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Ray–Knight’s theorem as a genealogy in Feller’s diffusion

Consider the “standard” Feller branching diffusion

Z x
t = x + 2

∫ t

0

√
Z x

r dWr .

The branching property is the fact that Z x+y
t has the same law as

Z x
t + Z ′yt , where here we add two independent processes.

Consider now the local time {Ls(y), s, y ≥ 0} of a reflected Brownian
motion. Let Sx = inf{s > 0, Ls(0) > x}. Then the second Ray–Knight
theorem says that {LSx (t), t ≥ 0} has the same law as {Z x

t , t ≥ 0}.
This may be understood as a description of the genealogy in Feller’s
branching diffusion, meaning that reflected Brownian motion codes (in
the sense of Aldous) the “real tree” which describes the genealogy of
the population which evolves according to Feller’s diffusion.
The description of the genealogy is easier and more clear for
approximate models with finite population. Ray–Knight’s theorem can
be proved by taking the limit in finite population models, which
clarifies the above claim. One might also discretize time.
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An extension of Ray’–Knight’s theorem to cope with Feller’s
diffusion with logistic growth

Consider Feller’s diffusion with logistic growth

Z x
t = x +

∫ t

0
[θZ x

r − γ(Z x
r )2]dr + 2

∫ t

0

√
Z x

r dWr (1)

This is no longer a branching process. The quadratic term introduces
“interaction between the branches”.
However, this is still a bona fide model for the evolution of a
population, whose genealogy one might want to describe. This is the
aim of this work.
But before doing so, let us describe the law of the random field
{Z x

t , t, x ≥ 0}. Contrary to the case of Feller’s diffusion, x → Z x
t is

no longer a process with independent increments. It event not Markov
for fixed t.
But the process {Z x

t , t ≥ 0}{x≥0} is a E = C c(R+,R+) –valued
Markov process indexed by x ≥ 0.
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The transition probabilities

For each x > 0 and z ∈ E , let Px(z , ·) be the distribution of z + Z z,x ,
where Z z,x solves

Z x ,z
t = x +

∫ t

0
Z x ,z

u (θ − γ[Z x ,z
u + 2z(u)])du + 2

∫ t

0

√
Z x ,z

u dWu,

with W being a standard Brownian motion.
Then

P
(
Z y+x ∈ ·

∣∣∣Z y = z
)

= Px(z , ·).
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Definition Let {Z x}x≥0 be the C c(R+,R+)-valued Markov process
with transition semigroup (Px).
Let us describe the joint law of {(Z x

t ,Z
x+y
t ), t ≥ 0}, for some

x , y > 0.

Z x
t = x +

∫ t

0

[
θZ x

r − γ (Z x
r )2
]
dr + 2

√
Z x

r dWr ,

V x ,y
t = y +

∫ t

0

[
θV x ,y

r − γ
{

(V x ,y
r )2 + 2Z x

r V
x ,y
r

}]
dr + 2

√
Z x

r dW
′
r ,

Z x+y
t = Z x

t + V x ,y
t ,

where W and W ′ are two mutually independent standard Brownian
motions.
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Remark 1 For each x > 0, Z x solves the SDE

dZ x
t =

[
θZ x

t − γ(Z x
t )2] dt + 2

√
Z x

t dW
x
t , Z

x
0 = x ,

where {W x
t , t ≥ 0} is a standard Brownian motion. We have

d〈Z x ,Z x+y 〉t = d〈Z x ,Z x〉t = Z x
t dt

d〈W x ,W x+y 〉t =

√
Z x

t

Z x+y
t

dt, with the convention
0
0

= 0.

Remark 2 {Z x}x≥0 is a jump–Markov process, whose infinitesimal
generator can be described in terms of the Poisson process of
excursions (in the sense of Pitman–Yor) of the above SDE.
Moreover, we can couple the random field {Z x

t , t ≥ 0, x > 0} with
the random field {Y x

t , t ≥ 0, x > 0} corresponding to the case γ = 0,
in such a way that for all 0 < x < y , t > 0, Z y

t − Z x
t ≤ Y y

t − Y x
t .

This entails in particular that x → Z x
· jumps only where x → Y x

·
jumps. But the jumps of Y x which reach time t > 0 can be described
as the jump times of a Poisson process on R+.
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Consider the following reflecting SDE driven by standard Brownian
motion B

Hs = Bs +
1
2
Ls(0) +

θ

2
s − γ

∫ s

0
Lr (Hr )dr , s ≥ 0, (2)

Here and everywhere below, {Ls(t), s ≥ 0, t ≥ 0} denotes the local
time of the process {Hs , s ≥ 0} accumulated up to time s at level t.
One can show with the help of Girsanov’s theorem that equation (2)
has a unique weak solution, which we assume to be defined on some
probability space (Ω,F ,P).
Define for any x > 0 the stopping time

Sx = inf{s > 0, Ls(0) > x},

and let {Z x
t , x , t ≥ 0} denote the random field constructed above.

Our main result is the
Theorem The two random fields {LSx (t), t, x ≥ 0} and
{Z x

t , t, x ≥ 0} have the same law.
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In a paper with a third author Vi Le, we have proved that result via
approximation by a sequence of finite population models.
Z is approximated by the total mass ZN of a population of individuals,
each of which has mass 1/N. The initial mass is ZN

0 = bNxc/N, and
ZN follows a Markovian jump dynamics : from its current state k/N,

ZN jumps to

{
(k + 1)/N at rate kNσ2/2 + kθ
(k − 1)/N at rate kNσ2/2 + k(k − 1)γ/N.

(3)

For γ = 0, this is (up to the mass factor 1/N) as a Galton-Watson
process in continuous time : each individual independently spawns a
child at rate Nσ2/2 + θ, and dies (childless) at rate Nσ2/2.
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For γ > 0, the additional quadratic death rate destroys the
independence, and hence also the branching property.
Viewing the individuals alive at time t as being arranged “from left to
right”, and by decreeing that each of the pairwise fights (which
happen at rate 2γ and always end lethal for one of the two involved
individuals) is won by the individual to the left, we arrive at the
additional death rate 2γLi (t)/N for individual i , where Li (t) denotes
the number of individuals living at time t to the left of individual i .
If we want only to show that for fixed x > 0, Z x ,N ⇒ Z x , we could as
well adopt a “symmetric killing” scenario. The “left to right” scenario is
crucial for getting

(Z x1,N ,Z x2,N , . . . ,Z xk ,N)⇒ (Z x1 ,Z x2 , . . . ,Z xk ).
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Let us now exploit an approach to a similar result by Norris, Rogers,
Williams (1987). The idea is to start from the case θ = γ = 0 where
we can apply the classical Ray–Knight theorem, and to apply the same
Girsanov transformation jointly to the population process and to the
exploration process.
On the side of the exploration process, the Girsanov–Radon–Nikodym
ratio reads

Gs := exp
(
Ms −

1
2
〈M〉s

)
, where

Ms =

∫ s

0

{
θ

2
− γLr (Hr )

}
dBr .
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For proving our main theorem, we would like to write a
Radon-Nikodym derivative for the probability measures on the
σ–algebra FSx , the ratio being the r. v.

GSx , where Sx = inf{s > 0, Ls(0) > x}.

For that sake, we would need to prove a priori that Sx <∞ a. s. under
the transformed measure (the one with θ, γ 6= 0). This is true as a
consequence of our theorem, but we have no a priori proof of that fact.
We introduce an approximation. Let us consider our exploration
process {Hs} (with θ = γ = 0) reflected below an arbitrary point K
(which eventually will go to ∞).
Let HK denote Brownian motion reflected inside the interval [0,K ], i.
e. the solution of the SDE

HK
s = Bs +

1
2
LK

s (0)− 1
2
LK

s (K−), s ≥ 0,
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consequence of our theorem, but we have no a priori proof of that fact.
We introduce an approximation. Let us consider our exploration
process {Hs} (with θ = γ = 0) reflected below an arbitrary point K
(which eventually will go to ∞).
Let HK denote Brownian motion reflected inside the interval [0,K ], i.
e. the solution of the SDE

HK
s = Bs +

1
2
LK

s (0)− 1
2
LK

s (K−), s ≥ 0,
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if we define
SK

x = inf{s > 0, LK
s (0) > x},

the following result follows readily from Lemma 2.1 in Delmas (2008)

Lemma
For any 0 < K < K ′ the processes {LK

SK
x

(t), 0 ≤ t ≤ K} and
{LK ′

SK ′
x

(t), 0 ≤ t ≤ K} have the same distribution.

There exists a probability measure P̃K such that for all s > 0,

d P̃K

dP

∣∣∣
Fs

= exp
(
MK

s −
1
2
〈MK 〉s

)
, with MK

s =

∫ s

0

[
θ

2
− γLK

r (HK
r )

]
dBr .

Under P̃K , HK is a solution of the reflected SDE

HK
s = Bs +

θ

2
s − γ

∫ s

0
LK

r (HK
r )dr +

1
2
LK

s (0)− 1
2
LK

s (K−), s ≥ 0.
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It is not hard to show that

P̃K (SK
x <∞) = 1.

Hence

P̃K � P on FSK
x
, and

d P̃K

dP

∣∣∣
FSKx

= exp
(
MK

SK
x
− 1

2
〈MK 〉SK

x

)
.

The Ray–Knight theorem tells us that under P the process
{Z x ,K

t := LK
SK

x
(t), t ≥ 0} is a solution of the SDE

dZ x ,K
t = 2

√
Z x ,K

t dWt , Z x ,K
0 = x

killed at time t = K .
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Our main theorem will follow from

Proposition

For any K > 0, the process {LK
SK

x
(t), t ≥ 0} is under P̃K a solution of

equation (1), killed at time K.

Tanaka’s formula gives for 0 ≤ t < K the identity

LK
SK

x
(t) = LK

SK
x

(0) + 2
∫ SK

x

0
1{HK

s ≤t}dBs ,

On the other hand, from the second Ray–Knight theorem,
{LK

SK
x

(t), 0 ≤ t < K} is a P–martingale with quadratic variation given
by

〈LK
SK

x
〉t = 4

∫ t

0
LK

SK
x

(u)du.
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Let us go back to the Girsanov theorem. The r. v. MK
SK

x
is the final

value at time s = SK
x of a martingale with respect to the filtration FK

s
of the reflected Brownian motion.
We need to consider the same r. v. as the final value at time t = K of
the process

NK
t =

∫ SK
x

0
1{HK

s ≤t}

(
θ

2
− γLK

s (HK
s )

)
dBs , 0 ≤ t ≤ K ,

which with respect to a suitable filtration (in the time t variable) turns
out to be a P-martingale. This is where the techniques from Norris,
Rogers, Williams (1987) are essential.
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We define for all 0 ≤ t ≤ K (suppressing the superscript K in the
defined quantities)

A(s, t) :=

∫ s

0
1{HK

r ≤t}dr , τ(s, t) := inf{r : A(r , t) > s},

H(s, t) :=

∫ t

0
1{HK

r ≤t}dH
K
r , ξ(s, t) := H(τ(s, t), t),

F(s, t) := σ({ξ(r , t) : r ≤ s}), Et := F(∞, t).

Walsh (1978) shows that {Et , 0 ≤ t ≤ K} is a right–continuous
filtration, and Norris, Rogers, Williams (1987) show that
{NK

t , 0 ≤ t ≤ K} is an (Et)–martingale s. t.

〈NK ,Y K 〉t =

∫ SK
x

0
1{HK

s ≤t}

(
θ − 2γLK

s (HK
s )
)
ds,

where Y K
t := 2

∫ SK
x

0
1{HK

s ≤t}dBs = LK
SK

x
(t)− x
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Reexpressing the r.h.s. of the above identity via the occupation times
formula yields

〈NK ,Y K 〉t =

∫ t

0
θLK

SK
x

(u)du − γ
∫ t

0

(
LK

SK
x

)2
(u)du.

From this and Girsanov’s theorem it follows that under P̃K ,

RK
t := LK

SK
x

(t)− x −
∫ t

0
θLK

SK
x

(u)du + γ

∫ t

0

(
LK

SK
x

)2
(u)du

is a martingale on the interval 0 ≤ t ≤ K .
Since the quadratic variation remains unchanged under a Girsanov
transformation, we infer that 〈RK 〉t = 4

∫ t
0 LK

SK
x

(u)du, 0 ≤ t < K .
Consequently, there exists a Brownian motion {Wt , t ≥ 0} such that
LK

SK
x

(t) solves for 0 ≤ t < K the whished SDE.
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Work in progress (with my student Mamadou Ba)

Suppose we want to consider a more general model of the type

Z x
t = x −

∫ t

0
f (Z x

r )dr + 2
∫ t

0

√
Z x

r dWr ,

where say f is of class C 1 such that f (0) = 0 and f (z) > 0 for z large
enough.
We can still prove a Ray–Knight type theorem to describe the
genealogy of a population whose size would evolve according to such
an SDE.
An intuition on which type of interaction in the population this SDE
would model can be best explained by looking back at the
approximate discrete model, where (in the case say f > 0), f adds a
death rate equal to

f ′
(
k − 1
N

)
for the k–th individual, where again individuals are ordered from left to
right.
This is consistent with the case f (z) = γz2.Etienne Pardoux (with A. Wakolbinger) ICMS, Sept 13, 2011 19 / 19
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