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Percolation on hypercube

Study random subgraph of hypercube Q,, = {0, 1}", with bonds

{Hx,y}: 3iwithz; # y,}.

Make bonds {z,y} independently

occupied with probability p,
vacant  with probability 1 — p,

where p € [0, 1] is percolation parameter.

Goal: Study percolation phase transition as n — oc.

Erdés and Spencer (1979): for p =1/2+ ¢/2n, random graph con-
nected with probability e ¢ (1o(l)



Inspiration: Erdés-Rényi random graph

Erdos-Rényi random graph is random subgraph of complete graph on
V vertices where each of (g) edges is occupied with probab. p.

Phase transition: (Erdés and Rényi (60))

Forp = (1 +¢)/V, largest connected component |C,,.«| is
(@) O(log V) fore < 0;

(b) ©p(V) fore > 0;

Scaling window: (Bollobas (84) and tuczak (90))
For p = (1/V)(1+ X\/V1/3), largest component is O,(1/%/%), with ex-
pected cluster size O(1/1/3),

BCHSS05a, 05b: with x(p) = E,|C(v)| expected cluster size on hyper-
cube, define critical threshold p.(Q,,) by

X(p) _ 2n/3 _ V1/3.



(Sub-)Critical results

Theorem 1 (Subcritical clusters) (BCHSS (05a), (05b)).
For p = p.(1 + ), and uniformly in e < 0,asn — oo,
o)

e+ 2

X(p)

P, (XQ(p) < [Cunax| < 2X°(p) log (2”/X3(p))> > 1—1log (2°/x°(p) .

Theorem 2 (Scaling window) (BCHSS (05a), (05b)).
Forp = p.(1 + €), with |[e| < A27"/3 there exists b; = b;(A) > 0 s.t.

Pp(w—122”/3 < |Cax| < w22"/3> > 1 — b
w

vdHHe (11): |Cpax|272"/3 is tight and non-degenerate:
hallmark of critical behavior.



Supercritical results

Theorem 3 (Supercritical clusters) (vdH+Nachmias (11)).
Forp = p.(1 + ), with e > 277/3,

‘Cmax| P v 1
2eon 7

while, with C,) denoting second largest connected component,

Cal =, 0.
gn

X(p) = 4e”2"(1 + o(1)).

Percolation phase transitions hypercube and complete graph alike:
2¢ is asymptotic survival probability of branching process with
Poisson(l + ¢)-offspring distribution.



Previous work hypercube
Ajtai, Komlés and Szemerédi (82): Forp = (1 +¢)/n,

|Cnax| = ©p(e2")  fore > 0, ICinax| = 0(2") whp  fore < 0.

Bollobas, Kohayakawa and tuczak (92):
Conae| = (210g2)§(1 +o(1)) whp fore < —(logn)/(v/nloglogn),

Crnax| = 252”(1 + 0(1)) whp fore > 60(log n)?’/n

Transition is extremely sharp, critical value close to 1 /n.

Question BKL: Is critical value equalto 1/(n — 1)?



Hierarchy of phase transitions on hypercube

Theorem 4 (Asymptotic expansion p.). (BCHSS, vdHS05,06, vdHN11)
There exist rational numbers a; with a; = ay = 1, a3 = 7/2, s.t., for ev-
ery s > 1,if

p= Z ain”~" 4+ dn"",
1=1
with 0 < 0, then, asn — oo,
Crax| < (21og 2)n* 16|21 + op(1)] a.s.,
while foro > 0, as n — oo,

|Conaxe| = 26707127 (1 + 0,(1)).

Extension of AKS to all powers 1/n, answers question BKL negatively.



Proof AKS: sprinkling

Fix small 6 > 0. Write p; = (1 + (1 — d)e)/n and p, ~ de/n s.t.

(I=p)(I —p2)=1-p.
G/, is union of edges in independent copies GG, and G,.

Step 1: prove weak bound: in GG, positive fraction vertices has large
cluster of size > 21" where ¢; > 0 fixed.
Uses: branching process approximation and Azuma-Hoeffding.

Step 2: add sprinkled edges of G, and show they connect many large
clusters into giant cluster of size ©(2").

Key tool: isoperimetric inequality for hypercube:
Two disjoint sets of size of order 2" are connected by at least 2 /n'"
disjoint paths of length O(\/n).



Proof AKS: sprinkling (Cont.)

Let VV/ be vertices whose component has size at least 2" in GG, SO
that V'] = ©(2").

If largest connected component in G,, U G, has size < 2", then we
can partition

Vi=AWB
s.t. |A|, |B| = ©(2"), and any path of length at most \/n between them
contains p>-closed edge.

Number of such partitions is at most 22"/>"" probability that path of
length % contains p,-closed edge is 1 — p5. By isoperimetric inequality

n

Wasteful: Worst-case, clusters more like random sets.



Proof 1: supercritical cluster tails

Theorem 5 (Supercritical cluster tails). Let p = p.(1 + ¢). Then, for
ko = e 2(e?V)“ forany o € (0,1/3),

P,(|C(0)| > ko) = 2¢(1 + o(1)).

Further, with
A HUZ C(v)] > k}

denoting number of vertices in large clusters,

)

Proof: Differential inequalities (as in BA91, BCHSS05a), with careful
analysis of constants involved.



Proof 2: using non-backtracking random walk

LetP,(0 4 x) denote probability that 0 is connected to = with shortest

path of length € [a, ).

Take r > 1/e.
[r,2r]

We show that IP,(0 «— =) is almost constant in x for large » by com-
paring percolation paths to non-backtracking random walk, which is
random walk conditioned not to reverse immediately.

Then,

72/ r27

P,( ZP 0 ¥ ) < B, Bo(r)|/V.

This makes performing compllcated sums relatively easy.



Proof 3: large clusters share large boundary

Forz,y € Q, and 7, let
Se(z,y) = [{(u,) € E: x Sy < u'}].
Pair -,y is good when |C(x)|, |C(y)| > Kz2, and
Sarrg(@,y) = 27" 2(e2")/(log(*2") ),
Write P, ,, x for number of (r, 7, K')-good pairs.

Theorem 6 (Most large clusters share many boundary edges).
Assume £%2" — co,e < n?. Take M = loglog log(e*2"), r = M /e, and
ro = e ' log(e*2") — loglog(¢*2")] /2. Then, there exists K — oo s.t.

PT,T’Q,K P

> 1.
(2eV)?




Proof 4: improved sprinkling

Take p. = 0= /n for our sprinkling probability, where ¢ > 0 is small. Let
P1 SatiSfy

p=p1+(1—pi)ps+,
Given G,,, construct auxiliary simple graph H = (V, £) with
V={zeG,: [Cx)> Kffz}, E = {(az,y) e V? (v, 7,70, K)-good},

Py (Pryy i > (1 — a)4e”2”", V]| € [(2 — O)e, (2 + 0)e]) > 1 — 4.

Claim: Probability there exists partition V = M; W M, with || > v
and |M,| > 6v s.t. sprinkled edges do not connect M to M, is small.

Step 1: Number of partitions is at most 235 <V

Step 2: Given such partition, number of edges (u, u') between C(M;)
and C(Mo) is at least c=*n2".



Open problems and extension

(@) Study second largest component in supercritical phase on hyper-
cube, and prove discrete duality principle.

(b) CLT for giant component.

(c) Investigate whether scaling limit of largest clusters is same as for
ERRG in Aldous (97).

(d) Extension: Hamming graph= product of d complete graphs.

Results apply for p = p.(1 + &), where &*V — oo withe < 1/log V, where
volumeis V = n?,
d = 2 : Together with BCHSS05a, BCHSS05b, vdH+Luczak (10), this com-

pletes barely supercritical regime.
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