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Overlapping cliques

Many real social networks are rather “clique-based”.
Individuals are part of households, in which everybody contacts
everybody.
They are also part of work spaces, school classes, groups of friends
etc.
To model SIR epidemics on networks incorporating this clique
structure and obtain analytic results one can use: bipartite graphs
(Newman (2002)) or random intersection graphs (Britton, Deijfen,
Lager̊as & Lindholm (2008) and Deijfen & Kets (2009)).
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Drawbacks of existing models and analysis

Analysis of epidemics on those networks with random
infectious periods is not done yet

Models are mainly studied as tools to create networks with
clustering, not as models for real-life networks in itself
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The graph

We use a bipartite random intersection-like graph:

Two types of vertices: persons and cliques

The number of persons is n and the number of cliques is m,
where m = bαnc
Persons get weights distributed as A and cliques get weights
distributed as B, with

µ := αE(B) = E(A) <∞

Create an intermediate graph A by independently connecting
persons with cliques. A person with weight ai shares a
Poisson number of edges with a clique of weight bj with mean
aibj/(µn)

Ball, Sirl and Trapman Stockholm University

Epidemics on random intersection graphs



Introduction The Graph The Epidemic Final Size Final Remarks

A person of weight a has degree Poisson(a
∑bαnc

i=1 bi/(µn))
and a clique of weight b has degree Poisson(b

∑n
i=1 ai/(µn))

By the Law of Large Numbers, the degree distributions are
close to Poisson(a) and Poisson(b)

Multiple edges are sparse

The graph G is obtained by projecting away the clique
vertices:
i.e., connecting pairs of persons that have distance 2 in A and
then removing all the clique vertices.
The clique vertices in A now correspond to complete
subgraphs in G : The cliques
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The number of cliques a vertex of weight a is part of,
X := X (a), is (asymtotically) characterized by the generating
function

fX (s; a) = E(sX (a)) = e−a(1−s)

The generating function of the unconditional distribution of
the number of cliques a vertex is part of is given by
fX (s) = EA(e−A(1−s))

The number of vertices in a clique with clique-weight b,
Y := Y (b), is characterized by the generating function

fY (s; b) = E(sY (b)) = e−b(1−s)

The generating function of the unconditional distribution of
the number of vertices in a clique is given by
fY (s) = EB(e−B(1−s))
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The number of other vertices in a clique of a given vertex is
not distributed as Y − 1, but according to the size biased
distribution, with generating function

fȲ (s) =
EB(Be−B(1−s))

E(B)
.

The degree distribution of the vertices is characterized by the
generating function fX (fȲ (s)). This can be used to compute
the expected degree and second moment of degree
distribution,

E(D) = E(XȲ ) = αE(B2)

E(D(D − 1)) = E(XȲ (Ȳ − 1)) + E(X (X − 1))(E(Ȳ ))2

= αE(B3) + E(A2)

[
E(B2)

E(B)

]2
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SIR epidemic model

Neighbors in the graph make contacts according to
independent Poisson processes with intensity 1

When a Susceptible contacts an infective, it becomes
Infectious immediately

Infectious vertices stay so for a random time, distributed as I,
the lengths of infectious periods are independent

After the infectious period vertices Recover and stay immune
forever

Remark: The randomness of the infectious period makes analysis
of the epidemic non-trivial
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Locally dependent percolation

Start with a given directed graph G ′ = (V ,E ′), where all
edges in G are replaced by two directed edges in opposite
directions

Assign i.i.d. “(pseudo-)infectious periods” to the vertices
{Iv ; v ∈ V }
An edge starting at v is open with probability 1− e−Iv and
conditioned on {Iv ; v ∈ V }, the states of edges are
independent

The law of the vertices that can be reached by an open path
from the origin is the same as the law of vertices ultimately
recovered vertices
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Branching process approximations

Ordinary use of branching process approximations for the epidemic
process is hard:

Problem: The cliques cause many short cycles in the graph:
Solution: Declare all vertices affected by a local epidemic,
children of the first infectious vertex in the clique

New problem: The infectious period of a vertex and its
number of siblings are dependent, which implies that the
number of siblings and the number of children of a vertex are
dependent
Solution: We use a multi (uncountable)-type branching
process (cf. Bollobás, Janson and Riordan (2007 & 2010))
The type of a vertex is its infectious period

Ball, Sirl and Trapman Stockholm University

Epidemics on random intersection graphs



Introduction The Graph The Epidemic Final Size Final Remarks

Branching process approximations

Ordinary use of branching process approximations for the epidemic
process is hard:

Problem: The cliques cause many short cycles in the graph:
Solution: Declare all vertices affected by a local epidemic,
children of the first infectious vertex in the clique

New problem: The infectious period of a vertex and its
number of siblings are dependent, which implies that the
number of siblings and the number of children of a vertex are
dependent
Solution: We use a multi (uncountable)-type branching
process (cf. Bollobás, Janson and Riordan (2007 & 2010))
The type of a vertex is its infectious period

Ball, Sirl and Trapman Stockholm University

Epidemics on random intersection graphs



Introduction The Graph The Epidemic Final Size Final Remarks

Branching process approximations

Ordinary use of branching process approximations for the epidemic
process is hard:

Problem: The cliques cause many short cycles in the graph:
Solution: Declare all vertices affected by a local epidemic,
children of the first infectious vertex in the clique

New problem: The infectious period of a vertex and its
number of siblings are dependent, which implies that the
number of siblings and the number of children of a vertex are
dependent
Solution: We use a multi (uncountable)-type branching
process (cf. Bollobás, Janson and Riordan (2007 & 2010))
The type of a vertex is its infectious period

Ball, Sirl and Trapman Stockholm University

Epidemics on random intersection graphs



Introduction The Graph The Epidemic Final Size Final Remarks

Branching process approximations

Ordinary use of branching process approximations for the epidemic
process is hard:

Problem: The cliques cause many short cycles in the graph:
Solution: Declare all vertices affected by a local epidemic,
children of the first infectious vertex in the clique

New problem: The infectious period of a vertex and its
number of siblings are dependent, which implies that the
number of siblings and the number of children of a vertex are
dependent
Solution: We use a multi (uncountable)-type branching
process (cf. Bollobás, Janson and Riordan (2007 & 2010))
The type of a vertex is its infectious period

Ball, Sirl and Trapman Stockholm University

Epidemics on random intersection graphs



Introduction The Graph The Epidemic Final Size Final Remarks

Branching process approximations

Ordinary use of branching process approximations for the epidemic
process is hard:

Problem: The cliques cause many short cycles in the graph:
Solution: Declare all vertices affected by a local epidemic,
children of the first infectious vertex in the clique

New problem: The infectious period of a vertex and its
number of siblings are dependent, which implies that the
number of siblings and the number of children of a vertex are
dependent
Solution: We use a multi (uncountable)-type branching
process (cf. Bollobás, Janson and Riordan (2007 & 2010))
The type of a vertex is its infectious period

Ball, Sirl and Trapman Stockholm University

Epidemics on random intersection graphs



Introduction The Graph The Epidemic Final Size Final Remarks

epidemic within a clique

Use special case of results by Ball and O’Neill (1999):

Initially there are a infectious vertices, and n susceptibles. All
have infectious period I, if infected
Let u := u(f ) := (u0, u1, · · · ) be an infinite vector with
uk = E(e−kI f (I)), where f is some function
Gontcharoff polynomials are defined by the recursive relation:

xn

n!
=

n∑
k=0

(uk)n−k

(n − k)!
Gk(x |u)

Theorem (Ball and O’Neill (1999))

E(
∏
i∈S

f (Ii )) =
n∑

k=0

n!

(n − k)!
(uk)n−k+aGk(1|u)
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Some straightforward computations give that

E

(∏
i∈S

f (Ii )|I0 = x

)
= EB̄

( ∞∑
k=0

e−xk B̄ke−B̄(1−uk )Gk(1|u)

)

where uk = E(e−kI f (I)).
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Threshold parameter

Filling in f (x) = 1 for x = 0 and f (x) = s for x > 0 gives the
generating function of the final size in the clique

Assume initial infective in clique has infectious period x and
all n′ other persons are susceptible

Let T (n′; x) denote the random number of ultimately
recovered vertices out of the n′ initial susceptibles

An infected vertex is part of Ā cliques from which it is not
infected, and such a clique contains B̄ other vertices

Whether a vertex gets infected is independent of its infectious
period

R∗ = E(Ā)E(T (B̄, I)) ≤ E(A2)E(B2)

Note that if E(B2),E(A2) <∞ and E(B3) =∞ then
R∗ <∞ and Var(D) =∞

Ball, Sirl and Trapman Stockholm University
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The probability of survival

Φ(h)(x) := 1− E(
∏
i∈S

(1− h(Ii )|I0 = x)

= 1− EB̄(
∞∑
k=0

e−xk B̄ke−B̄(1−uk )Gk(1|u))

Fill in h(x) = ρ(x), where ρ(x) is the probability that the
offspring of a vertex with infectious period x , infected in the
early stages of an epidemic survives

ρ1(x) := Φ(ρ)(x), is the probability of survival of an epidemic
started by a vertex with infectious period x , which is part of
one clique

Ball, Sirl and Trapman Stockholm University
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ρ(x) = 1− E(e−Ā(ρ1(x))), So we know that ρ1 satisfies:

ρ1(x) = 1− EB̄

( ∞∑
k=0

e−xk B̄ke−B̄(1−uk )Gk(1|u)

)
,

where uk = E(e−kIe−Ā(ρ1(I))).

If R∗ > 1, (An ugly prove gives that) ρ1(x) is the unique
positive solution, satisfying this functional equation

Ball, Sirl and Trapman Stockholm University
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The final size of an epidemic

The final size of an epidemic is the number of ultimately
recovered vertices

The susceptibility set of vertex v is the set of all vertices that
if they were the initial infectious, then v would be ultimately
recovered (The in-component of the vertex v)

If there is a giant outbreak (the approximating branching
process in the forward direction survives), then the expected
fraction of vertices that is ultimately recovered is equal to the
probability that a uniformly at random chosen vertex has a
giant susceptibility set

Ball, Sirl and Trapman Stockholm University
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The susceptibility set of a vertex can be explored by a single
type branching process. Again all “progeny” within a clique is
considered as children of the initial vertex (in the exploration
process) in that clique

Using Gontcharoff polynomials allows to compute the
distribution of the number of children per vertex in this
backward process

Ball, Sirl and Trapman Stockholm University
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Complications might arise, because it is not nice if the initial
infective is in the early generations of the susceptibility set of
the vertex under consideration or if a large susceptibility set
does not overlap with a large epidemic

To overcome this problem we first ignore all vertices and
cliques with weight exceeding log[n]

Because both the vertex and clique weights have finite
expectation, the weight of the ignored vertices is o(n)

Run the forward exploration process generation by generation
up to generation dlog log[n]e
Show that the total weight of vertices and cliques affected by
this forward process is o(n1/3) (in probability)
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Run the exploration process of the susceptibility set in the
graph where all vertices and cliques in the already explored set
of the epidemic are temporarly ignored

Once this exploration process is finished, we check whether
the susceptibility set connects to the “still active” vertices of
the epidemic exploration process

If this susceptibility set is small, it will not connect to the
epidemic with probability tending to 1

Ball, Sirl and Trapman Stockholm University
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If the susceptibility set is large, it will have total weight of
both vertices and cliques θ(n) with probability tending to 1

If the epidemic process survives up to generation dlog log[n]e
and the susceptibility set of v has weight θ(n), then the two
processes can be glued together and v will be ultimately
recovered

If we start with 2 uniformly at random chosen vertices and
explore their susceptibility sets, we get a bound for the
variance of the final size, which is o(n2). That is the variance
of the fraction of ultimately recovered vertices converges to 0
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Similar results are expected to hold for configuration model in
which the number of cliques a vertex is part of is distributed as A
and the clique sizes are distributed as B
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