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Conformal mapping and planar random growth

Motivation

Model spatial configuration of populations of individuals that
grow randomly but are constrained from moving.

Describe growth that arises by reproduction (bacterial cells on
a petri dish) or by immigration (trees in a large forest).

Limitation - constrained to 2-dimensions, but still many
potential applications.
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Conformal mapping and planar random growth

Conformal mapping representation of single particle

Let D0 denote the exterior unit disk in the complex plane C. Let
K0 = C \ D0 be the closed unit disk. Consider a simply connected
set D1 ⊂ D0, such that P = Dc

1 \ K0 has diameter d ∈ (0, 1] and
1 ∈ P. The set P models an incoming particle, which is attached
to the unit disk at 1. We use the unique conformal mapping
fP : D0 → D1 as a mathematical description of the particle.
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Conformal mapping and planar random growth

Basic conformal mapping from the exterior disk
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Conformal mapping and planar random growth

Conformal mapping representation of a cluster

Let P1,P2, . . . be a sequence of particles with diam(Pj) = dj . Let

θ1, θ2, . . . be a sequence of angles. Define rotated copies f
θj

Pj
(z) of

the maps {fPj
} so that f

θj

Pj
(D0) = e iθj fPj

(D0). Take Φ0(z) = z ,

and recursively define

Φn(z) = Φn−1 ◦ f θn
Pn

(z), n = 1, 2, . . . .

This generates a sequence of conformal maps
Φn : D0 → Dn = C \ Kn, where Kn−1 ⊂ Kn are growing compact
sets, or clusters.
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Conformal mapping and planar random growth

Generalised Hastings-Levitov clusters

By choosing the sequences {θj} and {dj} in different ways, it is
possible to describe a wide class of growth models.

In the Hastings-Levitov family of models HL(α), α ∈ [0, 2], the θj

are chosen to be independent uniform random variables on the unit
circle which corresponds to the attachment point at the nth step
being distributed according to harmonic measure at infinity for
Kn−1. The particles are usually taken to be “slits” with diameters
taken as dj = d/|Φ′j−1(e

iθj )|α/2. Heuristically, the case α = 1
corresponds to the Eden model (biological cell growth) and the
case α = 2 is a candidate for off-lattice DLA.
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Conformal mapping and planar random growth

HL(0) cluster after a few arrivals with d = 1
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Conformal mapping and planar random growth

Anisotropic Hastings-Levitov model

Anisotropic Hastings-Levitov, AHL(ν), is a variant of the HL(0)
model in which θ1, θ2, . . . are i.i.d. random variables on the unit
circle with common law ν and dj = d .

Models can be further generalised by allowing P1, P2, . . . to be
chosen randomly from a class of suitable shapes, even with
d1, d2, . . . i.i.d. random variables (independent of {θj}) satisfying
certain conditions, however our results are not sensitive to these
changes.

The use of more general distributions for the angles is a way of
introducing anisotropy or localization in the growth. It is suggested
that such anisotropic Hastings-Levitov models may provide a
description for the growth of bacterial colonies where the
concentration of nutrients is directional.

Amanda Turner Department of Mathematics and Statistics Lancaster University

Scaling limits of planar random growth models



Scaling limits of Hastings-Levitov type clusters

Natural scaling limits

From the physical point of view, it is natural to consider particle
sizes that are very small compared to the overall size of the cluster.
We consider scaling limits where we scale the particle sizes and let
the number of particles grow at a rate depending on the particle
diameters.
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Scaling limits of Hastings-Levitov type clusters

HL(0) cluster after 800 arrivals with d = 0.1
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Scaling limits of Hastings-Levitov type clusters

HL(0) cluster after 5 000 arrivals with d = 0.04
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Scaling limits of Hastings-Levitov type clusters

HL(0) cluster after 20 000 arrivals with d = 0.02
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Scaling limits of Hastings-Levitov type clusters

Loewner chains

If µt is a family of probability measures on the unit circle T, the
Loewner equation

∂t ft(z) = zf ′t (z)

∫

T

z + ζ

z − ζ
dµt(ζ)

produces a family of conformal maps ft : D0 → C \ Kt , where Kt is
a growing sequence of compact sets.
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Scaling limits of Hastings-Levitov type clusters

A shape theorem

Suppose that the particles P1, P2, . . . in AHL(ν) are chosen to be
identical and symmetric, with diameter d (and a few technical
conditions). If O(d−2) particles are added, the macroscopic shape
of the cluster converges almost surely as d → 0 and the limit can
be realized as the image of the solution to the Loewner equation
driven by the angle measure ν evaluated at a suitable time.
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Scaling limits of Hastings-Levitov type clusters

The isotropic case

In the case dµt(ζ) = |dζ|/2π, the Loewner equation reduces to

∂t ft(z) = zf ′t (z),

and we see that ft(z) = etz , so that Kt = etK0.

This shows that the macroscopic shape of the cluster grows like an
expanding disc, as seen in the simulations above.
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Scaling limits of Hastings-Levitov type clusters

Angles chosen in an interval

For η ∈ (0, 1], let θj be chosen uniformly in [0, η]. Then

dν(e2πix) =
χ[0,η](x)dx

η
.

The clusters converge to the hulls of the Loewner chain described
by the equation

∂t ft(z) = zf ′t (z)

(
1 +

2

η
arctan

[
e iπη sin(πη)

z − e iπη cos(πη)

])
.
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Scaling limits of Hastings-Levitov type clusters

AHL on the half circle

Simulation of AHL(ν) and limiting Loewner hull, for d = 0.02 after
25000 arrivals, corresponding to dν(e2πix) = 2χ[0,1/2](x)dx .
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Scaling limits of Hastings-Levitov type clusters

Angles chosen from a density with m-fold symmetry

For fixed m ∈ N, choose θj distributed according to the density

dν(e2πix) = 2 sin2(mπx)dx .

The clusters converge to the hulls of the Loewner chain described
by the equation

∂t ft(z) = zf ′t (z)

(
1− 1

zm

)
.
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Scaling limits of Hastings-Levitov type clusters

AHL for a measure with 3-fold symmetry

Simulation of AHL(ν) and limiting Loewner hull, for d = 0.02 after
25000 arrivals, corresponding to dν(e2πix) = 2 sin2(3πx)dx .
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The fine scale structure of the clusters

Location of particles

Let c = log f ′P(∞) be the logarithmic capacity of the particle. Then
for ε > 0 and m ∈ N (can depend on d subject to constraints),
with high probability as d → 0, for all n ≤ m and all n′ ≥ m + 1,

|z − ecn+iΘn | ≤ εecn for all z ∈ Pn,

dist(w , Kn) ≤ εecn whenever |w | ≤ ecn,

|z | ≥ (1− ε)ecm for all z ∈ Pn′ .
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The fine scale structure of the clusters

Fingers and gap paths

Convenient to work in logarithmic space:

K̃n = {z ∈ C : ez ∈ Kn} ⊆ R+ × R (time-space).

Fix N ∈ N.

For Re(z) ≥ 0, let finger(z) be the nearest particle to z in K̃N ,
together with all its “parent” particles.

Let gap(z) denote the unique minimal length path from the

nearest point to z in K̃ c
N to ∞ that does not leave K̃ c

N .
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The fine scale structure of the clusters

Diagram illustrating fingers and gap paths
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The fine scale structure of the clusters

Local limit result

For any fixed T > 0 and finite E ⊂ [0, T ]× R, let N = bc−1T c so
that KN is approximately a disc of radius eT . Under a rescaling of
“space” by d−1/2, the gap paths in KN starting from points in E
converge to coalescing Brownian motions starting from E and the
fingers converge to coalescing backwards Brownian motions
starting from E .
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The fine scale structure of the clusters

Local limit approximation of fingers and gap paths for
T = 1 and d = 0.01
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The fine scale structure of the clusters

Global limit result

For any fixed T > 0 and finite E ⊂ [0, T ]× R, let N = b(cd)−1T c
so that KN is approximately a disc of radius eT/d . Under a
rescaling of “time” by d , the gap paths in KN starting from points
in E converge to coalescing periodic Brownian motions starting
from E and the fingers converge to coalescing periodic backwards
Brownian motions starting from E .
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The fine scale structure of the clusters

Global limit approximation of fingers and gap paths for
T = 1 and d = 0.05
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Open problems on epidemics

Epidemics on Hastings-Levitov clusters?

Epidemic spreads to particles at range O(d) on K∞?

As above but immunity passed on to offspring?

At time n epidemic spreads to particles at range O(d) on Kn?

As above, but children of infected particles have a different
size to children of uninfected particles?

As above, but distribution of Θn+1 depends on arrangement
of infected particles in Kn?

Infected particles are removed from the cluster at certain rate?

. . . ?

Problems likely to be mathematically very hard but perhaps
simulations can reveal interesting results. Many natural potential
applications.
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