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Models are inherently stochastic, appropriate
deterministic models may approximate population-level
properties.

Focus is on models that are amenable to mathematical
analysis.



MODEL TYPES

e LOCALLY LARGE Classical compartmental/
deterministic models

e SPATIAL Lattice and non-lattice
e NETWORK/RANDOM GRAPH

e META POPULATION Households

e COMPLEX SIMULATION

(MULTI TYPE VERSIONS)



DISEASE TYPES

e S/R

e ENDEMIC, NO DEMOGRAPHIC EFFECTS
SIS/SIRS

e ENDEMIC WITH DEMOGRAPHIC EFFECTS

SIR with vital dynamics

e Host vector
e STDs

e Multi strain



IMPORTANT EPIDEMIOLOGICAL
QUESTIONS

SIR models
e [INVASION THRESHOLDS
RU! R*: }\C
e FINAL OUTCOME (LOCAL/GLOBAL)

SIS/SIRS models

e INVASION/PERSISTENCE THRESHOLDS
e ENDEMIC LEVELS (LOCAL/GLOBAL)
e TIME TO EXTINCTION

SIR with vital dynamics

e INVASION/PERSISTENCE THRESHOLDS
e ENDEMIC BEHAVIOUR (CYCLIC?)
e FADE OUT / TIME TO EXTINCTION



COMPLEX SIMULATION MODELS

e Realistic, so easy to sell.

e Often only approach for giving quantitative answers
to key questions.

e Computationally expensive so can be difficult to

— interpret (e.g. effects of parameters),
— attach confidence intervals to predictions,

— perform sensitivity analyses.



LOCALLY LARGE MODELS

If population is split into groups, e.g. by age, sex,
geographical location, then each of these groups (and
not just the total population) is large.

e (lassical compartmental models

e Implicitly assumed in

— deterministic models
— many stochastic threshold theorems ’

e Considerable theoretical /analytical progress possible
but models do not reflect finite local structure
of human populations

e Viewing stochastic locally large models at an individual
level has greatly facilitated their analysis



SPATIAL MODELS (LATTICE)

& F ’ » s
F # ” ” #
’ ¢ —.-...é_.*:-—-—)—n b
" ¢ » [ P
’ [ . # '

Nearest-neighbour

Contact distribution

e very hard to analyse rigorously

e theoretical results often “just” prove existence of

phenomena; e.g. critical A. known for very few models

e lattice structure too rigid for human populations
suitable for plant and some animal diseases

(e.g. fox rabies)



NETWORK/RANDOM GRAPH MODELS
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e ‘independent’ random graph of possible contacts
satisfying given degree distribution P(D = k) = p;,

e spread epidemic on graph
e ‘independence’ assumption =

— model amenable to analysis (e.g. threshold
behaviour and final outcome for SIR)

— model “close” to homogeneous mixing

— too few triangles in network
e ‘correlated’ graphs difficult to analyse rigorously

e dynamic networks



METAPOPULATION MODELS

Households model
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e treat households as macro-individuals (with internal dynamics)
that mix homogenously

e SIR (and SIS?) models well understood

Two levels of mixing

e overlapping subgroups (e.g. household/ workplace), hard to
make analytic progress without very restrictive assumptions

e “small world” — great circle model

e network models with global mixing
Extensions

e hierarchical levels of mixing (e.g. towns, households,
individuals) spatial scales/asymptotic regimes

e non-SIR; households with vital dynamics



GENERAL SIR EPIDEMIC MODEL WITH TWO LEVELS
OF MIXING (Ball and Neal (2002))

Population ' = {1,2,..., N}

e Infectious individuals have iid infectious periods, distributed
according to a random variable 77.

e |f infected, individual ¢ makes

LOCAL CONTACTS with j (€ A\{i}) at the points of a
Poisson process with rate )xjrj,

GLOBAL CONTACTS with individuals chosen independently
and uniformly from A/, at the points of a Poisson process
with rate Ag.

e |f a contacted individual is susceptible then it becomes infected

otherwise nothing happens.

e Epidemic ceases as soon as there is no infective present.
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THRESHOLD THEOREM
Let R, = AgE[T{]E[C] (= AcE[T})E|[S]). Then in the limit as N — oo, if the epidemic

is initiated by a fixed finite set I of initial infectives,
(a) a global epidemic occurs with non-zero probability if and only if R, > 1;

(b) the probability of a global epidemic is 1 — v,(Ag(1 — p)), where p is the smallest
root of Y(Ag(l — s)) = sin [0,1];
[(f) = Elexp(—0A)], where A is the severity (i.e. sum of infectious periods) of
typical local infectious clump
Y1, (0) = Elexp(—0A;,)], where Aj, is the severity of the local infectious clump

Cr, ={j EN:i~s jfor some i € I}

c)i > 1, then (1) the proportion of initial susceptibles ultimately infect v a glo

if R, > 1, th i) th i f initial ibles ulti ly infected b lobal
epidemic, Z say, is given by the unique root in (0,1] of 1 — 2z = fs(e~e=EM. (i), if
H is a fixed finite set of initial susceptibles and Xy denotes the set of individuals in

H that ultimately avoid infection, then in the event of a global epidemic

P(Xg=F)= ) _ (-1)Ff (&) (FCH),
FCGCH

where # = exp(—AgZE[T1]);

[fs.(s) = E[s5¢), where Sg = |{j € N : j ~» i for some i € G}| is the size of G's
local susceptibility set]

and (iii) central limit theorem can be derived for the final outcome of a global epi-

demic.
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TECHNIQUES FOR ANALYSIS

Model
Method Model-type features

1 Percolation spatial SIR Invasion

2 Interacting particle systems  spatial SIS “Long-term”
behaviour

3 Mean-field, deterministic LL, MP, (N) “Long-term”

4 Moment closure LL behaviour

5 Density dependent processes LL, MP

6 Coupling All Most

7 Branching process approx.  LL, MP, N Invasion

8 Embedding LL, MP, (N) Final outcome
(SIR only)

9 Quasi-stationary dsns LL (non-SIR) endemic levels
and time to
extinction

10 Pair approximations N, S “Long-term"”
behaviour

Key S spatial, LL locally large, MP metapopulation,
N network

Methods 4, 10 and (37) are approximate; rest are fully rigorous, e.g.
justified by limit theorems.
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COMPARISON/CROSS-FERTILISATION OF
METHODOLOGIES

e Which methods are most suited for different types of model
structure, disease, model properties . . .

e Other important techniques

— previously used in epidemic modelling
— not previously used in epidemic modelling.
e Techniques have evolved in different disciplines (e.g. probability,

applied maths, mathematical physics . ..) — considerable scope
for cross-fertilisation.



COMPARISON OF MODELS

e Extent to which qualitative/quantitative behaviour of models
differ from each other, and from that of simpler, e.g.
homogeneously mixing models.

e Global properties qualitatively broadly similar but there can be
significant quantitative differences.

e Relationship between local structure and global properties.
e What local structures are important/essential?

e Purpose of model.
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PRACTICAL APPLICABILITY OF MODELS

e Models are over simplified so that they are susceptible to
analysis.

e Results are often limit theorems as population size 1 tends to
infinity (in an appropriate fashion).

e Important for understanding disease dynamics
BUT

e How do (quantitative) predictions carry over to

— more realistic population/disease structures

— finite n?

® How can models be made more realistic whilst maintaining
tractability?
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Techniques for analysis
Descriptions of many of these techniques may be found in:

Anderson H and Britton T (2000). Stochastic Epidemic Models and
Their Statistical Analysis. Springer Lecture Notes in Statistics 151.
Springer, New York.

More specific references are:

Percolation and interacting particle systems — Durrett R (1995).

Ten lectures on particle systems. Springer Lecture Notes in
Mathematics, 1608, 97-201.

Moment closure — Isham V (1991). Assessing the variability of
stochastic epidemics. Math Biosci 107, 209-224.

Density dependent processes — Ethier S N and Kurtz T G (1986).
Markov Processes, Characterization and Convergence, John Wiley &
Sons, New York, Chapter 11.

Coupling — Ball F G (1995). Coupling methods in epidemic theory.
In D Mollison (Ed) Epidemic Models: Their Structure and Relation
to Data. Cambridge University Press, 34-52.

Branching process approximation — Ball F G and Donnelly P J
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Appl 55, 1-21.

Embedding — Scalia-Tomba G (1985). Asymptotic final size
distribution for some chain-binomial processes. Adv Appl Prob 17,
477-495.
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