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with S. Clémençon, H. De Arazoza and F. Rossi

September 16, 2011



2

Introduction

SIR on a random graph

Large graph limit

R0

Cuban data



3

SIR models on graphs

S -
r(S , I )

I -
βI

R

F The classical SIR model of Kermack and McKendrick is mixing
(1927): r(S , I ) = r × S × I

F What happens when social networks are taken into account ?

F We consider that each individual is the vertex of a non-oriented graph
and that it has a random number of neighbors with whom she/he is
linked by an edge.
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Cuban data

F The AIDS epidemics is present in Cuba since 25 years and a database
contains detections since 1986 with information for contact-tracing.

F Mixing compartmental models with CT: De Arazoza-Lounes (2002),
Clémençon-De Arazoza-T. (2008), Blum-T. (2010) with various
statistical motivations.

F We are interested in models for the AIDS epidemic in Cuba with
consideration of the network between individuals: stochastic description
(individual-based model) and deterministic approximation.

Acknowledgements: This work has been financed by ANR Viroscopy .
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Cuba CT graph

woman
bisexual man
heterosexual man

I 5389 ind., 4073 edges

I Giant component: 2386
ind. (44%), 3168 edges
(78%)

I Second largest
component has 17
edges.

I almost 2000 isolated
ind. or couples.

Thanks to Dr. J. Perez of the National Institute of Tropical Diseases in
Cuba for granting access to the HIV/AIDS database.
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Questions

F Which graph model ?
Configuration model: Bollobas (80), Molloy Reed (95), Durett (07), van
der Hofstad (in prep.)

F How to describe the evolution ? or approximate it ?
Denumberable system of equations (Ball and Neal (2008)).

F Volz (2008) proposes a system of only 4 ODEs to describe the
evolution of the epidemic. But the mathematical proof to go from a
finite random graph to an infinite graph is left open.

F Miller (2011) proposes a simple derivation of Volz’ equation based on
different variables and the assumption of an infinite graph.

We construct a model that allow us to recover Volz’s equations and
prove the approximation that he proposes.
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Joint distribution of the degrees of two neighbors
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Figure: Joint degree distribution of alter and ego for the population of MSM.

If we restrict to the subgroup of individuals with less than 10
contacts, the independence assumption is accepted thanks to a χ2 test.
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Stochastic model for a finite graph with n vertices
F Only the edges between the I and R individuals are observed. The
degree of each individual is known.

F To each I individual is associated an exponential random clock with
rate β to determine its removal.

F To each open edge (directed to S), we associate a random exponential
clock with rate r .

F When it rings, the edge of an S is chosen at random. We determine
whether its remaining edges are linked with S, I or R-type individuals.

(a) (b) (c)
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Edge-based quantities
F The idea of Volz is to use network-centric quantities (such as the
number of edges from I to S) rather than node-centric quantities.

F St , It , Rt , St , It , Rt , di , di (St)...
µ finite measure on N and f bounded or > 0 function:
〈µ, f 〉 =

∑
k∈N f (k)µ(k).

F We introduce the following measures:

µSt (dk) =
∑
i∈St

δdi (dk) µSIt (dk) =
∑
i∈It

δdi (St)(dk)

µSRt (dk) =
∑
i∈Rt

δdi (St)(dk)

This sums up the evolution of the epidemic (but does not allow the
reconstruction of the complicated graph on which the illness propagates).

It = Card(It) = 〈µSIt , 1〉, NSIt = 〈µSIt , k〉 =
∑
i∈It

di (St)
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Dynamics
F Global force of infection: rNSIt− .

F Choice of a given susceptible of degree k: k/NSt− .

So that the rate of infection of a given susceptible of degree k is: rkpIt− .
F The probability that its k − 1 remaining edges are linked to I or R is:

p(j , `,m|k − 1, t) =

( j
NSIt− −1

)(
`

NSRt−

)(
m

NSSt−

)
(

k−1
NSt−−1

) 1j+`+m=k−11j<NSIt−
1`≤NSRt−

F To modify the degree distributions µSIt− (idem for µSRt− ):
We draw a sequence u = (um)1≤m≤It− of integers.
• um is the number of edges to the m-th infectious individual at t−.
• not all sequences are admissible.

The probability of drawing the sequence u is

ρU(u | j , µSIT−) =

∏
i∈It−

(
di
ui

)
(NSIt−
j+1

) 1{
∑

ui=j+1, u is admissible}.
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Renormalization

F We are interested in increasing the number of vertices n without
rescaling the degree distribution.
µn,S , µn,SI , µn,SR.

F We now consider µ(n),S , µ(n),SI and µ(n),SR where for ex:

µ
(n),S
t (dk) =

1

n
µn,S
t (dk) with lim

n→+∞
µ

(n),S
0 = µ̄S0 in MF (N)

(idem for µ
(n),SI
0 with N̄SI0 > ε and µ

(n),SR
0 with N̄SR0 > ε)

F 3 SDE:

〈µ(n),SI
t , f 〉 = 〈µ(n),SI

0 , f 〉+ A
(n),SI,f
t + M

(n),SI,f
t ,

where M(n),SI,f is a square integrable martingale started from 0 and with
previsible quadratic variation in 1/n.
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F A
(n),IS,f
t :

A
(n),IS,f
t = −

∫ t

0

β〈µ(n),SI
s , f 〉ds

+

∫ t

0

∑
k∈N

rkp(n),I
s µ(n),S

s (k)
∑

j+`+1≤k

pns (j , `,m|k − 1, t)

×
∑
u∈U

ρU(u|j + 1, µn,SI
s )

(
f (m) +

I ns∑
i=1

(
f (di − ui )− f (di )

))
ds,

Th: Under appropriate moment conditions, (µ
(n),S
t , µ

(n),SI
t , µ

(n),SR
t )t∈R+

converge to a deterministic limit (µ̄St , µ̄
SI
t , µ̄SRt )t∈R+

〈µ̄SIt , f 〉 = 〈µ̄SI0 , f 〉 −
∫ t

0

β〈µ̄SIs , f 〉ds

+

∫ t

0

∑
k∈N∗

rkp̄Is
∑

j+`+m=k−1

((j , `, m
k − 1

)
(p̄Is )j(p̄Rs )`(p̄Ss )m

)
×
(
f (m) + (j + 1)

∑
k′∈N∗

(
f (k ′ − 1)− f (k ′)

)k ′µ̄SIs (k ′)

〈µ̄SIs , k〉

)
µ̄Ss (k)ds
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Deterministic limit

F Limit equations:

µ̄St (k) = µ̄S0 (k)θkt , θt = e−r
∫ t

0
p̄Is ds

〈µ̄SIt , f 〉 = ...

〈µ̄SRt , f 〉 =

∫ t

0

β〈µ̄SIs , f 〉ds

+

∫ t

0

∑
k∈N

rkp̄Is (k − 1)p̄Rs
∑
k′∈N

(
f (k ′ − 1)− f (k ′)

)k ′µSRs (k ′)

N̄SRs
µ̄Ss (k)ds

F This allows us to recover Volz’equations:
• Choosing f ≡ 1 gives S̄t , Īt ,
• Choosing f (k) = k gives N̄S , N̄SI , N̄SR,

from which we can deduce p̄I = N̄SI/N̄S ...
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Volz’equations
Prop: let g(z) =

∑
k∈N µ̄

S
0 (k)zk be the generating function of µ̄S0 .

θt = exp
(
− r

∫ t

0

pIs ds
)

S̄t =g(θt), Īt = Ī0 +

∫ t

0

(
r p̄Is θsg

′(θs)− β Īs
)
ds

p̄It =
N̄SIt
N̄St

= p̄I0 +

∫ t

0

(
r p̄Is p̄

S
s θs

g ′′(θs)

g ′(θs)
− r p̄Is (1− p̄Is )− µp̄Is

)
ds.

p̄St =
N̄SSt
N̄St

= p̄S0 +

∫ t

0

r p̄Is p̄
S
s

(
1− θs

g ′′(θs)

g ′(θs)

)
ds.

2

Recall the limit for mixing models:

dS̄t
dt

=− r S̄t Īt ,
dĪt
dt

= r S̄t Īt − β Īt .

Here:

dS̄t
dt

=g ′(θt)θ̇t = −rg ′(θt)θt p̄It = −r N̄St p̄It = −r N̄SIt .
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Sketch of the proof

Assumption: supn∈N∗
(
〈µ(n),S

0 , 1 + k5〉+ 〈µ(n),SI
0 , 1 + k5〉

)
< +∞,

F Tightness: topology on MF (N). Roelly’s criterion. Aldous-Rebolledo
criterion.

P
(
|A(n),SI,f
τn − A(n),SI,f

σn
| > ε

)
≤ ε

P
(
|〈M(n),SI,f 〉τn − 〈M(n),SI,f 〉σn | > ε

)
≤ ε.

F Convergence of the generators.
• The identification of the limit is OK on [0,T ] IF T < τnε where

τnε = inf{t ≥ 0, N
(n),SI
t < ε}.

F Uniqueness:
• Gronwall’s lemma gives that solutions of the limiting equation have

same mass and same moments of order 1 and 2.
• Uniqueness of the generating function of µ̄IS which solves a

transport equation.
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Computation of the R0

• At the beginning of the epidemic, if It << St then the new infectives
are linked with the I only through the individuals who infected them.
• The degree of the new infective is k − 1 with probability
kpk/

∑
k∈N kpk .

• Her/his infectious time y is an exponential r.v. of parameter β.
• Conditionally on the degree k − 1 and lifelength y , the number of
contaminated neighbors ν follows a binomial distrib. B(k − 1, 1− e−ry ).
• If ν is the number of contaminating edges:

P(ν = m) =
∑

k−1≥m

k pk∑
j∈N j pj

∫
R+

(
k − 1

m

)(
1−e−ry

)m
e−r(k−1−m)yβe−βydy .

• Super-criticality ⇔ z =
∑+∞

m=0 z
mP(ν = m) admits a solution < 1 ⇔

R0 := E(ν) > 1:

R0 =
r

r + β

g ′′(1)

g ′(1)
, where g(s) =

∑
k≥0

pks
k .
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Evolution of the Cuban HIV-AIDS epidemics
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Degree distribution

Kk0 (p, α) =
∑
k≥k0

pk
cp,k0

log

(
Cα · pk

cp,k0 · k−α

)
,

where cp,k0 =
∑

k≥k0
pk and Cα =

∑
k≥k0

1/kα.

α̂k0 = arg min
α>1
Kk0 (p, α).

k̂0 α̂k0 Mean Std dev. Min Max
Whole population 7 3.06 6.17 5.54 1 82

Women 6 2.71 5.88 5.03 1 39
Heterosexual men 7 3.36 4.98 4.11 1 30

MSM 7 3.02 6.43 5.84 1 82
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Clustering the Cuban network
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Clustering the Cuban network
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