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Basic reproduction number R0

Naïve definition:

“    Average number of new cases generated by a typical case, 

throughout the entire infectious period, in a large and otherwise 

fully susceptible population    ”

Requirements:

1) New real infections

2) Typical infector

3) Large population

4) Fully susceptible



Branching process approximation

 Follow the epidemic in generations:

 number of infected cases in generation     (pop. size     )

 For every fixed    ,                           

where       is the    -th generation of a simple Galton-Watson 

branching process (BP)

 Let       be the random number of children of an individual in the BP, 

and let                                             be the offspring distribution.

 Define

 We have “linearised” the early phase of the epidemic
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 Threshold parameter:
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Multitype epidemic model

 Different types of individuals

 Define the next generation matrix (NGM):

where       is the average number of type- cases generated by a 

type- case, throughout the entire infectious period, in a fully 

susceptible population

Properties of the NGM:

 Non-negative elements

 We assume positive regularity
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Perron-Frobenius theory

 Single dominant eigenvalue , which is positive and real

 “Dominant” eigenvector      has non-negative components

 For (almost) every starting condition, after a few generations, the 

proportions of cases of each type in a generation converge to the 

components of the dominant eigenvector     , with per-generation 

multiplicative factor 

 Define 

 Interpret “typical” case as a linear combination of cases of each 

type given by 
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Formal definition of R0

Start the BP with a     -case:

 number of      -cases in generation       

 total number of cases in generation

 Then:

Compare with single-type model:
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Basic reproduction number R0

Naïve definition:

“    Average number of new cases generated by a typical case, 

throughout the entire infectious period, in a large and otherwise 

fully susceptible population    ”

Requirements:

1) New real infections

2) Typical infector

3) Large population

4) Fully susceptible



Network models

 People connected by a static network of 

acquaintances

 Simple case: no short loops, i.e. locally tree-like

 Repeated contacts

 First case is special

 is not a threshold

 Define:

 Difficult case: short loops, clustering

 Maybe not even possible to use branching 

process approximation or define 
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Basic reproduction number R0

Naïve definition:
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HOUSEHOLDS MODELS

Reproduction numbers

Definition of R0

Generalisations



Model description



Example: sSIR households model

 Population of       households with of size 

 Upon infection, each case   :

 remains infectious for a duration            , iid

 makes infectious contacts with each household member 

according to a homogeneous Poisson process with rate

 makes contacts with each person in the population according to 

a homogeneous Poisson process with rate

 Contacted individuals, if susceptible, become infected

 Recovered individuals are immune to further infection
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Household reproduction number R

 Consider a within-household epidemic 

started by one initial case 

 Define:

 average household final size, 

excluding the initial case

 average number of global 

infections an individual makes

 “Linearise” the epidemic process at the 

level of households:

 : 1G LR    
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Individual reproduction number RI

 Attribute all further cases in a household to the primary case

 is the dominant eigenvalue of        :

 More weight to the first case than it should be 
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Individual reproduction number RI

 Attribute all further cases in a household to the primary case

 is the dominant eigenvalue of        :

 More weight to the first case than it should be 
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Further improvement: R2

 Approximate tertiary cases:

 average number of cases infected by the primary case

 Assume that each secondary case infects       further cases

 Choose                       , such that                                                                    

so that the household epidemic yields the correct final size

 Then:

and       is the dominant eigenvalue of 
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Opposite approach: RHI

 All household cases contribute equally

 Less weight on initial cases than what it 

should be

:
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Perfect vaccine

 Assume 

 Define       as the fraction of 

the population that needs to 

be vaccinated to reduce     

below 1

 Then

Leaky vaccine

 Assume 

 Define        as the critical 

vaccine efficacy (in reducing 

susceptibility) required to 

reduce       below 1 when 

vaccinating the entire 

population

 Then

Vaccine-associated 

reproduction numbers RV and RVL
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Naïve approach:

next generation matrix

 Consider a within-household epidemic started by a single initial 

case. Type = generation they belong to.

 Define                                      the expected number of cases in 

each generation

 Let         be the average number of global infections from each case

 The next generation matrix is:
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More formal approach (I)

 Notation:

 average number of cases in generation      and household-

generation 

 average number of cases in generation      and 

any household-generation

 System dynamics:

 Derivation:
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More formal approach (II)

 System dynamics:

 Define

 System dynamics:

where 
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More formal approach (III)

 Let

 dominant eigenvalue of

 “dominant” eigenvector

 Then, for             :

 Therefore:
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 Recall:  Define:

 Then:

 So:

Similarity
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Generalisations

This approach can be extended to:

 Variable household size

 Household-network model

 Model with households and workplaces

 ... (probably) any structure that allows an embedded branching 

process in the early phase of the epidemic

... all signals that this is the “right” approach!



Households-workplaces model



Model description

Assumptions:

 Each individual belongs to a household and a workplace

 Rates               and        of making infectious contacts in each 

environment

 No loops in how households and workplaces are connected, i.e. 

locally tree-like
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Construction of R0

 Define                                          and                                               

for the households and workplaces generations

 Define

 Then          is the dominant eigenvalue of

where         
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Comparison 

between reproduction numbers

 Goldstein et al (2009) showed that

1R  1VLR  1rR  1VR  1HIR    
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Comparison 

between reproduction numbers

 Goldstein et al (2009) showed that

 To which we added

 In a growing epidemic:

 To which we added that, in a declining epidemic:
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Practical implications

 , so vaccinating                     is not enough

 Goldstein et al (2009):

 Now we have sharper bounds for      :
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Insight

 Recall that        is the dominant eigenvalue of

 From the characteristic polynomial, we find that         is the only 

positive root of
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Discrete Lotka-Euler equation

 Continuous-time Lotka-Euler equation:

 Discrete-generation Lotka-Euler equation:



 for  

 for 

 Therefore,              is the solution of 
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Fundamental interpretation

 For each reproduction number      , define a r.v.        describing the 

generation index of a randomly selected infective in a household 

epidemic 

 Distribution of        is

 From Lotka-Euler:

 Therefore:
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CONCLUSIONS



Why so long to come up with R0?

 Typical infective:

 “Suitable” average across all cases during a household epidemic

 Types are given by the generation index:

 not defined a priori

 appear only in real-time

 “Fully” susceptible population:

 the first case is never representative

 need to wait at least a few full households epidemics
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Conclusions

 After more than 15 years, we finally found 

 General approach

 clarifies relationship between all previously defined reproduction 

numbers for the households model

 works whenever a branching process can be imbedded in the 

early phase of the epidemic, i.e. when we can use Lotka-Euler 

for a “sub-unit”

 Allows sharper bounds for       :V
R
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Galton-Watson branching processes

 Threshold property:

 If                the BP goes extinct with 

probability 1 (small epidemic)

 If                the BP goes extinct with 

probability given by the smallest 

solution                 of                      
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Properties of R0

 Threshold parameter:

 If               , only small epidemics

 If               , possible large epidemics

 Probability of a large epidemic

 Final size:
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HOUSEHOLDS MODELS



Within-household epidemic

 Repeated contacts towards the same individual

 Only the first one matters

 Many contacts “wasted” on immune people

 Number of immunes changes over time -> nonlinearity

 Overlapping generations

 Time of events can be important



Rank VS true generations

 sSIR model: 

 draw an arrow from individual    to each other individual with 

probability

 attach a weight given by the (relative) time of infection

 Rank-based generations = minimum path length from initial infective

 Real-time generations = minimum sum of weights
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