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Motivation

• We consider disease outbreaks in settings where genomic sampling is done.

• We formulate stochastic epidemic models to investigate person-to-person

transmission, based on observed genomic and epidemiological data.

• We develop computational statistics methodology for fitting these models to data

within a Bayesian framework.

• Could be useful from both an infection control point of view (e.g. identify super

spreading events, who-infected-whom) and a statistical point of view (e.g. reduce

uncertainty in transmission rates).
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Outline

• Motivating dataset

• Modelling [epi + genetic data]

• Bayesian inference

• Results
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Motivation



Motivating Dataset

• The data are taken from an Intensive Care Unit (ICU) and high-dependency unit

(HDU) of the Royal Sussex County Hospital, a large acute hospital in Brighton1.

• The pathogens of interest are Methicillin Resistant Staphylococcus Aureus

(MRSA) and Meticillin-susceptible Staphylococcus Aureus (MSSA).

• Data tell us about MRSA and MSSA colonisation status of patients, healthcare

workers and environment.
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Motivating Dataset

• Systematically sampled health-care workers, the environment, and patients over 14

months.

• Nasal swabs were taken from

• health-care workers every 4 weeks,

• bed spaces were sampled monthly,

• and screening swabs were obtained from patients at admission, weekly thereafter,

and at discharge.

• Isolates were cultured for MRSA and MSSA and their whole genome sequenced.
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Data Overview

Patient-level data consisting of:

• Admission and discharge time;

• Dates and outcomes of any screening tests;

• Some sequenced isolates;

• Other clinical information.

Healthcare worker level data consisting of:

• Dates with positive tests that were sequenced.

6



Epi Data Summary

Patient data

# Patient admitted 1919

# Unique patients 1759

# Patient episodes with ≥ 1 +ve swab 388

Total # patient +ve swabs collected 761

Total # patient +ve swabs sequenced 572

Mean stay (days) 5.02

Median stay (days) 3

Environment swabs 178

Unique # healthcare workers +ve 113

Total # healthcare workers +ve swabs sequenced 929
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What is (Usually) Not Known

• If the patient was colonised on admission.

• When a patient became colonised (if ever)?

• How sensitive the swab test was?

• Which apparently uncolonised patients were colonised?

• Who colonised whom?

• True colonisation status of each healthcare worker.
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Sequencing Data Summary

• 1976 organisms were cultured and

sequenced:

• 867 from patients (43.9%),

• 929 from healthcare workers

(47.0%)

• 180 from the environment (9.1%).
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Visualising the Data
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Modelling



The Basic Idea

The data have two parts:

• Epi part = patient entry, discharge,

test results;

• WGS part = sequences from isolates.
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The Basic Idea: Modelling the Epi Data

We construct an individual-based stochastic transmission model:

• Discrete time (days);

• Each individual is Susceptible or Colonised;

• P(patient colonised on admission) = p;

• Test sensitivity = z ;

• Transmission rate (per (S ,C ) pair) = β;

• Once colonised a patieent stays colonised for the rest of their stay on the ward.

• Once colonised, a patient is able to colonise other patients in the following day.
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The Basic Idea: Modelling the Epi Data

Susceptible

S(t)

Admission

Discharge

Colonised

C (t)

Admission

Discharge

1− p p

βC (t)

Pr(patient j is colonised on day t) = 1− exp (−βC (t)))
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The Basic Idea: Sequencing Part

• A colonised patient j who receives positive screening results may also have mj

isolates of the pathogen sequenced.

• The raw sequence data are often high dimensional.

• To reduce the dimensionality we measure the genetic distance between isolates

by counting the number of horizontal differences of aligned sequences (i.e. SNPs).
0 d(1, 2) d(1, 3) d(1, 4) . . .

0 d(2, 3) d(2, 4) . . .

0 d(3, 4) . . .

0 . . .


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From Seqeuences to Distances: An Example
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Building a Data Generating Model

We build on our earlier work [Worby et al (2016), Cassidy et al (2020)] where our

individual-based stochastic transmission model also generates such distances.

In the setting we are considering, we need to allow for

• importations (patient arriving in the ward already colonised);

• multiple sequences for an individual.
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Earlier Work [Worby et al 2016, Cassidy et al 2020]

• Such distances represent a genetic difference between the pathogen between

two individuals, and its distribution depends on the relationship between the

individuals in the transmission tree.

• The genetic distances between each pair of isolates in the models of Worby et al

(2016) are assumed to be independent, and the distributions for these distances

have been chosen somewhat arbitrarily (e.g. Geometric, Poisson) .

• Although the models of Cassidy et al (2020) address the issue of independence by

considering the relatedness of host sequences, the distribution of distances are still

arbitrary (e.g. Poisson).
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This Work:

Assume an underlying mutation model and derive the

joint distribution of the observed pairwise distances
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Terminology

A transmission network is a directed

acyclic graph describing the transmission

of the pathogen through the population.

We define the term transmission tree to

be the graph of all colonisations arising

from a single imported case.

Multiple importations of the pathogen

gives rise to disconnected transmission

trees → transmission network is referred

to as a transmission forest.
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Figure 1: Tranmission Network
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Genetic Network/Tree

• A genetic network/tree is a graph which describes the structure of genetic

isolates;

• It provides a graphical representation of the genetic evolution of a pathogen

through time.

BA C

• The genetic network is weighted by some edge weight function which assigns the

absolute difference in time between genetic isolates.

• The genetic network is embedded within the transmission network.
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Jukes and Cantor (1969) Mutation Model

Jukes and Cantor (1969) – JC69 – originally proposed the simplest model where the

mutation rate for any transition is constant.

Define {X (t) : t ≥ 0} to be a homogeneous continuous-time Markov chain where X (t)

is a nucleotide base at time t on the state space E = {A,G ,C ,T} – for distinct

i , j ∈ E , let qij be the transition rate from state i to state j .

Let qij = λ, for i 6= j . The corresponding rate matrix is then given by

Q =


1− 3λ λ λ λ

λ 1− 3λ λ λ

λ λ 1− 3λ λ

λ λ λ 1− 3λ

 .
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Jukes and Cantor (1969) Model

Let pij(t) probability that a nucleotide base i ∈ E mutates to j ∈ E in t time units, i.e.

pij(t) = Pr(X (t) = j | X (0) = i)

One can show that pij(t) is given by

pij(t) =

1
4
(1 + 3e−4λt) i = j

1
4
(1− e−4λt) i 6= j .

We now have a probabilistic framework for a nucleotide observed at two distinct

time points,
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JC69: Genetic Sequences of Length 1

• We first consider the pairwise genetic distance between genetic sequences of

length N = 1.

• Consider a single nucleotide base evolving through time observed at times

t = t1, ..., tk denoted by G = (B1, ...,Bk), where Bi ∈ {A,G ,C ,T} for

i = 1, ..., k .

B1 B2
. . . Bk−1 Bk

• Define dij = 0 if Bi = Bj and dij = 1 otherwise, and dii = 0.

Aim

Derive the joint pmf of these distances d implied by the JC69 model
22



JC69: Genetic Sequences of Length 1

Aim is to reconstruct the sequences from the distance matrix; begin by labelling

the set of nodes S = {1, ..., k}.

Lemma

Let d ∈ D be a distance matrix for a sequence of length one for a known genetic

network G with k ≥ 1 connected nodes. Then there exists a unique corresponding

sequence of nucleotides, up to a permutation of the bases E = {A,G ,C ,T}.

Hence we have a mapping from a distance matrix to nucleotides up to a

permutation of bases.
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JC69: Genetic Sequences of Length 1

Let d be the pairwise distance matrix for a sequence of length one under a genetic

tree G = (V ,E ) with k ≥ 1 connected nodes;

Let q(t) be the probability of observing a mutation in t time units under the JC69

model and tij = |tj − ti | be the absolute difference in time between nodes i and j .

Theorem

The joint probability mass function is then given by

f (d|λ,G) =

31{h(d)>1}21{h(d)>2}
∏

(i ,j)∈E (1− q(tij))1−dij
(

1
3
q(tij)

)dij
d ∈ D

0 otherwise

where h(d) is the of number of unique bases G given by 1 +
∑k

j=2

[∏j−1
i=1 di ,j

]
.
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JC69: Genetic Sequences of Length > 1

Our primary interest lies with whole genome sequences which vary in length depending

on the organism.

• We assume that each nucleotide site evolves independently to all other

sites, as such we wish to consider the joint distribution of genetic distances for

each nucleotide.

• Suppose each of the N nucleotides evolve through time under the genetic tree G,

then let d[i ] ∈ D denote the observed pairwise distance matrix for the ith

nucleotide for i = 1, ...,N .
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JC69: Genetic Sequences of Length > 1

Then the joint probability mass function is given by

fD[1],...,D[N](d[1], . . . ,d[N]|λ,G) = Pr(D[1] = d[1], . . . ,D[N] = d[N]) =
N∏
i=1

f (d[i ]|λ,G)

[see Theorem 1] =
N∏
i=1

31{h(d[i ])>1}2
1{h(d[i ])>2}

∏
(j ,k)∈E

(1− q(tjk))
1−d [i ]

jk

(1
3
q(tjk)

)d [i ]
jk


= 3a × 2b ×

N∏
i=1

∏
(j ,k)∈E

(1− q(tjk))
1−d [i ]

jk

(
1

3
q(tjk)

)d
[i ]
jk

= 3a × 2b ×
∏

(j ,k)∈E

(1− q(tjk))
N−Djk

(
1

3
q(tjk)

)Djk

= H1(d
[1], ...,d[N])g1(λ,G,T1(d

[1], ...,d[N])), (1)
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JC69: Genetic Sequences of Length > 1

fD[1],...,D[N](d[1], . . . ,d[N]|λ,G) = 3a × 2b ×
∏

(j ,k)∈E

(1− q(tjk))N−Djk

(
1

3
q(tjk)

)Djk

= H1(d[1], ...,d[N]) · g1(λ,G,T1(d[1], ...,d[N])),

• a =
∑N

i=1 1{h(d[i ])>1} and b =
∑N

i=1 1{h(d[i ])>2} are the number of distance

matrices that contain more than one and two unique nodes respectively,

• Djk =
∑N

i=1 d
[i ]
jk is the total number of differences between sequence j and th

sequence k , where (j , k) ∈ E ,

• T1 is (matrix) statistic defined as T1(d[1], ...,d[N]) =
∑N

i=1 d[i ].
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Some Remarks

• The quantities Dij for (i , j) ∈ E are straightforward to obtain by calculating a

matrix of pairwise distances for each observed sequence.

• It follows from the Fisher-Neyman factorisation theorem that the (matrix) statistic

T1, which is the defined as the sum of distance matrices d[i ] for i = 1, ...,N , is

sufficient for the underlying parameter λ.

• We are unable to calculate H1 explicitly as we require knowledge of the actual

sequences rather than the matrix of pairwise distances . . .

• . . . however since these are functions of the data alone these terms vanish in the

posterior distribution when performing Bayesian inference.
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Assumptions

The true genetic network is unobserved and therefore must be constructed such that it

is consistent with epidemiological data → following assumptions:

1. There is a single dominant lineage of the pathogen in the population at any

point in time.

2. Upon colonisation, the genetic information of the pathogen is transmitted

from the source of colonisation to the recipient. The transmitted pathogen then

evolves independently from the pathogen in the source of colonisation.

3. Each individual has a genetic sequence at the time of colonisation, which may

be either observed or unobserved.
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Constructing the Genetic Network

• The main idea behind constructing genetic networks is to determine the genetic

source for each genetic sequence, i.e. the sequence that a sequence i is assumed

to have evolved from.

• To determine the genetic source for a given sequence, at an individual level we

look backwards in time to determine if there is a previously sampled genetic

sequence.

• A genetic source sequence will either be a result of a swab from the same

individual, or a swab at the time of colonisation from an infectee.
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Constructing the Genetic Network (An Example)
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Constructing the Genetic Network (An Example)
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Modelling Distance Between Imported Sequences

We are then able to construct the genetic network that is consistent with the

epidemiological data, i.e. the current state of the transmission tree.

Need a model to explain the pairwise distances between imported sequences.

1 2

3

4

5 6

We assume that imported sequences in

distinct transmission chains are unrelated

and their distance ∼ Poisson(µ) s in

Cassidy et al (2020).
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Bayesian Inference



Bayesian Inference

Given the observed data (epi + genetic distances) we wish to make inference for the

parameters of interest:

• transmission rate β;

• test sensitivity z ;

• importation probability p;

• mutation rate λ;

• average imported sequence distance µ;

• transmission network.
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Bayesian Inference via Data Augmentation

The joint likelihood of the transmission dynamics, screening results and genetic data

given the model parameters is:

π(zobs , ψ,F , x s |ρ) = π(ψ, ψ̃|zobs ,T ,G, ρ)π(x s |zobs ,T , ρ)π(T |zobs , ρ), (2)

where

• the first term is the likelihood of the genetic data;

• the second term is the likelihood of observational data arising from the pathogen

screening tests and

• the third term in is the likelihood of the transmission dynamics.
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Bayesian Inference via Data Augmentation

• Data Augmentation (colonisation times, admission status, genetic network,

transmission network);

• Bayesian Inference;

• (Bespoke) Markov Chain Monte Carlo (MCMC).

MCMC

Constructing an efficient MCMC algorithm is not a straightforward task!

Involves sampling sources, adding/deleting/moving colonisation times, sampling

unobserved distances . . .
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Bayesian Inference via Data Augmentation
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Results



Results on Simulated Data

100 people; 5 healthcare workers
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Results on Simulated Data
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Data on Healthcare Workers (HCW)

Positive test results (black circle) for each

healthcare worker (top).

Inferred number of colonised healthcare

workers on the ward by assuming constant

carriage in-between test results and for a

fixed period of 14 days thereafter.
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Heatmap of Distances

• There are extremely diverse genetic

sequences with many distances

> 10, 000 SNPs (1800 years of

evolution).

• Albeit extremely diverse, are still

variations of the pathogen S. aureus.

• There area small areas of the heat

map with colours indicating < 5

SNPs.
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Putative Transmission Pairs

• We define the term putative

transmission pair to be any pair of

individuals that have observed

distances with < 5 SNPs and have

spent time on the ward together at

the same time.

• Focus on patient-patient and

healthcare worker-patient pairs.

• 14 potential clusters containing a

total of 22 individuals that are

assumed to be epidemiologically

related.
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Transmission Model Incorporating HCW

• Let C (t) and H(t) denote the number of colonised patients and healthcare

workers at time t respectively.

• The total colonisation pressure A exerted on susceptible patients is given by

A = βC (t) + βHH(t)

and

Pr(patient j is colonised on day t) = 1− exp (−A) .

where β is the rate of contact between colonised and susceptible patient pairs and

βH describes the rate of contact between susceptible patient and colonised

healthcare worker pairs. 43



Introducing Genetic Subtypes

• We are not able to perform any meaningful analysis with the extremely diverse

genetic distances.

• Instead we focus on the similar genetic isolates.

• In a similar fashion to Price et al. (2017) we define the term genetic subtype to

refer to “similar” sequences.

• Sequences within the same genetic subtype can be thought of as snapshots of

the same organism, therefore the distances may be described by the mutation

model.
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Modelling Multiple Genetic Sequences

The (previous) assumption that at any point in time there exists a single dominant

strain or subtype in the population appears unreasonable in this setting.

Hence we build a model that readily incorporates genetic diversity in a flexible and

efficient manner, which builds upon the model for a single dominant strain:

• Label sequences pre-analysis with genetic groups where each genetic group

contains sequences that are assumed to have evolved from separate organisms.

• Each group is modelled by a separate stochastic process where each of these

stochastic processes are assumed to evolve independently of one another.
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Determing the Genetic Groups

The process to classify and cluster genetic sequences to groups is typically a non trivial

task.

We have considered two ways to do so:

• Group by threshold: choose an arbitrary threshold, α say, and group similar

genetic sequences that have pairwise distances < α.

• k-means clustering: seeks to partition objects into groups such that the objects

within the group are sufficiently close.
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Results for MRSA + MSSA Combined

Parameter Estimate 95% Credible Interval

z 0.61 (0.56, 0.66)

p 0.23 (0.20, 0.26)

β 0.00077 (0.00037, 0.00134)

βH 0.00012 (0.000068, 0.00019)

λ× 10−9 5.67 (5.28, 6.04)

µ 12.83 (12,13.66)

Table 1: Posterior mean estimates for the model parameters along with 95% (equal-tailed)

credible intervals.
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Inferred Transmission Network
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Model Assessment (Epi Data)
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Model Assessment (Genetic Data)
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Conclusions



Conclusions

• Principled generative modelling approach, i.e. we have a model that can generate

the data → enabling model assessment.

• Bayesian inference via bespoke MCMC algorithms;

• Key idea is to model differences between sequences rather than sequences

themselves → dimension reduction.

• Allows for importations, multiple and/or diverse genetic sequences.

• Can be adapted to other mutation models (e.g. Kimura model).

• Address the issues of arbitrariness of earlier work by deriving the distribution

of the pairwise distances under the assumption of the a mutation model.
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Future Work / Work in Progress

• Settings outside hospital infections.

• Systematic comparison against the work of Lau et al (2015).

• Alternative model for imported sequences.

• Model assessment methods.

• Improve the efficiency of the MCMC sampler for large scale inference.
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