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Abstract

Networks of social interaction are not static, but evolve over time. Oftentimes, changeable actor

characteristics that are studied as being transmitted via the network (e.g., infection) are

themselves among the determinants of change in the network (e.g., people shun infected others,

if they know about their infection). A way of modelling this mutual feedback between actor

characteristics and network structure is by means of a stochastic process on the state space of

possible networks × possible distributions of actor characteristics. Such models have recently

been developed at the University of Groningen (Snijders, Steglich & Schweinberger 2007).

Among the empirical applications, the role that social networks play for public health

phenomena such as the consumption of alcohol, tobacco and other drugs has been studied with

the help of these models. An adaptation to the spread of infectious diseases is easy. With the

adapted model, it should be possible to identify reasonably realistic model parametrisations from

empirical data on the spread of an infection in a social network. Problematic issues are size and

long-distance connectivity (the existing method has been used for networks of up to a few

hundred actors only) and availability of dynamic network data for disease outbreaks.
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Data are assumed to be given as a series of discrete observations of the network and a

changeable actor characteristic, at time points . Let  and1 2< < <… mt t t ( )=( ) ( ), ( )i i iy t x t z t
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Model

The observations  are modelled as realisations of a stochastic process1( ), , ( )… my t y t

 on the time interval  taking values in  (with( ),=Y X Z [ ]1 , mt t { } { }0,1 1, ,
n n n

k
×

× …

restrictions on the network space as above). It is assumed that the process is a continuous-time

Markov chain, i.e., transitions in the state space succeed each other after exponentially

distributed waiting times , and transition probabilities only depend on the current stateτ
occupied by the process (and possibly exogenous variables), not on past states. In addition, only



smallest changes in the states are furnished with a positive transition intensity. These smallest

changes consist of a change in one network tie (replacing  by ; ‘network micro step’)ijx 1 ijx−

or a unit step on the changeable actor attribute (replacing  by  or , provided theiz 1iz + 1iz −

range is not left; ‘attribute micro step’). 

For simplicity, only the case of directed networks is sketched in more detail. It is assumed that

actors have control over their outgoing network ties and their own changeable characteristics.

This way, each micro step is unequivocally under control of one actor. The transition intensities

are modelled as decomposable into four parametric submodels, as depicted in the following

table.

network change attribute change

speed of change  network rate functions  attribute rate functions
n

iλ
a

iλ

direction of change  network objective functions  attribute objective functions
n
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a

if

All these functions are further modelled by linear combinations of local network statistics

(examples see below), with as weights the model parameters, to be estimated from the data. 

• The rate functions  enter the transition probabilities as( )type type type
expi k ikk

aλ α= ∑
parameters of exponentially distributed, actor-specific waiting times. This way, we obtain

as the overall expected waiting time for the total process until a transition can take place

as . ( )n a1/ ( )i ii
τ λ λ= +∑

• The objective functions  typically are conceived as actor-specific
type type type
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evaluations of states in the state space, resulting in log-odds-based conditional transition

probabilities. Assuming that states  and  can both be reached from the same state
1y 2y

of origin by one micro step of the same type controlled by the same actor , these log-i

odds are .( ) type type1 2 1 2ln Pr( ) Pr( ) ( ) ( )= −i iy y f y f y

Some examples

tendency to create and maintain reciprocal relations
n

=∑il ij jij
b x x

tendency to create and maintain transitive relations
n

=∑il ij jk ikjk
b x x x

tendency to create and maintain relations with popular others
n

=∑il ij kjjk
b x x

( )n
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b x z z
tendency to create and maintain relations with others 

who hava a similar score on z

a
= ∑il i ij jj

b z x z
tendency to score higher on , the more network neighboursz

score high

( )a
1 range= − −∑il ij i j zj

b x z z
tendency to have scores on  that lie close to thez

network neighbours’ scores



Estimation

Available algorithms for model estimation are the method of moments, maximum likelihood and

Bayesian estimation. Due to the high cardinality of the state space and the unobserved nature of

change in-between observation times, all estimation algorithms have to rely on Monte Carlo

simulations. For likelihood-based inference, an additional complication arises from the fact that

the simulated evolution trajectories need to exactly connect subsequent observations. For the

method of moments, the much weaker requirement is that simulated trajectories deliver

networks which, on average, match the observed networks on a set of carefully chosen statistics,

typically the sum over all actors of the local network statistics that are used in the model

specification. Experience with various data sets indicates that if the method of moments

algorithm converges, parameter estimates are close to those obtained by likelihood-based

inference. There are situations, however, in which the method of moments algorithm does not

converge, while likelihood-based inference succeeds. Considering computation time, the method

of moments seems preferable when applicable.

Modification

The methods sketched thus far have been applied to social networks of the following kind:

advice, bullying, practical and emotional support, investment, trust, friendship, communication,

policy contracts, syndication, and playing games. Changeable actor characteristics that were

studied as co-evolving with networks are: smoking, drinking and drug consumption, music

listening habits, minor delinquency, performance, and various attitude dimensions. The size of

the networks studied thus far lies below 1000 actors, typically between classroom size (~20) and

school cohort size (up to a few hundred). 

An extension to the domain of diseases would require certain adjustments and extensions:

1. Developing meaningful models for the opportunity structure for interaction in larger

networks (with several thousand actors). This could be done by replacing the now actor-

specific rate function by a dyad-specific rate function, in which results from existing

spatio-temporal diffusion models may be incorporated. [new work]

2. Adjustments in the changeable actor attribute’s model part. By investigating a disease

variable with, e.g., three ordered states (susceptible → infectious → recovered, Anderson &

May 1992), transitions in the backwards direction may be inhibited, and network (&

other) predictors of existing models may need to be adjusted. [new work]

3. Accomodation of effects from dyadic disease status configurations on network tie

formation and -dissolution, provided it is reasonable to assume that disease is visible to

the actors. [partly implemented already]

4. An explicit modelling of network exit as dependent variable (if the disease is fatal), next

to the disease variable itself. [new work]

Besides this, the modelling framework seems applicable to the domain of contagious diseases.



When does it matter?

Application of network evolution models seems to make sense under the following conditions:

1. The speed of transmission of the infection is in the same order of magnitude as the

speed of network change (or slower).

2. There is the realistic possibility of a feedback from infection on the network structure,

such as:

a. avoidance of contact to infected individuals (“alter effect”)

b. self-isolation of infected individuals from the rest of the network (“ego effect”)

c. infected individuals seeking each others’ company (“homophily effect”)

d. infection leads to intervention measures such as elimination of crucial

determinants of social interaction

Questions

What we’d like to come to know more about is primarily related to pending model extensions

(not per se to disease modelling), i.e. related to large size of networks, and to actor characteristics that

over time develop through stages.

• Are there empirical data on the distribution of shortcuts in large networks?

• What are good ways of modelling the progress of a disease through development stages?

But also, we’re always looking for data sets... 
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