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This work explores the success of pair approximations in capturing local correla-
tions and the spatial structure of population contact networks, especially in respect
of the rate of spread of epidemics.

Networks of interest range from the local extreme where interactions are only be-
tween nearest neighbours in some low dimensional space, and the infinite-dimension-
al ’mean-field’ extreme where all interact equally with all [?, ?, ?, ?]. Intermedi-
ate cases of practical interest include ’small-world’ and meta-population models
[?, ?, ?].

One of the obvious distinctions between homogeneous mixing and spatial pop-
ulation structures lies in their local correlations: if ‘AB’ means ‘A is a neighbour
of B’, then P (AC|AB,BC) � P (AC) for the spatial case.

Pair approximation differential equations (PAs), that add second order variables
such as [SI], the mean number of (S,I) pairs of neighbours to a standard SIR
differential equation model [?, ?], have recently been widely used to approximate
spatial ecological and epidemic processes [?, ?]. How well do they do this?

There are theoretical reasons why PAs should be better at approximating mean-
field than spatial networks. Figure 1 shows how PAs provide excellent approxi-
mations to mean-field SIRs for a wide range of the correlation parameter φ. In

0 10 20 30 40 50

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

time

in
fe

ct
ed

S

*02 4

Figure 1. Comparison between stochastic SIRs on simple ran-
dom graphs, constrained to have varying correlation parameter φ
(= 0, 0.2, 0.4; 2 simulations each, dashed curves), and PAs of the
same φ (solid curves). Also shown are the standard SIR DE (‘?’)
and a simulation of a spatial stochastic SIR (‘S’) – see Figure 2.
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particular, the duration of the epidemic is of order log(N), where N is the popu-
lation size.

Now for a spatial SIR with local contacts – Figure 2 shows a nearest-neighbour
SIR on a sphere – the duration is of order

√
N , so the PA cannot be expected to

Figure 2. Simulation of a nearest-neighbour SIR on a
hexagonal(?) lattice on a sphere: · susceptible, � infectious, • re-
moved. This outbreak started at the north pole (left), and has
just reached the southern hemisphere (right).
[(?) Note: An exact hexagonal lattice on a sphere is not possible;
here there are 12 sites that each have only 5 neighbours.]

approximate this well, as is confirmed by the time plot for the spatial SIR (curve
‘S’ in Figure 1), which is very different from the PA with the same value of the
correlation parameter (φ = 0.4).

There may seem to be a paradox here, in that the spatial network is an element
of the set of random graphs G(N,φ) that have the same number of sites and
the same value of the correlation parameter, although members of that set can
generally be assumed to be mean-field in character. The resolution of the paradox
is that, within G(N,φ), such spatial or near-spatial networks are of almost infinite
improbability, what we might call ‘Adams-improbable’ [?].

More broadly, this work in progress tends to support the generalisation that
spatial processes need explicit spatial modelling [?, ?].
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