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Background: Salmonella transmission in a dairy herd

Y. Xiao, D. Clancy, N.P. French, R.G. Bowers (2006), Math.
Biosci.
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Salmonella transmission in a dairy herd

Major outbreak probability versus various model parameters.
Dashed line is for structured model, solid line for homogeneous
model with R0 matched.
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A generic model

• Population partitioned into k groups

• Group i consists of Ni individuals, with N1 + · · ·+ Nk = N

• Each group i infective contacts each group j susceptible at
rate

βij =
β

N
× λi × πij × µj (irreducible)

β : overall scaling factor

λi : infectivity

µj : susceptibility

πij : mixing matrix

A. Yates, R. Antia, R.R. Regoes (2006), Proc. Roy. Soc. B.
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Separable model

• Model with βij = β
N λi µj is called separable, or sometimes

proportionate mixing

• Model of E. Kenah, J.M. Robins (2007), J. Theo. Biol.,
‘Network-based analysis of stochastic SIR epidemic models
with random and proportionate mixing’
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Graphs from Yates et al.

Major outbreak probability versus R0

(a) Hetero infectivity (combined with hetero mixing)
(b) Hetero susceptibility (combined with hetero mixing)

9 / 65



Initial conditions

• Cattle model: Initial infective in group 2 (weaned calves)

• Yates et al: Initial infective in group i with probability µi fi

fi = Ni/N, proportion of total population in group i

• Alternatively, initial infective in group i with probability fi
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Separable model, randomly chosen parameter values

Minor outbreak probability versus R0, with initial infective in
group 1, with hetero infectivity and susceptibility
Green line for homogeneous model.
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Major outbreak probability
Notation:

T = infectious period, ψ(θ) = E [exp(θT )]

Gij = Number of group j offspring of group i parent

φi (s) = E

 k∏
j=1

s
Gij

j

 = ψ

−β k∑
j=1

λiπijµj fj (1− sj)


If the outbreak is started by 1 infective, belonging to group i with
probability νi , then the major outbreak probability is 1−

∑
i νiqi ,

where

qi = φi (q) for i = 1, 2, . . . , k
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Theorem

If the distribution ν, specifying the group of the initial infective, is
a left-eigenvector of the next-generation-mean matrix,
corresponding to the dominant eigenvalue R0, then the major
outbreak probability is bounded above by the homogeneous
population (matched according to R0 value).

(Similar to N. Becker, I. Marschner (1990), Lect. Notes Biomath.)

• Interpretation of the eigenvector: In the case of a major
outbreak, with successive generations the proportion of all
infectives which belong to group i converges to νi .

• So not a very natural initial condition, except in special cases.
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Special cases

In general: βij =
β

N
× λi × πij × µj and fi = Ni/N

1. Separable case: βij = β
N λi µj . Then it’s natural to assign the

initial infective to group i with probability µi fi , and this is the
appropriate eigenvector.

2. Hetero mixing: If βij = β
N πij with

∑
i πij = 1 and fj = 1/k for

all j , then the uniform distribution is the appropriate
eigenvector.
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Separable model βij = (β/N) λi µj

Major outbreak probability versus R0

Two groups, hetero susceptibility, varying hetero infectivity.
Infectious period: Solid = Constant, Dashed = Exponential
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Model assumptions

• Infectious period - any distribution

• Latent period

• Demographic processes

• Disease-induced immunity
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Outbreak size

SIR model, infection followed by lifelong immunity

• Final size: N∗
i = number of group i individuals ever infected

• Vector (N∗
1 ,N

∗
2 , . . . ,N

∗
k ) is asymptotically multivariate normal

• Mean proportions τi = E [N∗
i /Ni ] asymptotically satisfy

τi = 1− exp

− β
N

k∑
j=1

τj fj λj πji µi

 for i = 1, 2, . . . , k

F.G. Ball and D.Clancy (1993), Adv. Appl. Prob.
H. Andersson (1992), research report, Stockholm University.
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Theorem

For the separable model βij = (β/N)λi µj , if Covariance [λ, µ] ≥ 0
then total final size is maximised in the homogeneous case.

• Total final size = N
∑

i τi fi (asymptotic mean)

• Covariance [λ, µ] =
∑
λiµi fi − (

∑
λi fi ) (

∑
µi fi )

• This extends a result of V. Andreasen (2011), Bull. Math.
Biol.
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Separable model βij = (β/N) λi µj

Total outbreak size versus R0

Two groups, hetero susceptibility, varying hetero infectivity.
Solid line shows homogeneous case
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Endemic prevalence level

SIS model, infection followed by immediate return to susceptibility

• Assume infectious periods exponentially distributed, then in
large population limit can approximate Markov process with
deterministic ODE system.

• xi = proportion of group i infected

• Endemic equilibrium point x satisfies

xi = β (1− xi )
k∑

j=1

xj fj λj πji µi for i = 1, 2, . . . , k
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Separable model βij = (β/N) λi µj

In the separable case,

xi =
Dµi

1 + Dµi
for i = 1, 2, . . . , k

where D solves (uniquely for R0 > 1)

β

k∑
j=1

λj µj fj
1 + Dµj

= 1

A. Nold (1980), Math. Biosci.
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Theorem

For the separable model βij = (β/N)λi µj , if Covariance [λ, µ] ≥ 0
then the overall endemic prevalence level is maximised in the
homogeneous case.

• Overall endemic prevalence level = N
∑

i xi fi

• In homogeneous case, endemic prevalence level is 1− (1/R0)
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Separable model βij = (β/N) λi µj

Endemic prevalence level versus R0

Two groups, hetero susceptibility, varying hetero infectivity.
Solid line shows homogeneous case
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Time to fade-out

• For the above SIS model, disease extinction occurs within
finite time with probability 1.

• Before extinction, state of process settles to a quasi-stationary
distribution, which can be evaluated as eigenvector of
truncated transition rate matrix.

• Mean time to extinction, starting from quasi-stationarity, is
quasi-stationary probability that there is only 1 infective
present multiplied by recovery rate of that 1 infective.
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Log (expected persistence time) versus R0

Hetero infectivity, combined with hetero mixing
Black = homogeneous, Blue = hetero infectivity only
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Log (expected persistence time) versus R0

Hetero susceptibility, combined with hetero mixing
Black = homogeneous, Blue = hetero susceptibility only
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Time to fade-out

• Quasi-stationary distribution can be approximated by a
multivariate normal distribution centred at the deterministic
endemic equilibrium level.

• Some indication of likely time-to-extinction is given by the
Coefficient of Variation of the total number of infectives
present under the normal approximation

CV =
SD

Mean
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Time to fade-out

• Variance matrix S is the k × k matrix satisfying

JS + SJT + G = 0

where J is Jacobian of the ODE system at endemic
equilibrium and G is local variance matrix of approximating
k-dimensional Ornstein-Uhlenbeck process.

• Can solve the above equation for S (and hence find
Coefficient of Variation), but in general it’s messy.
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Time to fade-out

It appears that:

• With hetero infectivity, CV is minimised in homogeneous case
(so persistence time maximised)

• With hetero susceptibility, CV is minimised in homogeneous
case (so persistence time maximised)

• With hetero mixing, and
∑

i πij = 1 for all j , CV is unaffected
by heterogeneity
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Conclusions

• Heterogeneity often seems to reduce spread, whether
measured by major outbreak probability; outbreak size;
endemic prevalence; persistence time

• Sufficient conditions for this to be true depend on particular
measure of spread

• Numerical work shows that the sufficient conditions obtained
are very far from being necessary conditions
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Related models

• Above results keep number of groups k fixed, and suppose
each group is large.

What happens if groups stay small (households), and consider
limit k →∞?

• Compare with J.C. Miller (2007), Phys. Rev. E, SIR network
model, homogeneous infectivity maximises probability of major
outbreak, homogeneous susceptibility maximises outbreak size.
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