

R₀ and other reproduction numbers for households models

... and epidemic models with other social structures

Lorenzo Pellis, Frank Ball, Pieter Trapman

MRC Centre for Outbreak analysis and modelling, Department of Infectious Disease Epidemiology Imperial College London

Edinburgh, 14th September 2011

Centre for <u>Outbreak</u> Analysis

and Modelling

- Introduction
 - *R*₀ in simple models
 - *R*₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

*R*₀ in simple models*R*₀ in other models

INTRODUCTION

Centre for Outbreak Analysis

and Modelling

MRC

Introduction

- *R*₀ in simple models
- **R**₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

SIR full dynamics

Imperial College London Basic reproduction number R₀

Naïve definition:

" Average number of new cases generated by a typical case, throughout the entire infectious period, in a large and otherwise fully susceptible population "

Centre for <u>Outbreak</u> Analysis

and Modelling

MRC

Requirements:

- 1) New real infections
- 2) Typical infector
- 3) Large population
- 4) Fully susceptible

Imperial College London Branching process approximation

- Follow the epidemic in generations:
 - $X_n^{(N)}$ = number of infected cases in generation n (pop. size N)

Centre for Outbreak Analysis

• For every fixed *n*,

$$\lim_{N\to\infty} X_n^{(N)} = X_n$$

where X_n is the *n* -th generation of a simple Galton-Watson branching process (BP)

► Let ξ be the random number of children of an individual in the BP, and let $\mathbb{P}(\xi = k) = \xi_k, \forall k = 0, 1, ...$ be the offspring distribution.

> Define

$$\boldsymbol{R}_0 = \mathbb{E}\big[\boldsymbol{\xi}_k\big]$$

➢ We have "linearised" the early phase of the epidemic

Properties of *R*₀

- Threshold parameter:
 - If $\boldsymbol{R}_0 \leq 1$, only small epidemics
 - If $R_0 > 1$, possible large epidemics
- Probability of a large epidemic
- ➢ Final size:

$$1-z=e^{-R_0z}$$

Critical vaccination coverage:

$$\boldsymbol{p}_{C} = 1 - \frac{1}{\boldsymbol{R}_{0}}$$

 \succ If $X_0 = 1$, then

$$\boldsymbol{R}_{0} = \mathbb{E}[\boldsymbol{X}_{1}] = \lim_{N \to \infty} \mathbb{E}[\boldsymbol{X}_{n}^{(N)}]$$

Properties of *R*₀

- Threshold parameter:
 - If $\boldsymbol{R}_0 \leq 1$, only small epidemics
 - If $R_0 > 1$, possible large epidemics
- Probability of a large epidemic
- \succ Final size:

$$1-z=e^{-R_0z}$$

Critical vaccination coverage:

$$\boldsymbol{p}_{C} = 1 - \frac{1}{\boldsymbol{R}_{0}}$$

 \succ If $X_0 = 1$, then

$$\boldsymbol{R}_{0} = \mathbb{E}[\boldsymbol{X}_{1}] = \lim_{N \to \infty} \mathbb{E}[\boldsymbol{X}_{n}^{(N)}]$$

Outline

Centre for Outbreak Analysis

and Modelling

MRC

Introduction

- **R**₀ in simple models
- *R*₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

Imperial College London Multitype epidemic model

- Different types of individuals
- Define the next generation matrix (NGM):

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{k}_{11} & \boldsymbol{k}_{12} & \cdots & \boldsymbol{k}_{1n} \\ \boldsymbol{k}_{21} & \boldsymbol{k}_{22} & \vdots \\ \vdots & \ddots & \vdots \\ \boldsymbol{k}_{n1} & \cdots & \cdots & \boldsymbol{k}_{nn} \end{pmatrix}$$

where k_{ij} is the average number of type-*i* cases generated by a type-*j* case, throughout the entire infectious period, in a fully susceptible population

Centre for Outbreak Analysis

and Modelling

Properties of the NGM:

- Non-negative elements
- We assume positive regularity

- > Single dominant eigenvalue Λ , which is positive and real
- \succ "Dominant" eigenvector V has non-negative components
- > For (almost) every starting condition, after a few generations, the proportions of cases of each type in a generation converge to the components of the dominant eigenvector V, with per-generation multiplicative factor Λ

> Define $\boldsymbol{R}_0 = \boldsymbol{\Lambda}$

Imperial College

London

Interpret "typical" case as a linear combination of cases of each type given by V

Start the BP with a j -case:

- > $X_n(j;i)$ = number of *i* -cases in generation *n*
- *X_n*(*j*) = $\sum_{i} X_n(j;i)$ = total number of cases in generation *n* ▶ Then:

$$\boldsymbol{R}_{0} \coloneqq \lim_{n \to \infty} \lim_{N \to \infty} \sqrt[n]{\mathbb{E}\left[\boldsymbol{X}_{n}^{(N)}(\boldsymbol{j})\right]}$$

Compare with single-type model:

$$\boldsymbol{R}_{0} \coloneqq \lim_{N \to \infty} \mathbb{E} \Big[\boldsymbol{X}_{1}^{(N)} \Big]$$

Imperial College London Basic reproduction number R₀

Naïve definition:

" Average number of new cases generated by a typical case, throughout the entire infectious period, in a large and otherwise fully susceptible population "

Centre for <u>Outbreak</u> Analysis

and Modelling

MRC

Requirements:

- 1) New real infections
- 2) Typical infector
- 3) Large population
- 4) Fully susceptible

Network models

- People connected by a static network of acquaintances
- Simple case: no short loops, i.e. locally tree-like
 - Repeated contacts
 - First case is special
 - $\mathbb{E}[X_1] = 1$ is not a threshold
 - Define:

$$\boldsymbol{R}_0 = \mathbb{E} \big[\boldsymbol{X}_2 \mid \boldsymbol{X}_1 = 1 \big]$$

- Difficult case: short loops, clustering
 - Maybe not even possible to use branching process approximation or define *R*₀

Network models

- People connected by a static network of acquaintances
- Simple case: no short loops, i.e. locally tree-like
 - Repeated contacts
 - First case is special
 - $\mathbb{E}[X_1] = 1$ is not a threshold
 - Define:

$$\boldsymbol{R}_0 = \mathbb{E} \big[\boldsymbol{X}_2 \mid \boldsymbol{X}_1 = 1 \big]$$

- Difficult case: short loops, clustering
 - Maybe not even possible to use branching process approximation or define *R*₀

Network models

- People connected by a static network of acquaintances
- Simple case: no short loops, i.e. locally tree-like
 - Repeated contacts
 - First case is special
 - $\mathbb{E}[X_1] = 1$ is not a threshold
 - Define:

$$\boldsymbol{R}_0 = \mathbb{E} \big[\boldsymbol{X}_2 \mid \boldsymbol{X}_1 = 1 \big]$$

- Difficult case: short loops, clustering
 - Maybe not even possible to use branching process approximation or define *R*₀

Imperial College London Basic reproduction number R₀

Naïve definition:

" Average number of new cases generated by a typical case, throughout the entire infectious period, in a large and otherwise fully susceptible population "

Centre for <u>Outbreak</u> Analysis

and Modelling

MRC

Requirements:

- 1) New real infections
- 2) Typical infector
- 3) Large population
- 4) Fully susceptible

Reproduction numbers Definition of **R**₀ Generalisations

HOUSEHOLDS MODELS

Model description

Imperial College London Example: sSIR households model

- > Population of m households with of size n_H
- > Upon infection, each case i:
 - remains infectious for a duration $I_i \sim I$, iid $\forall i$
 - makes infectious contacts with each household member according to a homogeneous Poisson process with rate λ_L
 - makes contacts with each person in the population according to a homogeneous Poisson process with rate λ_G/N

Centre for Outbreak Analysis

and Modelling

MRO

- Contacted individuals, if susceptible, become infected
- Recovered individuals are immune to further infection

Centre for Outbreak Analysis

and Modelling

- Introduction
 - **R**₀ in simple models
 - **R**₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

Imperial College London Household reproduction number R_{*}

- Consider a within-household epidemic \succ started by one initial case
- Define: >
 - μ_L = average household final size, excluding the initial case
 - μ_G = average number of global infections an individual makes
- "Linearise" the epidemic process at the level of households:

$$\boldsymbol{R}_* \coloneqq \boldsymbol{\mu}_G \left(1 + \boldsymbol{\mu}_L \right)$$

Centre for **Outbreak Analysis**

and Modelling

Imperial College London Household reproduction number R_{*}

- Consider a within-household epidemic \succ started by one initial case
- Define: >
 - μ_L = average household final size, excluding the initial case
 - μ_G = average number of global infections an individual makes
- "Linearise" the epidemic process at the level of households:

$$\boldsymbol{R}_* \coloneqq \boldsymbol{\mu}_G \left(1 + \boldsymbol{\mu}_L \right)$$

Centre for **Outbreak Analysis**

and Modelling

Imperial College London Individual reproduction number R₁

Attribute all further cases in a household to the primary case

$$\boldsymbol{M}_{\boldsymbol{I}} = \begin{pmatrix} \boldsymbol{\mu}_{\boldsymbol{G}} & \boldsymbol{\mu}_{\boldsymbol{G}} \\ \boldsymbol{\mu}_{\boldsymbol{L}} & \boldsymbol{0} \end{pmatrix}$$

> R_I is the dominant eigenvalue of M_I :

$$\boldsymbol{R}_{\boldsymbol{I}} = \frac{\boldsymbol{\mu}_{\boldsymbol{G}}}{2} \left(1 + \sqrt{1 + \frac{4\boldsymbol{\mu}_{\boldsymbol{L}}}{\boldsymbol{\mu}_{\boldsymbol{G}}}} \right)$$

More weight to the first case than it should be

Centre for Outbreak Analysis

and Modelling

Imperial College London Individual reproduction number R₁

Attribute all further cases in a household to the primary case

$$\boldsymbol{M}_{\boldsymbol{I}} = \begin{pmatrix} \boldsymbol{\mu}_{\boldsymbol{G}} & \boldsymbol{\mu}_{\boldsymbol{G}} \\ \boldsymbol{\mu}_{\boldsymbol{L}} & \boldsymbol{0} \end{pmatrix}$$

> R_I is the dominant eigenvalue of M_I :

$$\boldsymbol{R}_{\boldsymbol{I}} = \frac{\boldsymbol{\mu}_{\boldsymbol{G}}}{2} \left(1 + \sqrt{1 + \frac{4\boldsymbol{\mu}_{\boldsymbol{L}}}{\boldsymbol{\mu}_{\boldsymbol{G}}}} \right)$$

More weight to the first case than it should be

Centre for Outbreak Analysis

and Modelling

Imperial College London Further improvement: R₂

Approximate tertiary cases:

- μ_1 = average number of cases infected by the primary case
- Assume that each secondary case infects b further cases
- Choose $\boldsymbol{b} = 1 \boldsymbol{\mu}_1 / \boldsymbol{\mu}_L$, such that

$$\mu_1(1+b+b^2+b^3+...)=\frac{\mu_1}{1-b}=\mu_L,$$

so that the household epidemic yields the correct final size

> Then:

$$\boldsymbol{M}_2 = \begin{pmatrix} \boldsymbol{\mu}_G & \boldsymbol{\mu}_G \\ \boldsymbol{\mu}_1 & \boldsymbol{b} \end{pmatrix}$$

and \boldsymbol{R}_2 is the dominant eigenvalue of \boldsymbol{M}_2

Opposite approach: *R*_{*HI*}

All household cases contribute equally

Imperial College

London

$$\boldsymbol{R}_{HI} \coloneqq \boldsymbol{\mu}_{G} + \frac{\boldsymbol{\mu}_{L}}{1 + \boldsymbol{\mu}_{L}}$$

Less weight on initial cases than what it should be

Centre for Outbreak Analysis

and Modelling

Opposite approach: *R*_{*HI*}

All household cases contribute equally

Imperial College

London

$$\boldsymbol{R}_{HI} \coloneqq \boldsymbol{\mu}_{G} + \frac{\boldsymbol{\mu}_{L}}{1 + \boldsymbol{\mu}_{L}}$$

Less weight on initial cases than what it should be

Centre for Outbreak Analysis

and Modelling

Imperial College Vaccine-associated MRC London reproduction numbers R_V and R_{VL}

Perfect vaccine

- > Assume $R_* > 1$
- Define p_C as the fraction of the population that needs to be vaccinated to reduce R_* below 1

> Then

$$\boldsymbol{R}_{V} \coloneqq 1 - \frac{1}{\boldsymbol{p}_{C}}$$

Leaky vaccine

- > Assume $R_* > 1$
- Define E_c as the critical vaccine efficacy (in reducing susceptibility) required to reduce R_* below 1 when vaccinating the entire population

Centre for <u>Outbreak</u> Analysis

and Modelling

> Then

$$\boldsymbol{R}_{VL} \coloneqq 1 - \frac{1}{\boldsymbol{E}_C}$$

Centre for Outbreak Analysis

and Modelling

- Introduction
 - **R**₀ in simple models
 - **R**₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

Naïve approach: next generation matrix

- Consider a within-household epidemic started by a single initial case. Type = generation they belong to.
- > Define $\mu_0 = 1, \mu_1, \mu_2, ..., \mu_{n_H-1}$ the expected number of cases in each generation
- \succ Let μ_G be the average number of global infections from each case
- The next generation matrix is:

Imperial College

London

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} \\ \boldsymbol{\mu}_{1} & & & 0 \\ & \boldsymbol{\mu}_{2}/\boldsymbol{\mu}_{1} & & & \vdots \\ & & \ddots & & & \vdots \\ & & & \boldsymbol{\mu}_{n_{H}-1}/\boldsymbol{\mu}_{n_{H}-2} & 0 \end{pmatrix}$$

Imperial College London More formal approach (I)

Notation:

- $x_{n,i}$ = average number of cases in generation *n* and householdgeneration *i*
- $x_n = \sum_{i=0}^{n_H-1} x_{n,i}$ = average number of cases in generation n and any household-generation

1

System dynamics:

Derivation:

$$x_{n,0} = \mu_G \sum_{i=0}^{n_H^{-1}} x_{n-1,i}$$

$$x_{n,i} = \mu_i x_{n-i,0} \qquad 1 \le i \le n_H - 1$$

$$x_{n,0} = \mu_G x_{n-1} \qquad 1 \le i \le n_H - 1$$

$$x_{n,i} = \mu_i \mu_G x_{n-i-1} \qquad 1 \le i \le n_H - 1$$

$$x_n = \sum_{i=0}^{n_H^{-1}} x_{n,i} = \mu_G \sum_{i=0}^{n_H^{-1}} \mu_i x_{n-i-1}$$

i=0

Imperial College More formal approach (II)

Centre for Outbreak Analysis

and Modelling

MRC

System dynamics:

London

$$\underline{\mathbf{x}}^{(n)} = A_{n_H} \underline{\mathbf{x}}^{(n-1)}$$

 $\boldsymbol{A}_{n_{H}} = \begin{pmatrix} \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{0} & \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{1} & \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{2} & \cdots & \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{n_{H}-1} \\ 1 & & 0 \\ & 1 & & \vdots \\ & & \ddots & & \vdots \\ & & & 1 & 0 \end{pmatrix}$ where

Imperial College London More formal approach (III)

Let A = dominant eigenvalue of A_{n_H} V = $(v_0, v_1, ..., v_{n_H-1})$ = "dominant" eigenvector Then, for $n \to \infty$: $\underline{x}^{(n)} / \|\underline{x}^{(n)}\| \to V$ $\|\underline{x}^{(n)}\| / \|\underline{x}^{(n-1)}\| \to \Lambda$ $x_n / x_{n-1} \to \Lambda$

> Therefore:

$$\boldsymbol{\Lambda} = \boldsymbol{R}_0$$

Similarity

	Recall:		Define:					
K =	$\begin{pmatrix} \mu_G & \mu_G \\ \mu_1 & \\ \mu_2 / \mu_2 \end{pmatrix}$	μ_{G} μ_{1} \ddots	μ_{G}	$ \begin{array}{c} \mu_{G} \\ 0 \\ \vdots \\ \vdots \\ 0 \end{array} $	S -	$= \begin{pmatrix} \mu_0 \\ \mu \end{pmatrix}$	μ _{n_H-2}	
$A_{n_H} =$	$\begin{pmatrix} \boldsymbol{\mu}_{G}\boldsymbol{\mu}_{0} & \boldsymbol{\mu}_{0} \\ 1 & & \end{pmatrix}$	$\mu_{G} \mu_{1} \mu_{G} \mu_{2}$ $1 \qquad \ddots$	$\mu_{H}^{-1}/\mu_{n_{H}}$	$ \begin{array}{c} \mu_{G} \mu_{n_{H}-1} \\ 0 \\ \vdots \\ 0 \end{array} \right) $		Then: rSo: ho(K	$X = SA_{n_H}S^{-1}$	μ_{n_H-1}

Centre for Outbreak Analysis

and Modelling

MRC

- Introduction
 - **R**₀ in simple models
 - **R**₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

Generalisations

This approach can be extended to:

- Variable household size
- Household-network model
- Model with households and workplaces
- ... (probably) any structure that allows an embedded branching process in the early phase of the epidemic

... all signals that this is the "right" approach!

Imperial College London Households-workplaces model

Centre for Outbreak Analysis

and Modelling

MRC

Model description

Assumptions:

- Each individual belongs to a household and a workplace
- > Rates λ_H , λ_W and λ_G of making infectious contacts in each environment
- No loops in how households and workplaces are connected, i.e. locally tree-like

Construction of R₀

- > Define $\mu_0^H = 1, \mu_1^H, \mu_2^H, ..., \mu_{n_H-1}^H$ and $\mu_0^W = 1, \mu_1^W, \mu_2^W, ..., \mu_{n_W-1}^W$ for the households and workplaces generations
- \blacktriangleright Define $n_T = n_H + n_W$
- > Then R_0 is the dominant eigenvalue of

$$A_{n_{H}} = \begin{pmatrix} c_{0} & c_{1} & \cdots & c_{n_{T}-3} & c_{n_{T}-2} \\ 1 & & & 0 \\ & 1 & & & \vdots \\ & & \ddots & & \vdots \\ & & & 1 & 0 \end{pmatrix},$$

where
$$c_k = \mu_G \sum_{\substack{i+j=k \ 0 \le i \le n_H - 1 \ 0 \le j \le n_W - 1}} \mu_i^H \mu_j^W + \sum_{\substack{i+j=k+1 \ 1 \le i \le n_H - 1 \ 1 \le j \le n_W - 1}} \mu_i^H \mu_j^W, \quad 0 \le k \le n_T - 2$$

Fundamental inequalities Insight

COMPARISON BETWEEN REPRODUCTION NUMBERS

Centre for Outbreak Analysis

and Modelling

- Introduction
 - **R**₀ in simple models
 - *R*₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

➢ Goldstein et al (2009) showed that

$$\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$$

Centre for Outbreak Analysis

and Modelling

➢ Goldstein et al (2009) showed that

$$\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$$

Centre for Outbreak Analysis

and Modelling

$$egin{array}{rcl} R_{*} &\geq R_{VL} &\geq R_{V} &\geq R_{HI} \ R_{*} &\geq R_{r} \end{array}$$

➢ Goldstein et al (2009) showed that

$$\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$$

Centre for Outbreak Analysis

and Modelling

$$R_* \geq R_V \geq R_{HI}$$

➢ Goldstein et al (2009) showed that

$$\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$$

Centre for Outbreak Analysis

and Modelling

$$R_* \geq R_V \geq R_{HI}$$

➢ Goldstein et al (2009) showed that

 $\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$

Centre for <u>Outbreak A</u>nalysis

and Modelling

To which we added

 $\Leftrightarrow \quad \boldsymbol{R}_{I} = 1 \quad \Leftrightarrow \quad \boldsymbol{R}_{0} = 1 \quad \Leftrightarrow \quad \boldsymbol{R}_{2} = 1$

$$R_* \geq R_V \geq R_{HI}$$

➢ Goldstein et al (2009) showed that

 $\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$

Centre for <u>Outbreak A</u>nalysis

and Modelling

To which we added

 \Leftrightarrow $\boldsymbol{R}_{I} = 1 \Leftrightarrow$ $\boldsymbol{R}_{0} = 1 \Leftrightarrow$ $\boldsymbol{R}_{2} = 1$

In a growing epidemic:

 $R_* \geq R_V \geq R_{HI}$

➢ Goldstein et al (2009) showed that

 $\mathbf{R}_* = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_r = 1 \iff \mathbf{R}_V = 1 \iff \mathbf{R}_{HI} = 1$

Centre for <u>Outbreak</u> Analysis

and Modelling

To which we added

 $\Leftrightarrow \quad \boldsymbol{R}_{I} = 1 \quad \Leftrightarrow \quad \boldsymbol{R}_{0} = 1 \quad \Leftrightarrow \quad \boldsymbol{R}_{2} = 1$

In a growing epidemic:

 $R_* \geq R_I \geq R_V \geq R_0 \geq R_2 \geq R_{HI}$

Goldstein et al (2009) showed that

 $\mathbf{R}_{*} = 1 \iff \mathbf{R}_{VL} = 1 \iff \mathbf{R}_{r} = 1 \iff \mathbf{R}_{V} = 1 \iff \mathbf{R}_{HI} = 1$

Centre for <u>Outb</u>reak Analysis

and Modellinc

To which we added

 $\Leftrightarrow \mathbf{R}_{\mathbf{I}} = 1 \quad \Leftrightarrow \quad \mathbf{R}_0 = 1 \quad \Leftrightarrow \quad \mathbf{R}_2 = 1$

In a growing epidemic:

 $R_* \geq R_I \geq R_V \geq R_0 \geq R_2 \geq R_{HI}$

To which we added that, in a **declining** epidemic:

$$R_* \leq R_I \leq R_V \leq R_0 \leq R_2 \leq R_{HI}$$

Practical implications

>
$$\mathbf{R}_{V} \ge \mathbf{R}_{0}$$
, so vaccinating $\mathbf{p} = 1 - \frac{1}{\mathbf{R}_{0}}$ is not enough

➢ Goldstein et al (2009):

$$R_* \geq R_V \geq R_{HI}$$

> Now we have sharper bounds for R_V :

$$R_* \geq R_I \geq R_V \geq R_0 \geq R_{HI}$$

Centre for Outbreak Analysis

and Modelling

ИRС

- Introduction
 - **R**₀ in simple models
 - *R*₀ in other models
- Households models
 - Reproduction numbers
 - Definition of *R*₀
 - Generalisations

Comparison between reproduction numbers

- Fundamental inequalities
- Insight

Conclusions

Centre for Outbreak Analysis

and Modelling

MRC

> Recall that \mathbf{R}_0 is the dominant eigenvalue of

$$\boldsymbol{A}_{n_{H}} = \begin{pmatrix} \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{0} & \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{1} & \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{2} & \cdots & \boldsymbol{\mu}_{G} \,\boldsymbol{\mu}_{n_{H}-1} \\ 1 & & & 0 \\ & 1 & & & \vdots \\ & & \ddots & & \vdots \\ & & & \ddots & & \vdots \\ & & & & 1 & 0 \end{pmatrix}$$

> From the characteristic polynomial, we find that R_0 is the only positive root of

$$\boldsymbol{g}_{0}(\boldsymbol{\lambda}) = 1 - \sum_{i=0}^{n_{H}-1} \frac{\boldsymbol{\mu}_{G} \boldsymbol{\mu}_{i}}{\boldsymbol{\lambda}^{i+1}}$$

Imperial College London Discrete Lotka-Euler equation

Continuous-time Lotka-Euler equation:

$$\int_{0}^{+\infty} \boldsymbol{\beta}_{\boldsymbol{H}}(\boldsymbol{\tau}) \mathbf{e}^{-r\boldsymbol{\tau}} \mathrm{d}\boldsymbol{\tau} = 1$$

Discrete-generation Lotka-Euler equation:

$$\boldsymbol{\beta}_{H}(\boldsymbol{\tau}) = \boldsymbol{\beta}_{k} \boldsymbol{\delta}_{k}(\boldsymbol{\tau}) \qquad \Rightarrow \qquad \sum_{k=0}^{+\infty} \boldsymbol{\beta}_{k} \left(\mathbf{e}^{r} \right)^{-k} = 1$$

•
$$\beta_0 = 0$$

• $\beta_k = \mu_G \mu_{k-1}$ for $k = 1, 2, ..., n_H$
• $\beta_k = 0$ for $k > n_H$

> Therefore, $\mathbf{R}_0 = \mathbf{e}^r$ is the solution of

$$\sum_{i=0}^{n_{H}-1} \frac{\mu_{G} \mu_{i}}{R_{0}^{i+1}} = 1$$

Centre for <u>Outb</u>reak Analysis

and Modelling

MRC

Imperial College London Fundamental interpretation

> For each reproduction number R_A , define a r.v. X_A describing the generation index of a randomly selected infective in a household epidemic

Centre for Outbreak Analysis

and Modelling

> Distribution of X_A is $\mathbb{P}\{X_A = i\} = \frac{\mu_i^A}{1 + \mu_L}, \quad 0 \le i \le +\infty$

CONCLUSIONS

Imperial College London Why so long to come up with R₀?

- > Typical infective:
 - "Suitable" average across all cases during a household epidemic

Centre for Outbreak Analysis

and Modellinc

MRC

$$\boldsymbol{K} = \begin{pmatrix} \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} & \boldsymbol{\mu}_{G} \\ \boldsymbol{\mu}_{1} & & & 0 \\ & \boldsymbol{\mu}_{2}/\boldsymbol{\mu}_{1} & & \vdots \\ & & \ddots & & \vdots \\ & & & \boldsymbol{\mu}_{n_{H}}/\boldsymbol{\mu}_{n_{H}-1} & 0 \end{pmatrix}$$

- Types are given by the generation index:
 - not defined a priori
 - appear only in real-time
- "Fully" susceptible population:
 - the first case is never representative
 - need to wait at least a few full households epidemics

Conclusions

- > After more than 15 years, we finally found R_0
- General approach
 - clarifies relationship between all previously defined reproduction numbers for the households model
 - works whenever a branching process can be imbedded in the early phase of the epidemic, i.e. when we can use Lotka-Euler for a "sub-unit"
- \succ Allows sharper bounds for R_V :

$$R_* \geq R_I \geq R_V \geq R_0 \geq R_{HI}$$

Acknowledgements

- Co-authors:
 - Pieter Trapman
 - Frank Ball
- Useful discussions:
 - Pete Dodd
 - Christophe Fraser
- Fundings:
 - Medical Research Council

Acknowledgements

- Co-authors:
 - Pieter Trapman
 - Frank Ball
- Useful discussions:
 - Pete Dodd
 - Christophe Fraser
- Fundings:
 - Medical Research Council

SUPPLEMENTARY MATERIAL

Centre for <u>Outbreak</u> Analysis

and Modelling

- Introduction
 - **R**₀ in simple models
 - \boldsymbol{R}_0 in other models
- Households models
 - Many reproduction numbers
 - Definition of \boldsymbol{R}_0
 - Generalisations
- Comparison between reproduction numbers
 - Fundamental inequalities
 - Insight
- Conclusions

- \pmb{R}_0 in simple models
- \boldsymbol{R}_0 in other models

INTRODUCTION

- Threshold property:
 - If $\mathbf{R}_0 \leq 1$ the BP goes extinct with probability 1 (small epidemic)
 - If $\mathbf{R}_0 > 1$ the BP goes extinct with probability given by the smallest solution $\mathbf{s} \in [0,1]$ of

$$s = \sum_{k=0}^{\infty} \xi_k s^k$$

Assume $X_0 = 1$. Then:

 $\succ \mathbb{E}[X_n] = (R_0)^n$ $\succ \sqrt[n]{\mathbb{E}[X_n]} = R_0$ $\succ \mathbb{E}[X_{n+1}] / \mathbb{E}[X_n] = R_0$

Centre for <u>Outb</u>reak Analysis

and Modelling

- Threshold property:
 - If $\mathbf{R}_0 \leq 1$ the BP goes extinct with probability 1 (small epidemic)
 - If $\mathbf{R}_0 > 1$ the BP goes extinct with probability given by the smallest solution $\mathbf{s} \in [0,1]$ of

$$s = \sum_{k=0}^{\infty} \xi_k s^k$$

Assume $X_0 = 1$. Then:

 $\succ \mathbb{E}[X_n] = (R_0)^n$ $\succ \sqrt[n]{\mathbb{E}[X_n]} = R_0$ $\succ \mathbb{E}[X_{n+1}] / \mathbb{E}[X_n] = R_0$

- Threshold property:
 - If $\mathbf{R}_0 \leq 1$ the BP goes extinct with probability 1 (small epidemic)
 - If $\mathbf{R}_0 > 1$ the BP goes extinct with probability given by the smallest solution $\mathbf{s} \in [0,1]$ of

$$s = \sum_{k=0}^{\infty} \xi_k s^k$$

Assume $X_0 = 1$. Then:

 $\succ \mathbb{E}[X_n] = (R_0)^n$ $\succ \sqrt[n]{\mathbb{E}[X_n]} = R_0$ $\succ \mathbb{E}[X_{n+1}] / \mathbb{E}[X_n] = R_0$

- > Threshold property:
 - If $\mathbf{R}_0 \leq 1$ the BP goes extinct with probability 1 (small epidemic)
 - If $\mathbf{R}_0 > 1$ the BP goes extinct with probability given by the smallest solution $\mathbf{s} \in [0,1]$ of

$$s = \sum_{k=0}^{\infty} \xi_k s^k$$

Assume $X_0 = 1$. Then:

> $\mathbb{E}[X_n] = (R_0)^n$ > $\sqrt[n]{\mathbb{E}}[X_n] = R_0$ > $\mathbb{E}[X_{n+1}]/\mathbb{E}[X_n] = R_0$

Properties of R₀

- Threshold parameter:
 - If $\boldsymbol{R}_0 \leq 1$, only small epidemics
 - If $R_0 > 1$, possible large epidemics
- Probability of a large epidemic
- ➢ Final size:

$$1-z=e^{-R_0z}$$

Critical vaccination coverage:

$$\boldsymbol{p}_{C} = 1 - \frac{1}{\boldsymbol{R}_{0}}$$

 \succ If $X_0 = 1$, then

$$\boldsymbol{R}_{0} = \mathbb{E}[\boldsymbol{X}_{1}] = \lim_{N \to \infty} \mathbb{E}[\boldsymbol{X}_{n}^{(N)}]$$

Properties of R₀

- Threshold parameter:
 - If $\boldsymbol{R}_0 \leq 1$, only small epidemics
 - If $R_0 > 1$, possible large epidemics
- Probability of a large epidemic
- \succ Final size:

$$1-z=e^{-R_0z}$$

Critical vaccination coverage:

$$\boldsymbol{p}_{C} = 1 - \frac{1}{\boldsymbol{R}_{0}}$$

 \succ If $X_0 = 1$, then

$$\boldsymbol{R}_{0} = \mathbb{E}[\boldsymbol{X}_{1}] = \lim_{N \to \infty} \mathbb{E}[\boldsymbol{X}_{n}^{(N)}]$$

HOUSEHOLDS MODELS
Within-household epidemic

- Repeated contacts towards the same individual
 - Only the first one matters
- Many contacts "wasted" on immune people
 - Number of immunes changes over time -> nonlinearity
- Overlapping generations

Imperial College

London

Time of events can be important

Imperial College London Rank VS true generations

- ▹ sSIR model:
 - draw an arrow from individual to each other individual with probability $1 \exp\left(\frac{\lambda}{n-1}I_i\right)$

Centre for Outbreak Analysis

and Modelling

- attach a weight given by the (relative) time of infection
- Rank-based generations = minimum path length from initial infective
- \blacktriangleright Real-time generations = minimum sum of weights

