

The next generation matrix and \mathcal{R}_0

- We define the **Basic Reproduction Number** \mathcal{R}_0 to be the largest eigenvalue of the next generation matrix \mathbf{K} , where K_{ij} is the expected number of infections of Type i due to a single infection of Type j, in a fully susceptible population.
- If the system is in state w, then (in a susceptible population)

$$\lim_{n\to\infty} \frac{1}{(\mathcal{R}_0)^n} \mathbf{K}^{n+1} \mathbf{w} = \mathbf{K} \mathbf{v} = \mathcal{R}_0 \mathbf{v}$$

 \bullet **K** is dimensionless, and relates *infection-generations*.

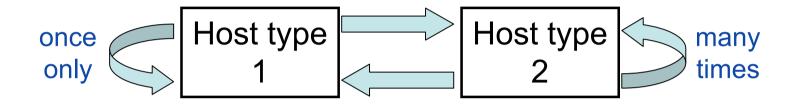
For example:

- For an STI, Types could be male, female.
- For a vector transmitted infection, Types could be human, mosquito.
- The Next Generation Matrix is

$$\mathbf{K} = \left(\begin{array}{cc} 0 & K_{12} \\ K_{21} & 0 \end{array} \right)$$

• The Basic Reproduction Number is $\mathcal{R}_0 = \sqrt{K_{12}K_{21}}$.

The type reproduction number



- The expected number of infected hosts of Type 1 that would arise from a single infected host of Type 1 in an otherwise susceptible population.
- This only makes sense if \mathcal{R}_0 for Type 2 is less than one.

The type reproduction number: 2 types

- The type reproduction number is like the basic reproduction number, but focuses on a subset of host types at infection.
- For example, with two types

$$\mathcal{T} = K_{11} + K_{12}K_{21} + K_{12}K_{22}K_{21} + K_{12}K_{22}^{2}K_{21} + \dots$$
$$= K_{11} + \frac{K_{12}K_{21}}{1 - K_{22}}$$

This requires $K_{22} < 1$.

• If $K_{22} > 1$ then Type 2 is a **reservoir of infection**.

The type reproduction number: many types

- To focus on ℓ out of n types, define a projection matrix $P_{i\,i} = 1$ for $i = 1 \dots \ell$, $P_{i\,j} = 0$ otherwise.
- Now define a reduced next generation matrix:

$$\mathbf{M} = \mathbf{K} \left(\mathbf{I} - \left(\mathbf{I} - \mathbf{P} \right) \mathbf{K} \right)^{-1}$$

- This requires $\|(\mathbf{I} \mathbf{P}) \mathbf{K}\| < 1$. If not, the *out of focus* types form a **reservoir of infection**.
- The type reproduction number is $\mathcal{T} = \|\mathbf{M}\|$.

Infection control

- It has been proved that $T < 1 \Leftrightarrow \mathcal{R}_0 < 1$.
- To eliminate infection you must:
 - protect a proportion v of all types, where $v > 1 \frac{1}{\mathcal{R}_0}$; or of focus types, where $v > 1 \frac{1}{\mathcal{T}}$;
 - reduce transmission time of all types by a proportion $w > 1 \frac{1}{R_0}$; or of focus types by $w > 1 \frac{1}{T}$.

References

- Roberts & Heesterbeek: A new method for estimating the effort required to control infectious diseases. $Proc.\ R\ Soc.\ B\ 270\ (2003):1359-64.$
- Heesterbeek & Roberts: The type-reproduction number T in models for infectious disease control. *Math. Biosci.* 206 (2007): 3-10.
- Roberts: The pluses and minuses of \mathcal{R}_0 . J. R. Soc. Interface in press.

Structured integral equation models

- Integral equation models provide an ideal vehicle for analysing epidemics of emerging infectious diseases.
- Contact and transmission functions are explicitly represented, and easily modified to reflect control interventions. We are not restricted to flow rates between compartments.
 - ... most people keep referring to the [SIR] model as the Kermack and McKendrick model. This should stop! (Diekmann et al. 1995)
 - This is the classic Kermack-McKendrick (1927) model (Murray 2002).

The Kermack-McKendrick model

The incidence of an emerging infection i(t) may be calculated from:

$$i(t) = \delta(t) + s(t) \int_0^\infty p(\tau)\kappa(\tau)i(t-\tau) d\tau$$

- $\delta(t)$ is the incidence of the index case;
- $p(\tau)$ is the probability of transmission given contact;
- $\kappa(\tau)$ is the contact rate;
- τ is the time since exposure to infection.

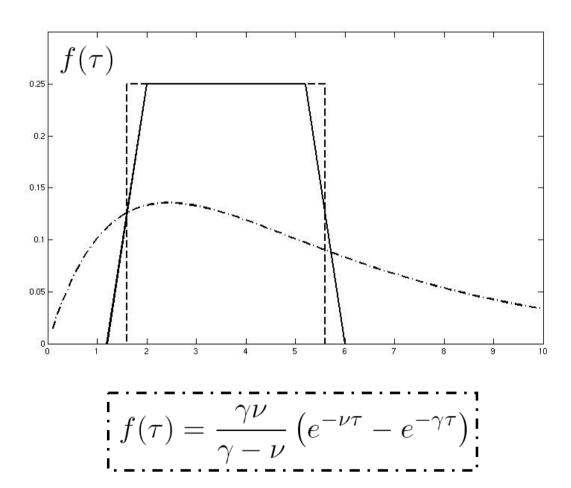
The Kermack-McKendrick model - 2

$$i(t) = \delta(t) + \mathcal{R}_0 s(t) \int_0^\infty f(\tau) i(t - \tau) d\tau$$

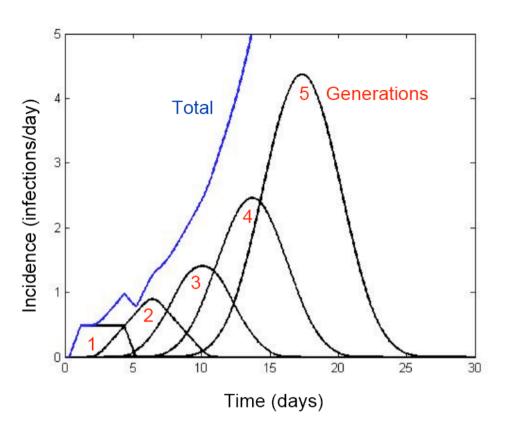
- \mathcal{R}_0 is the basic reproduction number;
- $f(\tau)$ is a probability density;
- N is the population size, s(t) = S(t)/N.
- \bullet The numbers in the population susceptible and removed at time t are

$$S(t) = N - \int_0^t i(u) du \qquad R(t) = \int_0^\infty g(\tau)i(t - \tau) d\tau$$

The integral kernel



Infection generations

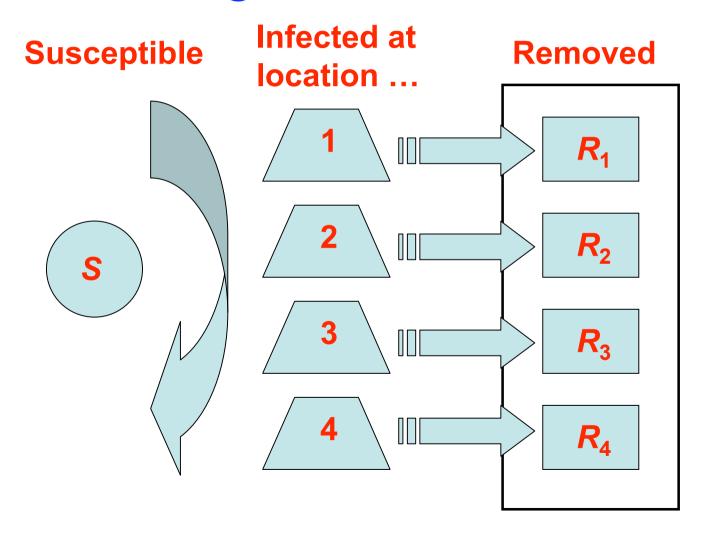


- With $s(t) \approx 1$ the first generation solution is $i_1(t) = \mathcal{R}_0 f(t)$.
- Subsequent infection generations are found from

$$i_{k+1}(t) = \mathcal{R}_0 s(t) \int_0^\infty f(\tau) i_k(t-\tau) d\tau$$

• The result is $i(t) = \sum_{k=1}^{\infty} i_k(t)$.

Adding some structure



Adding some structure - 2

• The location of exposure confers a unique infection type.

$$\mathbf{i}(t) = \delta(t)\mathbf{e} + \mathcal{R}_0 s(t) \int_0^\infty f(\tau) \mathbf{W} \mathbf{i}(t - \tau) d\tau$$

where $\|\mathbf{W}\| = 1$. For example:

$$\mathbf{W} = \begin{pmatrix} 0 & w_1 & w_1 & w_1 \\ w_2 & w_2 & 0 & w_2 \\ w_3 & 0 & w_3 & w_3 \\ w_4 & w_4 & w_4 & w_4 \end{pmatrix}$$

- 1. Within the household; 3. In the wider community;
- 2. At school/work; 4. Within a healthcare facility.

Adding some structure - 3

• The incidence of infection is

$$\mathbf{i}(t) = \delta(t)\mathbf{e} + \mathcal{R}_0 s(t) \int_0^\infty f(\tau) \mathbf{W} \mathbf{i}(t - \tau) d\tau$$

• In the beginning $s(t) \simeq 1$, so

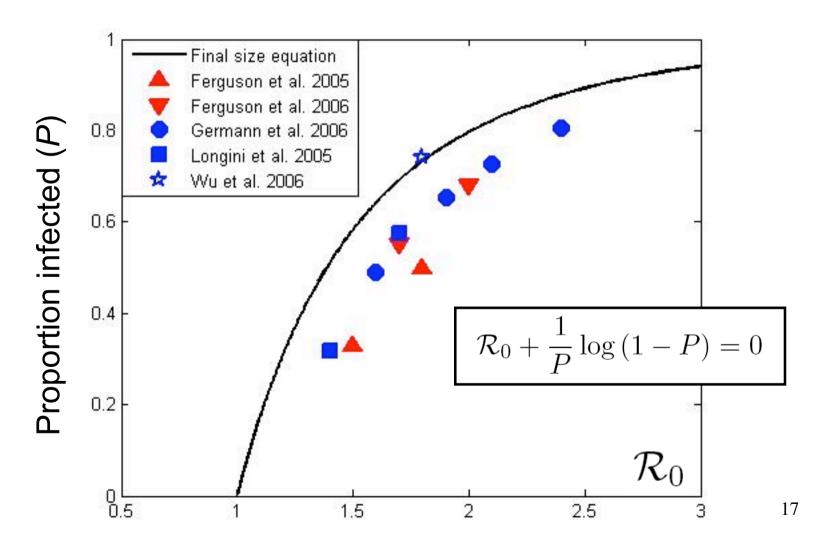
$$\overline{\imath}(\omega) \simeq \left(\mathbf{I} - \mathcal{R}_0 \overline{f}(\omega) \mathbf{W}\right)^{-1} \mathbf{e}$$

and $|\mathbf{i}| \simeq e^{rt}$ where $\mathcal{R}_0 \overline{f}(r) = 1$.

• The proportion infected in an epidemic is $|\mathbf{p}|$ where

$$\mathcal{R}_0 + \frac{1}{|\mathbf{p}|} \log (1 - |\mathbf{p}|) = 0$$
 $\mathbf{W}\mathbf{p} = \mathbf{p}$

The final size equation



References

- Roberts: Modelling strategies for minimizing the impact of an imported exotic infection. *Proc. R. Soc. B* 271(2004):2411-15.
- Aldis & Roberts: An integral equation model for the control of a smallpox outbreak. *Math. Biosci.* 195(2005):1-22.
- Roberts *et al.*: A model for the spread and control of pandemic influenza in an isolated geographical region. *J. R. Soc. Interface* 4(2007): 325-30.

What about networks?

- A statistic as useful as \mathcal{R}_0 , but defined on a network must:
 - be easily derived from the network structure;
 - have a biological interpretation;
 - tell us something useful -
 - * threshold property for (large) epidemics,
 - * control effort for elimination,
 - * final size of the epidemic,
 - * ...
- Is it possible to define and derive such a property?

The end

