Construction of random graphs with given clustering

Pieter Trapman
University Medical Center Utrecht
Utrecht University

Edinburgh, 16 May 2007

Two ways to use random networks in epidemiology:

1. Find an epidemic induced random network in a randomly mixing population or on a given network.
2. Replace given network by random network with desired properties and run epidemic on it.

Two problems:

1. Which properties to desire?
2. How to construct a random network with the desired properties?

Suggestions for desirable properties:

1. "Dimension" of the network (\rightarrow infinite)
2. Degree distribution (\rightarrow power law?)
3. Clustering (i.e. number of triangles in the network)
4. Degree correlation (i.e. the correlation of degrees of neighbouring individuals)
5. ...
6. Susceptible to analysis

Possible way to construct network with desired degree distribution (configuration model by Molloy and Reed):
\mathcal{N} vertices, D is r.v. with desired distribution.

- Let there be \mathcal{N} individuals and assign a random number of half-edges (edges with only one endpoint assigned to a vertex) to each individual, where the number of half-edges assigned to the individuals are i.i.d. and distributed as D.
- If the total number of half-edges is odd repeat the first step until you get an even number of half-edges.
- Pair the half edges at random.

Clustering in the network Solution 1 :

Definition: The 3 vertices $v_{i} v_{j} v_{k}$ form a triple if v_{j} is connected to both v_{i} and v_{k}. If v_{i} is also connected v_{k} then $v_{i} v_{j} v_{k}$ is a triangle.
Let ϕ be the fraction of triples that is also a triangle.

Replace individuals by super-individuals (households and bachelors) Individuals in households have only one neighbour outside household.

Use configuration model to connect super individuals.
Choose household sizes and "bachelor degrees" clever.

Problems:
High positive degree correlation.
"Bachelors have all the fun".
Network looks unrealistic.

Other way to construct graphs with clustering:

Bipartite graphs: Use configuration model with two types of individuals: ordinary individuals and temporary individuals.
The total degree of both types should be equal, pair half edges such that every edge has two different types of end-vertices.
Delete the temporary individuals and connect alle individuals that were connected to the same temporary individual.

Problem: No easy control on both degree distribution and clustering.

Important result by Kuulasmaa (1982)

Consider $S I R$-epidemic on a given network, Let \mathcal{I} be a random variable distributed as the infectious period. Let $\mathbb{E}\left(1-e^{-\tau \mathcal{I}}\right)=p$.
Compare infectious period distributions with fixed p.
Worst case: $\mathbb{P}(\mathcal{I}=c)=1$
Best case: $\mathbb{P}(\mathcal{I}=\infty)=1-\mathbb{P}(\mathcal{I}=0)=p$.

It is sensible to combine the two ways of using random graphs in epidemiology:
Replace network by random network.
Construct the induced network of worst (best) case epidemic by randomly deleting edges (vertices).

Questions:

- How to control both clustering and degree correlation?
- Is it possible to define a graph growth model (like preferential attachment) with given clustering and degree distribution?
- Is it possible to make realistic "finite dimensional" graphs, on which epidemics are susceptible to analysis?
- How to analyse dynamical models (Pair formation in sexual networks).

