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Percolation on hypercube

Study random subgraph of hypercube Qn = {0, 1}n, with bonds

{{x, y} : ∃! i with xi 6= yi}.

Make bonds {x, y} independently

occupied with probability p,
vacant with probability 1− p,

where p ∈ [0, 1] is percolation parameter.

Goal: Study percolation phase transition as n→∞.

Erdős and Spencer (1979): for p = 1/2 + ε/2n, random graph con-
nected with probability e−e

−ε(1+o(1)).



Inspiration: Erdős-Rényi random graph

Erdős-Rényi random graph is random subgraph of complete graph on
V vertices where each of

(
V
2

)
edges is occupied with probab. p.

Phase transition: (Erdős and Rényi (60))
For p = (1 + ε)/V, largest connected component |Cmax| is
(a) ΘP(log V ) for ε < 0;

(b) ΘP(V ) for ε > 0;

Scaling window: (Bollobás (84) and Łuczak (90))
For p = (1/V )(1 + λ/V 1/3), largest component is ΘP(V

2/3), with ex-
pected cluster size Θ(V 1/3).

BCHSS05a, 05b: with χ(p) = Ep|C(v)| expected cluster size on hyper-
cube, define critical threshold pc(Qn) by

χ(p) = 2n/3 = V 1/3.



(Sub-)Critical results

Theorem 1 (Subcritical clusters) (BCHSS (05a), (05b)).
For p = pc(1 + ε), and uniformly in ε ≤ 0, as n→∞,

χ(p) =
O(1)

|ε| + 2−n/3
,

Pp
(
χ2(p) ≤ |Cmax| ≤ 2χ2(p) log

(
2n/χ3(p)

))
≥ 1− log

(
2n/χ3(p)

)−3/2
.

Theorem 2 (Scaling window) (BCHSS (05a), (05b)).
For p = pc(1 + ε), with |ε| ≤ Λ2−n/3, there exists b1 = b1(Λ) > 0 s.t.

Pp
(
ω−122n/3 ≤ |Cmax| ≤ ω22n/3

)
≥ 1− b1

ω
.

vdHHe (11): |Cmax|2−2n/3 is tight and non-degenerate:
hallmark of critical behavior.



Supercritical results

Theorem 3 (Supercritical clusters) (vdH+Nachmias (11)).
For p = pc(1 + ε), with ε� 2−n/3,

|Cmax|
2ε2n

P−→ 1,

while, with C(2) denoting second largest connected component,

|C(2)|
ε2n

P−→ 0,

χ(p) = 4ε22n(1 + o(1)).

Percolation phase transitions hypercube and complete graph alike:
2ε is asymptotic survival probability of branching process with
Poisson(1 + ε)-offspring distribution.



Previous work hypercube

Ajtai, Komlós and Szemerédi (82): For p = (1 + ε)/n,

|Cmax| = ΘP(ε2
n) for ε > 0, |Cmax| = o(2n) whp for ε < 0.

Bollobás, Kohayakawa and Łuczak (92):

|Cmax| = (2 log 2)
n

ε2
(
1 + o(1)

)
whp for ε ≤ −(log n)2/(

√
n log log n),

|Cmax| = 2ε2n
(
1 + o(1)

)
whp for ε ≥ 60(log n)3/n.

Transition is extremely sharp, critical value close to 1/n.

Question BKL: Is critical value equal to 1/(n− 1)?



Hierarchy of phase transitions on hypercube

Theorem 4 (Asymptotic expansion pc). (BCHSS, vdHS05,06, vdHN11)
There exist rational numbers ai with a1 = a2 = 1, a3 = 7/2, s.t., for ev-
ery s ≥ 1, if

p =

s∑
i=1

ain
−i + δn−s,

with δ < 0, then, as n→∞,

|Cmax| ≤ (2 log 2)n2s−1|δ|−2[1 + oP(1)] a.s.,

while for δ > 0, as n→∞,

|Cmax| = 2δ−1n−(s−1)2n(1 + oP(1)).

Extension of AKS to all powers 1/n, answers question BKL negatively.



Proof AKS: sprinkling

Fix small δ > 0. Write p1 = (1 + (1− δ)ε)/n and p2 ≈ δε/n s.t.

(1− p1)(1− p2) = 1− p.

Gp is union of edges in independent copies Gp1 and Gp2.

Step 1: prove weak bound: in Gp1 positive fraction vertices has large
cluster of size≥ 2c1n, where c1 > 0 fixed.
Uses: branching process approximation and Azuma-Hoeffding.

Step 2: add sprinkled edges ofGp2 and show they connect many large
clusters into giant cluster of size Θ(2n).

Key tool: isoperimetric inequality for hypercube:
Two disjoint sets of size of order 2n are connected by at least 2n/n100

disjoint paths of length O(
√
n).



Proof AKS: sprinkling (Cont.)

Let V ′ be vertices whose component has size at least 2c1n in Gp1, so
that |V ′| = Θ(2n).

If largest connected component in Gp1 ∪Gp2 has size ≤ δ2n, then we
can partition

V ′ = A ]B
s.t. |A|, |B| = Θ(2n), and any path of length at most

√
n between them

contains p2-closed edge.

Number of such partitions is at most 22
n/2c1n, probability that path of

length k contains p2-closed edge is 1− pk2. By isoperimetric inequality

2c2
n/2c1n ·

(
1−

(cδε
n

)√n)c2n/n100
= e−c2

(1+o(1))n
.

Wasteful: Worst-case, clusters more like random sets.



Proof 1: supercritical cluster tails

Theorem 5 (Supercritical cluster tails). Let p = pc(1 + ε). Then, for
k0 = ε−2(ε3V )α for any α ∈ (0, 1/3),

Pp(|C(0)| ≥ k0) = 2ε(1 + o(1)).

Further, with
Z≥k =

∣∣{v : |C(v)| ≥ k
}∣∣,

denoting number of vertices in large clusters,

Z≥k0
2ε2n

P−→ 1.

Proof: Differential inequalities (as in BA91, BCHSS05a), with careful
analysis of constants involved.



Proof 2: using non-backtracking random walk

LetPp(0
[a,b]←→ x) denote probability that 0 is connected to xwith shortest

path of length ∈ [a, b].

Take r � 1/ε.

We show that Pp(0
[r,2r]←→ x) is almost constant in x for large r by com-

paring percolation paths to non-backtracking random walk, which is
random walk conditioned not to reverse immediately.

Then,

Pp(0
[r,2r]←→ x) ≈ 1

V

∑
x

Pp(0
[r,2r]←→ x) ≤ Ep|B0(r)|/V.

This makes performing complicated sums relatively easy.



Proof 3: large clusters share large boundary

For x, y ∈ Qn and `, let

S`(x, y) =
∣∣{(u, u′) ∈ E : x

`←→ u , y
`←→ u′

}∣∣ .
Pair x, y is good when |C(x)|, |C(y)| ≥ Kε−2, and

S2r+r0(x, y) ≥ n2−nε−2(ε2n)/(log(ε32n))2,

Write Pr,r0,K for number of (r, r0, K)-good pairs.

Theorem 6 (Most large clusters share many boundary edges).
Assume ε32n →∞, ε ≤ n−2. Take M = log log log(ε32n), r = M/ε, and
r0 = ε−1

[
log(ε32n)− log log(ε32n)

]
/2. Then, there exists K →∞ s.t.

Pr,r0,K
(2εV )2

P−→ 1 .



Proof 4: improved sprinkling

Take p+ = θε/n for our sprinkling probability, where θ > 0 is small. Let
p1 satisfy

p = p1 + (1− p1)p+ ,
Given Gp1, construct auxiliary simple graph H = (V , E) with

V =
{
x ∈ Gp1 : |C(x)| ≥ Kε−2

}
, E =

{
(x, y) ∈ V2 (γ, r, r0, K)-good

}
,

Pp1
(
Pr,r0,K ≥ (1− α)4ε222n, |V| ∈ [(2− θ)ε, (2 + θ)ε]

)
≥ 1− δ.

Claim: Probability there exists partition V = M1 ]M2 with |M1| ≥ θv

and |M2| ≥ θv s.t. sprinkled edges do not connect M1 to M2 is small.

Step 1: Number of partitions is at most 23K
−1ε3V .

Step 2: Given such partition, number of edges (u, u′) between C(M1)
and C(M2) is at least cε2n2n.



Open problems and extension

(a) Study second largest component in supercritical phase on hyper-
cube, and prove discrete duality principle.

(b) CLT for giant component.

(c) Investigate whether scaling limit of largest clusters is same as for
ERRG in Aldous (97).

(d) Extension: Hamming graph= product of d complete graphs.

Results apply for p = pc(1 + ε),where ε3V →∞with ε� 1/ log V,where
volume is V = nd.
d = 2 : Together with BCHSS05a, BCHSS05b, vdH+Luczak (10), this com-
pletes barely supercritical regime.
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