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Structured-population epidemic models

Classical epidemic models usually assume a
homogeneously mixing population of homogeneous
individuals.

Important to include individual heterogeneities and
social structure so that models better reflect reality.

Considerable recent interest in models for epidemics
among structured populations, which incorporate
realistic departures from homogeneous mixing whilst
maintaining mathematical tractability.

Two main classes of structured population models are
random network models and household models.

In this talk we present and investigate a model that
incorporates both of these features.
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Population structure

Population of N individuals partitioned into m
households, of which mn are of size n (n = 1, 2, . . .).

Configuration model for network of possible global
contacts

Assign each individual a number of ‘half-edges’
independently according to the random variable D
which describes the degree distribution. (Repeat
until total number of half-edges is even.)
Pair up half-edges uniformly at random to form
global network.
Density of imperfections (parallel edges/ self-loops
between individuals or households) tends to 0 as
m → ∞ if σ2

D < ∞ and σ2
H < ∞.

(Ball, Sirl and Trapman (2009,2010))
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Example of (very small) population
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Epidemic model

SIR (susceptible → infective → removed).

Infectious periods iid according to a random variable I
having an arbitrary but specified distribution.

Whilst infectious, individuals contact each of their local
(global) neighbours independently at rate λL (λG).

Single initial infective chosen uniformly at random from
entire population.

(Ball, Sirl and Trapman (2009,2010))
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Threshold parameterR∗

GLOBAL INFECTION

R∗= mean number of global neighbours infected by a typical single-household epidemic

R∗ =
∞
∑

n=1

ρ̃nE[C̃(n)],

where

ρ̃n = nmn

N
= P(randomly chosen person lives in a household of size n),

C̃(n) = number of global neighbours infected by a typical [size-n]

single-household epidemic with one initial infective.

P(major outbreak) > 0 ⇐⇒ R∗ > 1.
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Calculation of E[C̃(n)]

E[C̃(n)] = E[C0] + E[T (n)]E[C1],
T (n) = final size of single-household epidemic,

C0 and C1 are the numbers of global neighbours infected by the
primary and typical secondary infective in the household.

Ci ∼ Bin(Ki, 1 − exp(−λ
G
Ii)) =⇒ E[Ci] = E[Ki]pG

,

K0 and K1 are the numbers of susceptible global neighbours of
primary and typical secondary case,

pG = 1 − E[exp(−λ
G
I)] is the probability an infective infects a

given susceptible global neighbour.

For initial generation, K0, K1 ∼ D. For all subsequent generations,
K0 ∼ D̃ − 1, where D̃ is the degree of a typical global neighbour
[P(D̃ = k) = µ−1

D
kP(D = k) (k = 1, 2, . . . )]], and K1 ∼ D.
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Threshold parameterR∗

R∗ =
∞

∑

n=1

ρ̃nE[C̃(n)]

=

∞
∑

n=1

ρ̃n

(

E[C0] + E[C1]E[T (n)]
)

=
∞

∑

n=1

ρ̃n

(

µ
D̃−1 + µDµT (n)

)

pG

=

(

µD(µT + 1) +
σ2

D

µD
− 1

)

pG,

where µT =
∑∞

n=1 ρ̃nµT (n) is the size-biased mean within-

household final size. [µ
D̃

= µ−1
D σ2

D + µD]
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Early stages of epidemic

Approximate process of infected households by a (forward) branching
process BP(1, C, C̃) having one initial ancestor, and offspring
distribution C for the initial generation and C̃ in subsequent
generations. (Exact as m → ∞).

R∗ = E[C̃].

The probability of a major outbreak, pmaj is approximated by the
probability BP(1, C, C̃) avoids extinction.

pmaj = 1 − fC(σ), where σ is the smallest solution of f
C̃

(s) = s in [0, 1]

and e.g. f
C̃

(s) = E[sC̃ ].

Unless the infectious period I is constant, calculation of the PGFs fC

and f
C̃

is complicated by dependencies between the numbers of
global infections made by infectives in the same household but can be
done using Ball and O’Neill’s (1999) final state random variables.
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Example network
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Digraph of potential infections
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Susceptibility set, Example 1
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Susceptibility set, Example 2
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Final size of major outbreak

Expected proportion of population ultimately infected by
a major outbreak, z say, is given by the probability that a
typical susceptible, i say, is ultimately infected.

Approximate i′s susceptibility set by a households
based (backward) branching process BP(1, B, B̃).

P(i ultimately infected) =

P(BP(1, B, B̃) avoids extinction).

z = 1 − fB(ξ), where ξ is the smallest solution of
f
B̃

(s) = s in [0, 1].

Distribution of within-household final size (WHFS) in the
event of a major outbreak is available. If (z, λL) and the
distribution of I are fixed, then the distribution of WHFS
is invariant to the degree distribution D.
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Simulations of final size
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Histograms of relative final sizes from 10,000 simulations of the model
with H ∼ (0.2, 0.25, 0.25, 0.25, 0.04, 0.01), λ

L
= 1, λ

G
= 1/10, D ∼ Poi(8)

and I ∼ Gamma(3, 1/3) on networks of 50 and 150 households.
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Simulation results for pmaj and z
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Comparison of simulation-based estimates of probability pmaj and expected
relative final size z of a major outbreak for finite populations with asymptotic

results (horizontal lines), based on 10,000 simulations for each m.

[D ∼ Pow(k∗, a) means P(D = k) ∝ (max(k∗, k))−a (k = 1, 2, . . . ).]
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Effect of degree distribution, D
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Dependence of probability of a major outbreak pmaj on degree distribution D. Other
parameters are H ≡ 3, I ≡ 1, λL = 1, λG = 1/10.

[Heavy(3/2) is Pow(k∗, 3/2) with varying k∗. The mass function of HeavyC(3) is
P(D = k) ∝ k−3 exp(−k/κ) (k = 1, 2, . . . ) with varying κ.]
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Comparison to standard network model

Standard network model (see e.g. Newman(2002)) is
obtained when all households have size 1.

In network household model (NHM) let H denote the
household size distribution and H̃ denote the
size-biased household size distribution.
[P(H̃ = n) = µ−1

H nP(H = n) (n = 1, 2, . . . ).]

Total degree (local + global) of individual in NHM

∼ Q
D
= H̃ − 1 + D.

Assume λL = λG = λ and compare critical value of λ
with that of standard network model (SNM) with degree
distribution Q.
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Comparison to standard network model
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G

= λ for models with H ∼ Poi+(µ) and
D ∼ Poi(10 − µ) (so Q is always Poi(10) and µ = 0 gives SNM) when

I ∼ Gamma(3, 1/3).
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Clustering

ordered triple ordered triangle
1

2

3 1

2

3

Clustering measure

C(m) =
total number of ordered triangles in network

total number of ordered triples in network
.

Proportion of triangles not entirely in the same household tends

to 0 as number of households m → ∞, so

C(m) ≈ 1 −
E[H{2D(H − 1) + D(D − 1)}]

E[H(D + H − 1)(D + H − 2)]
.
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Effect of clustering whenλ
L

= λ
G
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Plots of threshold parameters and the probability pmaj and expected
relative final size z of a major outbreak for networks with H ∼ Poi+(µ) and

D ∼ Poi(10 − µ), so Q is always Poi(10) and C(m) ≈ (µ/10)2. Other
parameters are I ∼ Gamma(3, 1/3) and λ

L
= λ

G
= 1/5.
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Effect of clustering whenλ
L

> λ
G
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Plots of threshold parameters and the probability pmaj and expected
relative final size z of a major epidemic for networks with H ∼ Poi+(µ) and

D ∼ Poi(10 − µ), so Q is always Poi(10) and C(m) ≈ (µ/10)2. Other
parameters are I ∼ Gamma(3, 1/3), λ

L
= 1 and λ

G
= 1/15.
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Limitations of the model

It does NOT incorporate:

(A) clustered global contacts

(B) casual global contacts

(C) global contacts between > 1 pair of individuals in
two given households

(D) multiple types of individual (e.g. adults and
children)
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Limitations of the model
It does NOT incorporate:

(A) clustered global contacts
(B) casual global contacts
(C) global contacts between > 1 pair of individuals in
two given households
(D) multiple types of individual (e.g. adults and
children)

Re (A): network of local and global contacts yields a
clustered network, which can be used to model possible
global contacts in a network/households model —
calculations may be difficult.

Re (B): superimpose homogeneously mixing casual
contacts to yield a multi-level mixing model (cf. Ball and
Neal (2002, 2008), Kiss et al. (2006).
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Example of (very small) population
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Households on a network

Population of m households located on the vertices of a
network constructed by the configuration model.

Consider an SIR epidemic in which a typical infective
infects independently any given local neighbour
(i.e. individual in his/her own household) at rate λL and
any given global neighbour (i.e. individual in a
neighbouring household) at rate λG.

Analysis is complicated because even in the early
stages of an epidemic previously infected households
can be reinfected.

May be able to make progress by considering an
embedded branching process of fully-infected
households.
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Multitype NHM: population structure

J classes of individuals, labelled 1, 2, . . . , J .

Category n = (n1, n2, . . . , nJ) household contains nj

individuals of class j (j = 1, 2, . . . , J).

For n ∈ N = {n : |n| ≥ 1}, population contains mn

households having category n.
total number of households m =

∑

n∈N mn

total number of class-i individuals Ni =
∑

n∈N nimn.

total number of individuals N =
∑

n∈N |n|mn < ∞.

Model analysis valid as m → ∞ with mn/m → ρn

(n ∈ N ), where
∑

n∈N ρn = 1 and
∑

n∈N ρn|n| < ∞

(plus other mild conditions).

(Ball and Sirl (2012))
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Multitype NHM: population structure
The random network is appreciably more complicated
(cf. totally assortative global mixing).

Now D(i) = (D
(i)
1 , D

(i)
2 , . . . , D

(i)
J ) is a vector giving the

(random) number of global neighbours of each type of a
typical type-i individual.

Assign to each individual of type i a number of ‘i → j
half-edges’ (j = 1, 2, . . . , J) according to a random
sample from D(i).

For each i = 1, 2, . . . , J , pair up the i → i half-edges as
before.

For each i < j = 1, 2, . . . , J , pair up each i → j half-edge
with a j → i half-edge chosen uniformly at random
without replacement.

(Ball and Sirl (2012))
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Multitype NHM: population structure

Must have (roughly) the same number of i → j and j → i

half-edges.

Easily accommodated if degrees are prescribed in advance.

If degrees are random then we must have

νiµ
(i)
j = νjµ

(j)
i

for all i 6= j, where νi =
∑

n∈N niρn/
∑

n′∈N |n′|ρn′ is the

proportion of individuals of type i in the population and

µ
(i)
j =

∑

d∈Z
J
+

djP (D(i) = d) is the mean number of type-j

global neighbours of a type-i individual.

Proportion of unpaired half-edges tends in probability to 0 as

m → ∞.
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Multitype NHM: epidemic model

Infection mechanism SIR.

Infectious period of class-i infective ∼ I
(i)
I having an

arbitrary but specified distribution .

Infection rates (individual → individual)

local (within-household) λL
ij ΛL = [λL

ij ]

global (between-household) λG
ij ΛG = [λG

ij ]

Single initial infective chosen uniformly at random either
from all individuals of specified type or from entire
population. (Easily generalised.)
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Multitype NHM: size biasing
Secondary individuals have the ‘normal’ degree
distribution: the same distribution as D(i) for a type-i
individual.

The degree distribution of a primary individual also
depends on the type of individual that infected it. A
type-i individual globally contacted by a type-j
individual has degree distribution

P (D(ij) = d) = djP (D(i) = d)/µ
(i)
j .

In the forward approximating branching process we
must type households by the type of the primary
infective and the type of the individual who globally
infected it. A similar typing is required in the backward
approximating branching process.
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Numerical Examples

The basic model for our examples is the following MTNHM:
(children and adults are type-1 and type-2 individuals)

ρ given by

# children (type 1)
0 1 2 3

1 0.205 0.04 0.04 0.02
#

ad
ul

ts

2 0.195 0.15 0.25 0.1

D(1) ≡ (15, 4), D(2) ≡ (6, 10) and I(1) D
= I(2) ∼ Exp(2)

ΛL =

[

2 1
1
2

1
5

]

and ΛG =

[

1
5

1
10

1
10

1
20

]

This gives R∗ ≈ 2.25, pmaj ≈ 0.48 (pmaj ≈ (0.57, 0.34)),

z ≈ 0.75 (z ≈ (0.82, 0.64)).
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Numerical results
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Histograms of relative final sizes for 10,000 simulations of the MTNHM on networks
of 20 and 200 households.
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Numerical results
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simulations and the plot shows the sample proportions ± 2SE.
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Numerical results
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with different vaccine allocation regimes on the expected relative final size of a major
outbreak. (Note that a2 = b2 = 1, so vaccine has no effect on adults.)
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Concluding comments

General framework for analysing SIR epidemics in a
population incorporating household and network
structure

asymptotic approximations good for
moderately-sized populations.

Household structure, degree distribution and clustering
each have a significant impact on disease dynamics
and performance of vaccination strategies.
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Concluding comments

Extensions/further work
allow ΛL,ΛG and degree distributions D(i) to depend
on household category n,
acquaintance and optimal vaccination strategies,

choice of multivariate degree distributions D(i) that
are realistic, include dependencies and amenable to
calculation,
relax independent degree assumption, so there are
fewer leftover half-edges, without changing
asymptotic results.

All (most?) tractable models have an element of
homogeneous mixing at some level.
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