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1 Building models

Interests

• Invasion – threshold? R0?



R0

The basic reproductive ratio of an epidemic
is the mean number of new infections made by
an infected individual in a mostly susceptible
population
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1 Building models

Interests

• Invasion – threshold? R0?

• Spread – velocity / duration? final size?

• Persistence? – pattern? control?



Types of model

• individual or continuous population?

• stochastic or deterministic?



Population space

• mean-field

• metapopulations

• spatial

• small-world



Equililibrium formulae

πi = τi/L

e.g.

πS = S/N = A/L

for ‘once-only’ disease



Assuming homogeneous mixing,

R0 = πS = S/N ,

so R0 = A/L.



Ross (ca. 1911)

R0 = Mb2cd

where M is # mosquitoes/human



Ross (ca. 1911)

R0 = Mb2cd

where M is # mosquitoes/human,

whence

R0 < 1 iff M < Mc.





2. Simple network models

Three outbreaks of measles (Enko 1889)



In each generation,

Pr(escape infection)

= (1− i)pN (Enko 1889)

= (1− p)iN (Reed-Frost)

where p = P(contact), i = proportion infected



In each generation,

Pr(escape infection)

= (1− i)pN (Enko 1889)

= (1− p)iN (Reed-Frost)

where p = P(contact), i = proportion infected

→
In+1 ∼ Binomial(Sn, (1− (1− p)In))



Simple network model (random graph)

Here R0 ≡ Np is < 1



Results for simple random graph:

Giant component exists iff R0 > 1.

Diameter of giant, T ∼ logN .

Final size (and probability of a large outbreak)
are both given by the largest solution of

z = 1− exp(−R0z)



Deterministic (continuous population)
equivalent,

a differential equation model (‘SIR’):

Ṡ = −cSI
İ = cSI − dI
Ṙ = dI



Results for ‘SIR’:

Large outbreak always occurs if R0 ≡ c/d > 1,

duration T ∼ logN ,

and the final size z is given by

z = 1− exp(−R0z)





Stochastic structures

“Unnecessary details”

Example:

Simple birth and death process

(1) rn,n+1 = an, rn,n−1 = bn

(2) Independent individuals, each with birth
rate a and death rate b.

P(extinction) µn when initial pop. = n ?



Stochastic structures

“Unnecessary details”

Example:

Simple birth and death process

(1) rn,n+1 = an, rn,n−1 = bn

(2) Independent individuals, each with birth
rate a and death rate b.

P(extinction) µn when initial pop. = n ?

µn = µn
1



Coupling

Example: the ‘Contact Process’ . . .

. . . is monotone with initial set



Coupling

Example: the ‘Contact Process’ . . .

. . . is monotone with initial set

. . . and with infection parameter



Thinking in the wrong order

Looking at simpler model first

. . .





3 Metapopulation models

Consider a population with local and global
contacts

where the geography can be either mean-field
. . .



. . . or spatial

(‘great circle’ or ‘small world’ model)



Consider first the process including only global
contacts, with reproductive ratio R0 = Nq.

Relative to this ‘global-only’ process, local con-
tacts have an amplifying effect.



Hence the overall reproductive ratio is

RT = R0µ

where µ is the mean size of a local outbreak.



Hence the overall reproductive ratio is

RT = R0µ

where µ is the mean size of a local outbreak.

A key question for control is whether you can
get local outbreaks below threshold (compare SARS
and swine flu?)



http://www.cybergeo.eu/index12803.html
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“swine flu map youtube”





4 Spatial models

Nearest-neighbour

. . . or more general dispersal distribution









Calculation of velocities

Provided the dispersal distribution falls off at
least exponentially, deterministic models do pro-
vide reasonable approximations.

Many nonlinear spatial deterministic models
have been studied, especially diffusion equa-
tions (KPP, Fisher, Skellam, . . . )



Breakthrough in late 1980s: the approach
of Diekmann (and others) shows how linear
theory can find velocities for a wide range of
nonlinear models.

All you need is the reproduction and dispersal
kernel K that describes the space-time
distribution of the infections made by an indi-
vidual in a mostly susceptible population.

Can think of K as a space-time version of R0



Three advantages of the R&D kernel approach:

• Much easier to calculate

• Not restricted to DEs and diffusion equa-
tions

• Can look at the broad dependence of the
velocity on basic components

(e.g. is it ∼ log(R0), ∼
√
R0 or ∼ R0 ?)



.. but note

These calculated velocities are somewhat
larger than those of the more realistic
individual stochastic models -



.. but note

These calculated velocities are somewhat
larger than those of the more realistic
individual stochastic models -

The problem is treating the population as con-
tinuous (atto-foxes) rather than determinism
per se





5 Small worlds

Threshold: RT = R0µ > 1 (as for metapopu-
lation model)

T reduces from ∼ N to ∼ logN as the number
of global links increases



‘Small world’ phenomenon:

The proportion of global links required to re-
duce T to ∼ logN is surprisingly small.



‘Scale-free’ models:

A related study is of models with very high
variability in the number of contacts per indi-
vidual.



T = 3



Note When considering different degree dis-
tributions

(a) the epidemic is run on a fixed network.

(b) links from/to an individual are not inde-
pendent



Note When considering different degree dis-
tributions

(a) the epidemic is run on a fixed network.

(b) links from/to an individual are not inde-
pendent.

Compare SRG / Reed-Frost where:

(a) doesn’t matter

(b) they are independent.



T ≈ 3



T = 2







Footnotes

The structuralist ethic

Only trust a model if you can take it apart
and put it together again
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Footnotes

The structuralist ethic

Only trust a model if you can take it apart
and put it together again

Limits of prediction

Avian flu in humans currently has an R0 of
∼ 0.02.





6 Pair approximations

Pair approximations try to use local correla-
tions to capture spatial structure.





Reconsider the deterministic SIR:

Ṡ = −cSI
İ = cSI − dI
Ṙ = dI



More accurately

Ṡ = −c[SI]

İ = c[SI]− dI
Ṙ = dI

˙[SI] = c([SSI]− [SI]− [ISI])− d[SI]



More accurately

Ṡ = −c[SI]

İ = c[SI]− dI
Ṙ = dI

˙[SS] = −2c[SSI]
˙[SI] = c([SSI]− [SI]− [ISI])− d[SI]
˙[SR] = · · ·
˙[II] = · · ·



For closure, use

[ABC] ≈ (1− 1

n
)
[AB][BC]

[B]

×(1− φ+ φ
[AC]

[A][C]
)

where the clustering parameter φ is

P (ac|ab & bc)

(Keeling 1999)



Example hexagonal lattices (HBFs)

φ = 6/15 = 0.4

We have seen that the SIR on this graph has
T ∼

√
N .

How about the pair approximation SIR with
φ = 0.4 ?



SIR (dashed line) and its pair approximation (solid line),
for φ = 0, 0.2, 0.4.

Also, spatial SIR (‘S’) and ordinary deterministic SIR

(‘?’).



The pair approximation with φ = 0.4 does fit
well for epidemics on ‘typical’ graphs of degree
6 and clustering parameter 0.4 . . .

. . . but not for the spatial (hexagonal) SIR.



The pair approximation with φ = 0.4 does fit
well for epidemics on ‘typical’ graphs of degree
6 and clustering parameter 0.4 . . .

. . . but not for the spatial (hexagonal) SIR.

Is there a paradox here?



Just because a graph has degree 6
and clustering parameter 0.4,
it doesn’t have to be hexagonal.



Just because a graph has degree 6
and clustering parameter 0.4,
it doesn’t have to be hexagonal.

In fact that’s very very unlikely – we might say
Adams-improbable.



‘We are now cruising at a level of 225,000 to 1
against and falling, and we will be restoring
normality just as soon as we are sure what is
normal anyway.’

(Adams 1979)
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