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Summary

This paper reviews the basic components of epidemic models, and discusses
some of the different ways of combining them, and relations between the re-
sulting models. The fundamental aim is to help understanding of the relation
between assumptions and the resulting dynamics: because without such un-
derstanding even a model which fits data perfectly can be of no scientific
value.

Analysis of the structure of epidemic models is vital because of (1) the
scarcity of good data and (2) the sensitive dependence of results on assump-
tions. In evaluating model dynamics, we need to look carefully at their de-
pendence, not only on parameters, but also on the structure of the model: for
instance, whether the population is treated as stochastic or deterministic, dis-
crete or continuous, and how the timing and distribution of infectious contacts
within the population is modelled. The practical target is to identify those
parts of models that have most effect on dynamics: a few key parameters can
drive a model (see e.g. Mollison 1984, 1985, Cairns, this volume).

The approach taken here is to analyse models in terms of their elements:
expressing them in terms of simple key parameters that reflect individual life-
histories, flows between states, and contact relationships. Basic definitions
must be in terms of what one individual does to another; this implies that
discrete models are basic, and that the stochastic aspect is usually important,
if only in formulating and interpreting models.

Although more complex, stochastic models can have advantages in showing
structure more clearly, as for instance in the technique of coupling which
allows elegant comparisons of related models (see Ball, this volume).

Some results can be very sensitive to model assumptions, including hid-
den assumptions implicit in seemingly innocent parts of our model structure.
Other results are so robust that they can be derived by ‘pre-model’ argu-
ments, that is, by considering relations between basic components without
choosing a specific model. As an illustration of this approach, the final sec-
tion (Section 3) tries to express some basic results on epidemic models in
their simplest and most general form, so as to analyse the range and limits
of their applicability.
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1 Introduction

1.1 Reasons for caring about structure

The aim of epidemic modelling is to understand and if possible control the
spread of disease. To do this, it tries to relate disease dynamics at the popula-
tion level to basic properties of the host and pathogen populations and of the
infection process. Epidemic models thus express scientific hypotheses. Like
other scientific models, if they are to be of value they need to be falsifiable;
and if they are falsified, we need to know which part of the model has been
disproved. There are two basic reasons why this is seldom easy.

The first is the nature of the data available for validating and testing mod-
els. The scope for experimental investigation of disease dynamics is severely
limited, for both practical and ethical reasons. Data therefore are usually
incomplete, and often complicated by many factors not of direct interest.

The second is that the dependence of modelling conclusions on assumptions
is seldom straightforward. Some conclusions – for instance the existence of an
epidemic threshold – are so robust that virtually any model will fit the data.
Others may depend very sensitively on parameter values or, more insidiously,
on assumptions implicit in the type of model chosen, for instance on the way
in which it represents units of the population and contacts between them.

For both these reasons, it is essential to analyse the structure of epidemic
models, and the relation between this structure and the resulting dynamics.
To facilitate this, it is important to keep models clear and simple as far
as possible. Thus we aim to find a small set of model components that
determine the dynamics, and to describe these as far as possible in terms
of simple parameters with clear ecological interpretations, such as the basic
reproductive ratio (or number), R0, and the mean generation gap, τ , of the
disease. [R0 is the mean number of infectious contacts made by an infective
in a wholly susceptible population (see Dietz, this volume, Section 3); the
generation gap is the time interval between an individuals’s being infected
and its infecting others.]

This approach should help us to see the similarities between many of the
bewildering number of apparently different models in the literature; and thus
allow comparison and synthesis of results on individual specific models into
more general understanding. It can also clarify what data are needed to fit
and to test a model.

1.2 Epidemic stages

It is generally helpful to distinguish three main epidemic stages: Establish-
ment, Spread and Persistence. To these we might add Arrival, the question
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of how infection reaches the population under consideration; however, for an
existing disease, this can be considered, on a larger spatial scale, as part of
the process of spread (see e.g. Cliff, this volume). Also, Evolution is required
to explain the first arrival of any disease, and can play a key role in long term
persistence, though this is an aspect in which diseases vary widely, from the
evolutionary stability of smallpox or measles to the instability of myxomato-
sis (Fenner and Myers 1978) or influenza (Cliff et al. 1986); see also Hamilton
and Howard (1994).

Given that an infection arrives in a population, the first question is that of
Establishment, that is whether it has a chance to infect a sizeable proportion of
the host population, rather than just a few individuals. In the establishment
stage, it is common to ignore any overlap between infections by different
individuals, so that growth is governed by a branching process, or by linear
equations; in either case, the threshold condition for establishment to be
possible is R0 > 1 (see, e.g., Diekmann et al., Ball, Jacquez et al., all in this
volume; also N̊asell, this volume, regarding the definition of the threshold for
stochastic models). However, where mixing is heterogeneous, and particularly
in the case where individuals interact only with their spatial neighbours, the
linear approximation can be poor, and the threshold value of R0 may be
appreciably greater than unity (Mollison 1991).

For cases where the infection has initial success, we then require to model
its Spread through the population. This may be expected to depend both
on heterogeneity between individuals: for instance, the spread of a sexually
transmitted disease may be restricted largely within a ‘core’ group, at least
initially; and on heterogeneity of mixing: for instance where contacts are
spatially local we may expect spread in a regular wave-like manner at a steady
velocity (see Metz and van den Bosch, this volume). Note that in the case
of spatial waves the number of infectives grows only linearly with time (and
the cumulative total quadratically), in contrast to the simpler cases where
a linear or branching process model is a reasonable initial approximation,
when numbers of infected accordingly grow exponentially. Intermediate rates
of growth may be expected in intermediate situations, such as where the
population is divided into a hierarchy of mixing groups, but this is an area
where useful theoretical results have so far proved hard to develop.

Finally, the conditions for long term Persistence of an infection, whether at
a steady level or as a sequence of outbreaks, may be expected to involve other
factors. Bartlett (1957) introduced the idea of a critical community size for a
given disease, below which an isolated population cannot sustain the disease
long term. This critical community size, Nc, will depend primarily on the
relation between the timescale of the infection itself and that of the regrowth
of susceptible numbers (see §3.1). For a diseases such as measles with a mean
generation gap of 10-14 days, Nc is around 250,000, which explains why such
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diseases first became persistent in the human population in the Middle East
four to five thousand years ago with the development of the earliest large
cities there (McNeill 1976, Cliff et al. 1993). Measles persists similarly today,
through reservoirs of infection in large cities, from which occasional epidemics
are sparked off in rural and island communities (Cliff et al. 1993).

In populations of a more constant density, as in the case of many animals
and plants, a disease may persist through wandering patches (see e.g. Molli-
son and Levin 1994) without any one population being continuously infected.
The population size required for persistence depends on the spatial structure
and connectivity of the population as well as on the parameters of the infec-
tion itself. Geographical connectivity is also important for human diseases.
For instance the relatively one-dimensional connectivity of the Japanese pop-
ulation may at least partly explain why numerous epidemics of measles, 36
from the 11th to 19th centuries, failed to make it persist, even though Japan’s
population (30 million by 1868) was well over the Bartlett threshold (Cliff et
al. 1993).

2 Building epidemic models

2.1 Components of models

Perhaps the most basic modelling components are those describing the time
history of an individual infective. From the point of view of the individual,
the course of the disease is best described in terms of the times at which
it starts and ceases to feel ill; but from the epidemiological viewpoint, the
essential element is the distribution over time and among the population of
the infectious contacts made by the individual, relative to its own time and
location of infection. This can be handled quite generally using a kernel
describing the numbers of such contacts over time and location (see Metz
and van den Bosch, this volume, Mollison 1991).

One convenient simplification is to assume constant transition rates from
the incubating to the infectious and from the infectious to the removed or re-
covered state; the mathematical motivation for this assumption is to obtain a
Markov process or differential equation model. An alternative simplification,
the discrete time equivalent of this, is to assume a fixed incubation period
and instantaneous infectious period, thus giving a constant generation gap.

Such simplifying assumptions will make little or no difference to some as-
pects of model behaviour: as we shall see below (Section 3), there are a
number of basic formulae where only the mean of the generation gap or the
infectious period is required. Other aspects, however, such as the stability of
endemic conditions, may depend sensitively on the distribution of the gener-
ation gap (Mollison 1984, 1985).
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Turning now to the contacts made by an individual, the simplest case is
homogeneous mixing, where victims are selected from the whole population
independently and with equal probabilities. Heterogeneous mixing can be
through preference for some type of individual (e.g. ‘high activity’, or op-
posite sex), or from within some neighbourhood, whether defined socially
(see e.g. Morris, Jacquez et al., both in this volume) or by geography (see
e.g. Durrett, Metz and van den Bosch, both in this volume, or Mollison and
Levin 1994). The definition of geographic neighbours needs to take into ac-
count frequency of communication, not simply distance (see Cliff, this volume,
Sattenspiel and Powell 1993).

In modelling, variability in the number of contacts made by an individual,
and correlation between the locations of the victims, is often ignored. Where
the numbers of infectives are large, this may often be justified; indeed, for
linear models, and for nonlinear spatial models where the ‘linear conjecture’
applies (see next subsection), only the expected numbers matter, and so vari-
ability and correlation have no effect. However, they can in practice be very
significant at the beginning of an outbreak. [Cliff et al. 1993 give many in-
teresting examples relating to measles, for instance how it was introduced
to Fiji and most effectively spread, along with the news of the islands’ new
colonial status, by their king in 1875.] And for stochastic models, not only do
these details matter; taking them into account can actually be theoretically
advantageous (see next section).

Careful consideration of the probabilities of contact with different possi-
ble victims is of particular importance where the population is divided into
groups. Where there is wide variation in contact rates, perhaps both within
and between groups as in the case of sexually transmitted diseases, the out-
come of the epidemic may depend sensitively on the contact structure (see
Morris, this volume). Where the population is divided into a large number
of broadly similar groups, as for instance in the spread of airborne infections
among households, it may be possible to develop hierarchical models, in which
the groups are treated as individuals at the higher level of the model (Becker
and Dietz 1994, Ball et al. 1994).

An alternative approach to modelling the infectious process is to look from
the susceptible’s rather than the infective’s viewpoint, working in terms of the
infectious pressure to which a susceptible is subject. This approach may be
forced on us, for instance if the probability of infection depends only on there
being some infectives and not on their number, as in the Greenwood model
(see e.g. Bailey 1975); it also has some advantages of analytical convenience,
for instance in the consideration of equilibrium conditions (see Anderson and
May 1991). However, the loss of the idea of a link between infective and
susceptible removes a major avenue for structural analysis of the model.

Most deterministic models use the approximation of treating populations
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as continuous. This has considerable advantages of simplicity and generality,
but we need to be aware of circumstances where this approximation is not
good enough, notably where numbers oscillate, sometimes reaching low levels,
or where mixing is heterogeneous with each individual interacting with only a
small proportion of the population: an example combining both these factors
is the differential equation model of Murray et al. (1986), which relies for its
repeated waves of spread on minute fractions of an infectious individual –
the ‘atto-foxes’ of Mollison (1991). Note that it may be the treating of the
population as continuous, rather than determinism per se, that is the main
problem here (Mollison 1991, Durrett and Levin 1994).

There has only been space here to scratch the surface of the wide subject
of model choice. But I hope enough has been said to indicate the need to
be aware of the process of model-building: while we must simplify, it is es-
sential to understand the likely limits of our simplifications. The more easily
we can interpret our model components – and compare them to available
data – the easier it will be to understand how the structure of our model
relates to reality, and its limitations. Thus, for example, it is traditional in
many basic models to use a transmission rate parameter, β; but its units are
‘time−1 population−1’, which make it difficult to interpret. Reinterpretation
in terms of the more easily understood parameter R0 greatly facilitates anal-
ysis of the various assumptions commonly made concerning β (see de Jong et
al., this volume, Mollison 1985).

2.2 Using the structure of models

The realistic detail of a stochastic model, specifying such things as the prob-
ability that one individual will infect another at a particular time and place,
has long been recognised as a strength from the point of view of understand-
ing and fitting models, but has generally been regarded as a grave handicap
when it comes to analysis; even stochastic analyses have traditionally dealt
whenever possible with massed variables such as the total number of infec-
tives.

However, in recent years there has been an increasing recognition that the
‘unnecessary’ detail of a stochastic model framed in terms of individuals and
their interactions can in many cases allow insights not possible from a ‘higher
level’ stochastic or deterministic model.

A simple example of this is the use of the basic undirected random graph
G(n,p) as an internal description of the Reed-Frost chain-binomial epidemic
in a homogeneous population (Barbour and Mollison 1989). The ‘unneces-
sary’ detail here is that we identify each infection by one individual of another
(represented by a link in the graph), rather than just dealing in the total num-
bers of susceptibles, infectives and removed cases. This is particularly simple
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because of the independence we can allow in the random graph model be-
tween different infections made by an individual, and the symmetric relation
between individuals; these allow us to represent the possibility that either a
will infect b, or that b will infect a, by the same link in an undirected graph.

This idea of representing the relation between an infective and its victim by
a link in a graph can be generalised to re-frame most of the common models
for epidemics in a fixed population, though in general we must use a directed
graph. We can then look at the question of who becomes infected in the
course of the epidemic separately from the time structure: it only depends
on the ‘lists’ of potential contacts of each individual, each such contact being
represented by a link in the directed graph (‘a → b’ meaning that b is on
a’s list of contacts). The strength of this approach is well illustrated by the
beautiful theorem of Cox and Durrett (1988) on the existence of velocities
for spatial epidemics with removal: although such a result clearly deals with
the epidemic’s development in time, much of the hardest part of the proof is
accomplished through consideration of the graph structure of who may infect
whom, without any explicit consideration of time.

The representation of contact structures by a random graph can be gener-
alised to allow correlated links (see Lefèvre and Picard, this volume), and to
compare two or more models (see next subsection).

Another stochastic technique, which exploits the structure of the model in
a quite different but equally elegant way, is the use of martingales to estimate
parameters (see Section 3 of Becker, this volume; note that his θ is our R0).

There is typically less structure to exploit in the case of deterministic
models. An interesting illustration of this is the proof of a monotonicity result
by Kendall and Saunders (1983; see Ball, this volume) for the total number
infected by two competing epidemics. This monotonicity seems ‘intuitively
obvious’ for the deterministic model, but the proof requires exploitation of
the structure of a corresponding stochastic model.

Nevertheless, monotonicity arguments, and similar comparisons of a model
with variants, are often possible for deterministic models. An important, if
only partly rigorous, example is the ‘linear conjecture’ for deterministic spatial
epidemic models, which in turn leads to the possibility of analysing such
models through a single structural element, the reproduction and dispersal
kernel (see Metz and van den Bosch, this volume).

2.3 Relations between models

We here discuss briefly ways in which stochastic models can be related to
each other, and to deterministic models. Though important for understand-
ing, these could be considered rather theoretical aspects; we also discuss the
crucial practical question of the relations between simple and complex models.
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Stochastic models that include detailed ‘internal descriptions’, as described
in the preceding subsection, can be used in a variety of ways to make precise
comparisons between different models. The basic technique is that of coupling
(see Ball, this volume), in which two or more different models are defined us-
ing the same probability space. Usually this representation is chosen so as to
exploit the similarities between the different processes For instance, it may
be possible to demonstrate a monotone relation between models where one
process can be regarded as being the same as the other but for the addition
of certain infections, or, more subtly, where the correlation between an indi-
vidual’s contacts is less in one model than in the other (see e.g. Kuulasmaa
1982).

Coupling can also be used to compare the outcome of the same process from
different initial conditions, for instance showing that the ‘contact process’ (a
spatial epidemic with recovery) is additive (see e.g. Mollison 1986).

Some aspects of relations between stochastic and deterministic models have
already been touched on. Deterministic models are normally derived (ex-
plicitly or otherwise) by considering how the average numbers change in a
stochastic model: because taking averages does not treat nonlinearities cor-
rectly, such a derivation will in general only give an exact relation for simple
linear (branching process) models.

Nonlinearities are especially important where individuals interact only with
a local group, whether defined socially or spatially. Thus, it is a defect of spa-
tial continuous population models that they take little account of the spatial
dimension, treating one and two dimensions very similarly (see Metz and
van den Bosch, this volume), whereas in nonlinear discrete models, whether
stochastic or deterministic, the very different nature of two dimensional space
comes through (see, e.g., Durrett, this volume, Fisch et al. 1991). Linear
stochastic models also essentially ignore dimensionality, and it is mutual ig-
norance that allows them, in certain basic cases, to have an exact relation
to well-known nonlinear differential equations (McKean 1975, Mollison and
Daniels 1993).

It is possible to prove quite general results showing that ‘as numbers get
large’ the behaviour of stochastic population processes tends to a determin-
istic limit, typically with diffusion process variability about that limit (Kurtz
1981). However, this could be considered to be the wrong way round, in that
the use of deterministic models would be better justified if we could establish
that a given stochastic process could be approximated as a limit of determin-
istic processes; therefore such results, though very useful, need to be treated
with caution where the number with whom an individual interacts is small or
where we wish to consider the process over a long time span (see §2.1 above).

Lastly, the relations between simple and complex models, though seldom
mathematically elegant, are of great practical importance. From the applied
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point of view it may be natural to include many parameters when setting up
a model, yet its dynamics will often be almost exactly the same as that of a
model with only a few basic components. Cairns (this volume) discusses the
identification and estimation of such basic components, with application to
modelling variable infectiousness during HIV infection.

Multi-parameter simulation models provide other examples where the com-
plexity involved in an attempt at realism can hide crude (and unrealistic)
assumptions about such basic components. For instance, the detailed spa-
tial simulation model of Voigt et al. (1985) for fox rabies includes over thirty
parameters; one effect of this is that important components may be handled
too crudely; because of the way they discretize time, their value for the mean
generation gap τ seems to be mistakenly taken as 2.5 months instead of its
intended value of less than 1 month. More seriously, their conclusions as to
the effect of varying population density, whether by culling or vaccination,
all depend on their implicit assumption that R0 is simply proportional to
population density. This is a vital applied point: modelling should bring
such crucial and debatable (see Mollison 1985, de Jong et al., this volume)
assumptions to ecologists’ attention, not hide them.

3 Some simple general relations

In this final section, we turn to some almost ‘model-free’ results concerning
epidemic models, relating such basic model components (see §2.1 above) as
the basic reproductive ratio R0 and mean times spent by an individual in
various states.

There are a number of relations between basic population and disease
parameters that can be expressed very simply. For example, we have the
following three expressions for R0:

R0 = βNτI = N/S = L/A, (3.1)

where N is the population size (or in spatial models density), β the ‘trans-
mission parameter’, τI the mean infectious period, S the equilibrium number
of susceptibles, L the mean lifetime, and A the mean age of acquiring the
disease. The first of these, R0 = βNτI , is the most general, being little more
than a restatement of the definition of R0 (see §3.1). The equivalence of the
last two, N/S = L/A, relies on the disease being in endemic equilibrium
(see §3.2); while their both being equal to R0 relies on the assumption of
homogeneous mixing (see §3.3).

Most of these simple relations can be found either as exact or approximate
formulae in the literature. Dietz (1975) seems to have been the first to note
that R0 ≈ L/A. More recently, many of these relations appear in Anderson
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and May (1991)’s comprehensive survey of deterministic epidemic models.
However, they are there derived for the most part as approximations, and
this is one part of their otherwise impressive survey that could be improved
in terms of elegance and generality.

We shall derive a number of such relations here in as general a way as
possible, discussing the assumptions they rely on. For some of these results,
it does not seem to have been recognised previously that they hold exactly in
quite general circumstances. This is probably because there are alternative
definitions for some of the parameters involved; these typically differ only by
amounts too small to be of practical importance, but can render the simple
relations unrecognisable.

Where there are such alternatives, the advantage of the simple relations,
beyond their explanatory appeal, is that they will usually be of greater gen-
erality, or will at least indicate how far results can be generalised.

As well as deriving some of these simple exact results, I shall give exam-
ples to show how effectively a slight change of definition can disguise their
simplicity.

3.1 Formulae for R0

Let us first consider a simple and quite general formula, in that it does not
require equilibrium conditions, concerning the basic reproductive ratio R0. If
we assume that infectives make contacts at a fixed rate βN , where N is the
population total or density, throughout an infectious period of mean length
τI , then their mean total number of contacts is exactly given by

R0 = βNτI . (3.2)

This result can easily be modified to cover various different and more general
assumptions. For instance, we could replace βN by a constant independent
of N , so that R0 is independent of N rather than proportional to it (Mollison
1985, de Jong et al, this volume); we could let β vary over time, in which case
βτI should be replaced by

∫
β(t)dt, or over both time and space, as in Metz

and van den Bosch (this volume)’s γ of their equation (2.3).

This simple formula, R0 = βNτI , is often hidden because it is common not
to use the exact mean infectious period for an infective, τI , but instead what
may seem a simpler parameter, τ0, defined as the mean infectious period in
the absence of other effects such as natural mortality.

As an example, consider the non-fatal disease model described in Anderson
and May (1991, §4.4) in which individuals at birth possess immunity, which
they lose at rate d, and in which infected individuals pass through successive
latent and infectious stages with respective forces of removal σ and v; let us
take the case of ‘Type II’ mortality, i.e. with an age-independent rate µ of
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natural mortality. Then τ0 = 1/v; τI can be evaluated by multiplying the
probability of an individual’s surviving the latent period, qL = σ/(σ + µ),
by the mean time spent in the infectious state if it does so, τ ′I = 1/(v + µ);
thus τI = σ/[(σ + µ)(v + µ)]. If we follow Anderson and May in excluding
immune individuals from the effective population size, which is therefore N ′ =
Nd/(d + µ), then ‘R0 = βNτI ’ gives exactly their equation (4.55):

R0 =
βNσd

(d + µ)(σ + µ)(v + µ).
(3.3)

The approximation, R0 ≈ βNτ0, can of course be deduced from this equation,
but the advantage of the present approach is to clarify how the error in
this approximation arises, through the component approximations: qL ≈ 1,
τ ′I ≈ τ0, N ′ ≈ N : each of which can be critically examined in a specific
application. [For the case of age-dependent mortality, see §3.3 below.]

3.2 Equilibrium formulae: the microcosm principle

A number of simple equalities follow immediately from what I shall call the
microcosm principle, which says that, for a quite general population process in
equilibrium, the proportion of the population πi in each state i is proportional
to the mean time τi an individual spends in that state, and hence

πi = τi/L (3.4)

[This result can be generalised to the case of a population growing at a steady
rate r, essentially by including r as a discount rate – an individual’s propor-
tional contribution to the population diminishes exponentially, ∝ exp(−rt).
Thus in the righthand side of the equation τi is replaced by

∫
pi(t)e

−rtdt, and
L by the sum of such terms, G =

∫
p(t)e−rtdt; where pi(t) denotes the prob-

ability of being in state i at age t, p(t) the overall probability of being alive
at that age.]

Now suppose we have a disease for which individuals are susceptible from
birth, but immune once they have had the disease. Let A be the mean age
of catching the disease, or of death for individuals who never get the disease.
In this case the mean time spent susceptible, τS, is simply A, so from the
microcosm principle we immediately have that

πS ≡ S/N = A/L. (3.5)

Note that this result makes no assumption about the epidemic process; it
applies wherever individuals with a mean lifetime L start in a special state
(here susceptible) and cannot return to that state once they have left it. The
result is easily generalised to cases where individuals do not start susceptible.
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For example, if individuals begin life with a period of mean M spent in an
immune state we would have πS = (A−M)/L. And it can again be adapted
to the case of a growing population, along the lines mentioned above (see also
Anderson and May 1991, §4.1 and §13.1.1).

Where an individual may visit a state i either less or more than once, the
mean time spent in that state, τi, will not be the same as the mean time of
a single sojourn, but often this can easily be allowed for. For instance, in the
situation we are currently considering of the equilibrium state of a disease
which can only be caught once, the mean time spent infectious will be pIτI ,
where pI is the probability that an individual will become infectious at some
time during their life. Hence

πI = pIτI/L (3.6)

For a typical human ‘childhood disease’ such as measles, L/τI is of the
order of several thousand. This provides an elementary explanation of why
the critical community size for such diseases is so large, of the order of 250,000
(Bartlett 1957). This size corresponds to an average number infected at any
one time of around 100; in view of the seasonally oscillatory nature of measles
it is not surprising that such a population size is necessary if the disease is
not to die out through stochastic fluctuations.

As an illustration of the equation 3.6, consider a measles model of Grenfell
et al. (this volume), which is the same as the example of §3.1 above, except
that it omits immunity at birth. In our notation, their equation (3) becomes

πI =
µσ

(µ + σ)(µ + v)
− µ

βN
. (3.7)

To identify this with our equation 3.6, first use R0 = βNτI and note that
τI = σ/[(σ + µ)(v + µ)] as in §3.1. We can then deduce that pI = 1 −
1/R0; or this can be derived independently, by noting first that 1 − pI =
Prob.{Susceptible at death}, which because mortality does not depend on
age is simply = Prob.{Susceptible}, = 1/R0 from equation 3.9 below.

3.3 Equilibrium under homogeneous mixing

We could allow the rate of contacts to depend on the number of infectives,
which would imply that an infective’s mean total number of contacts also
does so, in which case we have to replace R0 by R(I) = β(I)NτI ; the usual
definition of R0 identifies it with R(1). [To be pedantic, ‘R(1)’ may not be
quite right here, as we should allow for the possibility that the infectious
period of the first infective may overlap with those of some of its victims, but
it will do to make the point.]
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If we now assume that mixing is homogeneous as regards susceptibles, so
that the probability that a potentially infectious contact is with a susceptible
is simply πS, then the mean number of successful contacts per infective is
R(I)πS. But if the process is in equilibrium this number must equal 1, which
immediately tells us that in that case

R(I?) = 1/πS (3.8)

where I? is the equilibrium number of infectives.

If we also assume that the mean total number of contacts per infective is
independent of the number of infectives, then R(I) = R0, and so we have

R0 = 1/πS(= N/S) (3.9)

Note that Anderson and May (1991, Equation 4.13) are wrong in claiming
that this equation relies only on ‘weak homogeneous mixing’; it is only the
previous, rather less useful, equation (R(I?) = 1/πS) that holds in that case.
The general issue they point to, of how the number of contacts depends on the
numbers of susceptibles and infectives, is nevertheless a crucial one – already
raised in the contrasting Reed-Frost and Greenwood models of the 1930s. The
answer is likely to depend on the mode of transmission, for instance physical
contact as opposed to aerosol, and on the heterogeneous social structure of
the population (see §2.1 above).

A more hair-splitting reservation concerning equation 3.9 arises if mor-
tality is age-dependent, because that induces (in practice usually negligible)
variation with age in the mean infectious period, and thus (through equation
3.2) in R0. [In the simple homogeneous mixing case, the age distribution of
infectives conditional on survival is exponential in equilibrium, whereas dur-
ing initial spread it is uniform.] In specific cases, for instance where everyone
lives to exactly age L (Anderson and May’s ‘Type I mortality’), it is possible
to write down the probability that an infective will die of natural mortality,

pe =
λ(e−λL − e−vL)

(v − λ)(1− e−λL)
, (3.10)

hence calculate τI , and thus derive exact expressions for R(I?) and πI (for the
latter, see Anderson and May 1991, equation (4.41)). However for endemic
measles pe is of at most of order 10−3, and pI not much larger (for ‘Type I
mortality’), so that the errors in the approximate equations

R(I?) ≈ R0 ≈ βNτ0 and πI ≈ τ0/L (3.11)

are minute compared with the error in estimating (for instance) τ0 or τI .

Another simple equilibrium formula relates the force of infection λ to
parameters already introduced. Equating inward and outward flows of at-
tempted infections gives pIR0 = λL.
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A rather less neat result, but of considerable interest, concerns the period of
oscillations about equilibrium. For both continuous and discrete time simple

endemic models, this period is approximately 2π
√

τA/pI ; thus, as Anderson

and May (1991) nicely remark, it is proportional to the geometric mean of
the two basic time scales of the process: the typically short time scale of the
infection, as represented by the mean generation gap τ , and the longer time
scale for replenishment of susceptibles. Similar results for simple fatal disease
models were found by Mollison (1985), who also showed that the stability of
oscillations was sensitive to the difference between continuous and discrete
time models (with less stability for the fixed delay feedback of the discrete
time model, as one might expect).

3.4 Discussion

We have considered in this section a number of simple formulae that can be
found over and again in models in the literature, usually disguised to a lesser
or greater extent. Often the conclusions drawn from those models depend
essentially on the validity of the relationships described by these simple for-
mulae, or the way in which they are used. For instance, it is common to take β
constant, which through equation 3.2 embodies the questionable assumption
that R0 ∝ N (see de Jong et al., this volume, Mollison 1985).

The estimation of R0 presents a key difficulty in epidemic modelling, and
several of the simple formulae are relevant to this, especially R0 = 1/πS or
R0 = L/A. If the aim is to estimate the proportion we need to vaccinate,
pV say, where homogeneous mixing theory suggests we need pV ≥ 1− 1/R0,
we can in fact short-cut the argument, omitting the estimation of R0 itself:
it would seem that pV > 1− πS should suffice, not only in the homogeneous
mixing case. However, this deduction relies on treating the susceptibles re-
maining after vaccination as being similarly distributed within the population
to the susceptibles in the endemic state when there is no vaccination, and in
a heterogeneous situation (whether age or space dependent) this assumption
would need careful examination.

Some of the simple formulae are known to require major correction, or to
be simply invalid, under certain types of heterogeneous mixing. For instance,
for simple spatial endemic models for a fatal disease, Mollison and Kuulas-
maa (1985) found that πS and πI were respectively much larger and much
smaller than the values given by the homogeneous mixing model. [Though
the formulae can be adjusted to explain this; for instance the increase in
πS is inversely proportional to the reduction in the frequency of {infective,
susceptible} pairs relative to the homogeneous situation.]

Further, the homogeneous model’s oscillations, although they carry over to
differential equation models (Murray et al. 1986), do not occur in the stochas-
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tic models, a result confirmed by Durrett and Levin (1994)’s comparison of
different types of model for spatial competition. The stochastic spatial models
instead have patterns of wandering patches; by a nice irony, in the case of fox
rabies these have a ‘turnover period’ numerically similar to the homogeneous
mixing model’s period of oscillations (Mollison 1986). Endemic patterns in
human diseases are more complex, but here too there is some evidence that
the spatial structure deters chaotic and oscillatory behaviour (Ellner et al.,
Grenfell et al., both in this volume).

Although they have such limitations, the simple formulae do have the car-
dinal virtue of clarity. Consideration of the basic relationships that these
formulae describe can clarify the assumptions inherent in a model; in con-
trast, complex formulae give a spurious appearance of precision that may
distract our attention from structural faults in the model. It is only if any
shortcomings are recognised that we can correct for them, or at least make
some allowance for the error involved: an approximate answer to the right
question is better than a precise answer to the wrong question.
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