chains of local epidemics stop (a.s.) after a finite number of steps

A basic reproduction number for clumps

Let R_* be the average number of clumps infected by a "typical" clump in a totally susceptible population

Imperial College London

Model Vaccination

A household perspective

Focus the attention on a household: it can be infected Figure

- locally: the h.p. case is infected in his or her workplace
- globally: the h.p. case is a d.p. case infected globally
- The household can infect
 - locally: through an infection occurring in a workplace
 - globally: through a global infection

Define R_{ij} , for *i* and j = L or *G*, as the average number of households infected through a contact of type *i* by a household which has been infected through a contact of type *j*

Imperial College

1 = 1 = 1 A C

・ロト ・日下・ ・ ヨト・

Model Vaccination

R_H : a basic reproduction number for households

Next generation matrix: • Details

$$K = \begin{pmatrix} R_{GG} & R_{GL} \\ R_{LG} & R_{LL} \end{pmatrix} = \begin{pmatrix} R_g \left(1 + \mu_H \right) & R_g \left(1 + \mu_H \right) \\ \mu_W \left(1 + \mu_H \right) & \mu_H \mu_W \end{pmatrix}$$

Formula for R_H

$$egin{aligned} R_H &= rac{R_g(1+\mu_H)+\mu_H\mu_W}{2} &+ \ &+ rac{1}{2}\sqrt{[R_g(1+\mu_H)+\mu_H\mu_W]^2+4R_g\mu_W(1+\mu_H)} \end{aligned}$$

Imperial College

三下 三三 わえの

イロト イヨト イヨト イ

Note:

- The formula is not symmetric in μ_H and μ_W
- R_H is not linear in R_g

Model Vaccinatior

Comparison between R_* and R_H

$$egin{aligned} R_* &= R_g rac{(1+\mu_H)(1+\mu_W)}{1-\mu_H\mu_W} \ R_H &= rac{R_g(1+\mu_H)+\mu_H\mu_W}{2} + rac{1}{2}\sqrt{[R_g(1+\mu_H)+\mu_H\mu_W]^2 + 4R_g\mu_W(1+\mu_H)} \end{aligned}$$

Model Vaccinatior

Comparison between R_* and R_H

$$\begin{split} R_* &= R_g \frac{(1+\mu_H)(1+\mu_W)}{1-\mu_H \mu_W} \\ R_H &= \frac{R_g (1+\mu_H) + \mu_H \mu_W}{2} + \frac{1}{2} \sqrt{[R_g (1+\mu_H) + \mu_H \mu_W]^2 + 4R_g \mu_W (1+\mu_H)} \end{split}$$

Theorem

•
$$R_* = 1 \iff R_H = 1$$

•
$$R_* > 1 \iff R_H > 1$$

•
$$R_* < 1 \iff R_H < 1$$

Imperial College London 《 ㅁ › 《 큔 › 《 콘 › 《 콘 › 《 콘 › 《 콘 › 《 콘 · 종(트) 아이아

Model Vaccination

Critical vaccination coverage

As for the household model:

• Since R_* is linear in R_g , it is:

$$p_{crit}^* = 1 - \frac{1}{R_*}$$

• For *R_H* we conjecture: • Reasons

$$p_{crit}^H \leq 1 - \frac{1}{R_H}$$
, i.e. $R_H^V \leq 1$

Imperial College London

School/workplace closure

$$\begin{split} R_* &= R_g \frac{(1+\mu_H)(1+\mu_W)}{1-\mu_H \mu_W} \\ R_H &= \frac{R_g (1+\mu_H) + \mu_H \mu_W}{2} + \frac{1}{2} \sqrt{[R_g (1+\mu_H) + \mu_H \mu_W]^2 + 4R_g \mu_W (1+\mu_H)]} \end{split}$$

• School/workplace closure can be modelled by setting $\mu_W = 0$:

$$R_H = R_* = R_g(1 + \mu_H)$$

Imperial College

(日)

ELE DOG

- If all the other parameters remain unaltered, we always reduce R_H and R_{*}
- If they change, we need to estimate them before and after school/workplace closure

Discussion topics

• *R_H* and the critical vaccination coverage. Are we loosing an important equation?

Imperial College

1= 990

- I assumed a network with no loops.
 - Real social structures?
 - How do we define a workplace?
 - Does it matter?
- Is R. a measure of the severity of the epidemic?

R_{GG}

- primary case
- → household infection
- \rightarrow workplace infection
- → global infection

Imperial College London 《 ㅁ › 《 큔 › 《 콘 › 《 콘 › 《 콘 › 《 콘 › 《 콘 › 《 콘 › 《 콘 › 《 콘 › 《 콘 › 《 콘 · 《 콘 · 《 관 · 》 · 《 관 · 》 · 《 관 · 》 · 《 관 · 》 · · 》

R_{GL}

- primary case
- → household infection
- \rightarrow workplace infection
- → global infection

Formula for R_{GL} $R_{GL} = R_g \left(1 + \mu_H\right)$

Imperial College London 《 마 > 《 문 > 《 문 > 《 문 > 종 문 의 인 아 아

R_{LG}

- primary case
- → household infection
- \rightarrow workplace infection
- → global infection

Formula for *R_{LG}*

$$R_{LG} = \mu_W \left(1 + \mu_H \right)$$

Imperial College London

R_{LL}

- primary case
- → household infection
- \rightarrow workplace infection
- \rightarrow global infection

Formula for
$$R_{LL}$$

 $R_{LL} = \mu_H \mu_W$

Imperial College London

▶ Back

Reasons behind the conjecture (groups of equal size)

Reasons behind the conjecture (unequal group sizes)

Comparison between R_* and R_I

$$\begin{array}{rcl} R_{*} & = & R_{g} \left(1 + \mu_{H} \right) \\ R_{I} & = & \frac{R_{g}}{2} + \frac{1}{2} \sqrt{R_{g}^{2} + 4\mu_{H}R_{g}} \end{array}$$

Comparison between R_* and R_I

$$egin{array}{rcl} R_{*} & = & R_{g} \left(1 + \mu_{H}
ight) \ R_{I} & = & rac{R_{g}}{2} + rac{1}{2} \sqrt{R_{g}^{2} + 4 \mu_{H} R_{g}} \end{array}$$

Theorem

$$R_* = 1 \iff R_I = 1$$

•
$$R_* > 1 \iff R_l > 1$$

•
$$R_* < 1 \iff R_l < 1$$

Imperial College London 《 ㅁ › 《 큔 › 《 흔 › 《 흔 › 《 흔 › 올 티 아이아

Monotonic relationship

$$\begin{aligned} R_* &= R_g \, (1 + \mu_H) \\ R_I &= \frac{R_g}{2} + \frac{1}{2} \sqrt{R_g^2 + 4\mu_H R_g} \end{aligned}$$

Imperial College London এইন এইন হাই প্রক

