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Ross (ca. 1911)
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Ross (ca. 1911)

R0 = Mb2cd

where M is # mosquitoes/human,

whence

R0 < 1 iff M < Mc.









Basic network idea:

A pair of individuals are linked . . .

i→ j

. . . if i can (or does) infect j





En’ko 1889



In each generation,

Pr(escape infection)

= (1− i)pN (Enko 1889)

= (1− p)iN (Reed-Frost)

where p = P(contact), i = proportion infected

→
In+1 ∼ Binomial(Sn, (1− (1− p)In))



Data analysis:

Three measles outbreaks in the Educational
College for the Daughters of the Nobility

En’ko 1889



1874: 1→ 70→ 45→ 2

Best fitting simulation: 1→ 79→ 53

when N = 400, S0 = 133, ST = 0, A = 360





Reed-Frost

The chain-binomial, with

In+1 ∼ Binomial(Sn, (1− (1− p)In))

is generally credited to Reed & Frost, ca. 1928,
but ..



Reed-Frost

The chain-binomial, with

In+1 ∼ Binomial(Sn, (1− (1− p)In))

is generally credited to Reed & Frost, ca. 1928,
but ..

.. was not widely known until ca. 1950.

Main applications in small populations (house-
holds) (see e.g. Becker 1989)



Reasons R-F went out of fashion

- difficulties of calculation

- attractions not appreciated ..

- .. or held against it

- rise of continuous-time models

(techniques including DEs, PGFs, and

branching-process approximations)

with emphasis on ‘mass-action’



Mass-action models

Deterministic:

Hamer 1906 discrete-time

Ross 1908 continuous-time

Kermack & McKendrick 1927 DEs for SIR

Stochastic:

McKendrick 1926

Bartlett 1949



Example (value of “unnecessary” detail):

Simple birth and death process

(1) rn,n+1 = an, rn,n−1 = bn

(2) Independent individuals, each with birth
rate a and death rate b.

P(extinction) µn when initial pop. = n ?



Example (value of “unnecessary” detail):

Simple birth and death process

(1) rn,n+1 = an, rn,n−1 = bn

(2) Independent individuals, each with birth
rate a and death rate b.

P(extinction) µn when initial pop. = n

=µn
1





Spatial processes

Network models first used explicitly for spatial
case, because individual-based models more ob-
viously needed:

Broadbent & Hammersley 1957 motivated
percolation theory with the example of “spread
of disease in an orchard’



Specific spatial epidemic models

Morgan & Welsh 1965

Mollison 1972:

Velocity of 1-D stochastic epidemics

- theory

- simulations

- comparison with DE models



v(s) ∼ s−4 v(s) ∼ s−3



Time 0 Time 1



Comparing different local structures

(Kuulasmaa & Zachary 1984)

A a subset of neighbours of i,

q(A) = P [i doesn’t infect any of A].

If q1(A) ≤ q2(A) for all A,

then “1 ≥ 2”

[E.g. indep. contacts ≥ correlated contacts]



Harris 1974: the “contact” process (= SIS)

A coupling argument . . .



Harris 1974: the “contact” process (= SIS)

A coupling argument . . .

. . . shows that this is monotone with initial set

Cox & Durrett (1988): the “contact process”
has an asymptotic velocity



Liggett 1985 Interacting Particle Systems



Liggett 1985 Interacting Particle Systems

Meanwhile, in another part of the wood,

more probabilists were at work . . .





Simple random graphs

Erdos and Renyi,

followed by Bollobas and others

were finding out more about a very simple model
than En’ko could have hoped for.



Simple random graphs

Erdos and Renyi,

followed by Bollobas and others

were finding out more about a very simple model
than En’ko could have hoped for (or wanted?).



(En’ko / Reed-Frost revisited)

In each generation,

Pr(escape infection) = (1− p)iN

→
In+1 ∼ Binomial(Sn, (1− (1− p)In))



Simple random graph

N individuals, each pair linked with probability p



• Why are these links undirected?

• Why are they independent?



Simple random graph

Here R0 ≡ Np is < 1



R0

The basic reproductive ratio of an epidemic
is the mean number of new infections made by
an infected individual in a mostly susceptible
population





Here R0 ≡ Np is > 1



Results for simple random graph:

Giant component exists iff R0 > 1.
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Results for simple random graph:

Giant component exists iff R0 > 1.

Diameter of giant, T ∼ logN .

Final size (and probability of a large outbreak)
are both given by the largest solution of

z = 1− exp(−R0z)



Deterministic mass-action equivalent,

a differential equation model (‘SIR’):

Ṡ = −cSI
İ = cSI − dI
Ṙ = dI



Results for ‘SIR’:

Large outbreak always occurs if R0 ≡ c/d > 1,

duration T ∼ logN ,

and the final size z is given by



Results for ‘SIR’:

Large outbreak always occurs if R0 ≡ c/d > 1,

duration T ∼ logN ,

and the final size z is given by

z = 1− exp(−R0z)



Epidemiologists are interested in more than just
the Simple Random Graph





Structural choices for network models

• Directed or undirected?

• Degree – fixed? Poisson? power-law?

• Large-scale structure

(mean-field to spatial)



Undirected links??

Aij = “i infects j”

In R-F, Aijs are all i.i.d. w.p. p

– this requires:

(a) infectious period Ti constant

(b) P [i→ j] = P [j → i]

Then (c) in any realisation we are interested
in only one of Aij and Aji, so we can represent
them by a single (undirectional) link.



Contacts or potential contacts?

In R-F we can either think of all others as
potential contacts, each an actual contact with
probability p; or of a Binomial (asymptotically
Poisson) degree distribution prescribing “re-
alised” contacts.

One generalisation is to take the latter approach
with arbitrary degree distribution.



R0 = E[D] =
∑
dπd ?

Effective value, R′0 =
∑
dπ′d − 1

where π′d = dπd/
∑
dπd

whence R′0 = E[D2]/E[D]− 1

(= E[D] for Poisson degree distribution).



Note

Contrast traditional (?) epidemic models where
numbers of incoming and outgoing links are
not correlated, so we don’t get this “size-biased”
effect.

An extreme example exhibiting size bias is

‘Scale-free’ models:



T = 3



T ≈ 3



T = 2





Metapopulation models (BMS-T 1997)

Consider a population with local and global
contacts

where the geography can be either mean-field
. . .



. . . or spatial

(‘great circle’ or ‘small world’ model)



Consider first the process including only global
contacts, with reproductive ratio R0 = Nq.

Relative to this ‘global-only’ process, local con-
tacts have an amplifying effect.



Hence the overall reproductive ratio is

RT = R0µ

where µ is the mean size of a local outbreak.



Hence the overall reproductive ratio is

RT = R0µ

where µ is the mean size of a local outbreak.

A key question for control is whether you can
get local outbreaks below threshold (compare SARS
and swine flu?)



http://www.cybergeo.eu/index12803.html
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Small worlds

Threshold: RT = R0µ > 1 (as for metapopu-
lation model)

T reduces from ∼ N to ∼ logN as the number
of global links increases



‘Small world’ phenomenon:

The proportion of global links required to
collapse the spatial model to one close to
homogeneous mixing, reducing T to ∼ logN ,
is surprisingly small.





Advantages of network models

+ “links” i → j captures idea of infectious
contact

+ clarity (potentially)

− but not the only approach



Have tried to include examples of some nice
techniques, whether network-based or not.

One last example . . .



Sellke construction for R-F

Note that P [escape n attacks] = (1− p)n

Choose Xi i.i.d. Uniform[0, 1]

Start with initial set of infected;

when cumulative total = I,

i becomes infected iff Xi > (1− p)I .






