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• An Example with real data of Avian influenza in Vietnam
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Epidemic Modelling: Model

• Some monographs on Epidemic Modelling are Daley and Gani

(1999), Andersson and Briton (2000) or Mode and Sleeman (2000),

Andersson and May (1991).
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Epidemic Modelling: Model

• Some monographs on Epidemic Modelling are Daley and Gani

(1999), Andersson and Briton (2000) or Mode and Sleeman (2000),

Andersson and May (1991).

• Ball and Donnelly (1995), Farrington and Grant (1999), Farrington,

Kanaan and Gay (2003), Dietz (1993)

• Different types of stochastic models have been used to model the

evolution of an infectious disease into a population: branching

processes.
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Epidemic Modelling: Model

• Branching processes approach is appropriate when the number of

infected individuals is small in relation to the total population size

(see Ball (1997)).
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than using discrete-time processes.
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Epidemic Modelling: Model

• Branching processes approach is appropriate when the number of

infected individuals is small in relation to the total population size

(see Ball (1997)).

• We shall use Sevast’yanov’s age-dependent branching processes

because the infection time might be more accurately controlled

than using discrete-time processes.

• Infectious period consists of two parts: an incubation or latency

part and comparatively very short contact part. Different levels of

severity depend on the length of incubation period
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Epidemic Modelling: Model

To model the spread of the disease by using age-dependent

branching processes, we consider the following scheme:
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Epidemic Modelling: Model

To model the spread of the disease by using age-dependent

branching processes, we consider the following scheme:

• Let us assume that three types of individuals may exist in the

population: infected; healthy but susceptible to catch the infection

(susceptible individuals); healthy and immune to the disease

• The disease is spreading when an infected individual is in contact

with susceptible individuals.

• We denote by pα,k(u), u > 0 the probability that one infected

individual at age u contacts k healthy individuals, k ≥ 0, where α

(0 ≤ α ≤ 1) is the proportion of immunized individuals into the

population.
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Epidemic Modelling: Model

• Following this spreading scheme along time, infected individuals

pass on the disease to other susceptible individuals and so on.

We model the number of infected individuals in the population by

Sevast’yanov’s age-dependent branching process: {Zα(t)}t≥0

A possible path
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Epidemic Modelling: Model

• Life-length: G(t)

• Family of reproduction laws: {pα,k(u)}k≥0, u > 0,

mα(u) is the mean of contacts of infected individual at age u when

the level of immunized individuals is α

• mα =
∫∞
0

mα(u)dG(u).

Intuitively: By life-length we mean the infectious period (measured

in real time) till one infected individual infects susceptible

individuals or the disease disappears in this individual
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Epidemic Modelling: Model

Our goals:

1) To suggest vaccination policies based on the mean of the infection

period.
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Epidemic Modelling: Model

Our goals:

1) To suggest vaccination policies based on the mean of the infection

period.

2) To investigate the distribution of the duration time of the infection

depending on the proportion of immunized individuals into the

population.

Extinction Time: Tα = inft≥0{Zα(t) = 0} vα(t) = P (Tα ≤ t)

Intuitively: Tα is the maximal time that the infection survives into

the population when the proportion of immune individuals is α
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Epidemic Modelling: Infection Extinction Time

Stochastic Monotony: If α1 < α2, then vα1(t) ≤ vα2(t), t ≥ 0.
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Epidemic Modelling: Infection Extinction Time

Stochastic Monotony: If α1 < α2, then vα1(t) ≤ vα2(t), t ≥ 0.
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α = 0.85α = 0.9α = 0.95α = 1

Intuitively, it is clear that the greater is the proportion of the immune

individuals, the more probable is that the infectious disease disappears

faster
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Epidemic Modelling: Infection Extinction Time

• Mean of the infection extinction time Tα

µα = E[Tα] =
∫ ∞

0

(1− vα(t))dt
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Epidemic Modelling: Infection Extinction Time

• Mean of the infection extinction time Tα

µα = E[Tα] =
∫ ∞

0

(1− vα(t))dt

• Continuity property: For each ε > 0 there exist η = η(ε, α) > 0
such that for all α∗ with mα∗ ≤ 1 and |α− α∗| ≤ η,

sup
t≥0

|vα(t)− vα∗(t)| ≤ ε.
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Epidemic Modelling: Infection Extinction Time

• Mean of the infection extinction time Tα

µα = E[Tα] =
∫ ∞

0

(1− vα(t))dt

• Continuity property: For each ε > 0 there exist η = η(ε, α) > 0
such that for all α∗ with mα∗ ≤ 1 and |α− α∗| ≤ η,

sup
t≥0

|vα(t)− vα∗(t)| ≤ ε.

• If α1 < α2 ≤ 1, then µα2 ≤ µα1
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Epidemic Modelling: Infection Extinction Time

• We try to control the spread of the disease by immunizing some

proportion of susceptible individuals.
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proportion of susceptible individuals.

• This proportion of susceptible individuals to be vaccinated depends

on the time that we allow the infectious disease to survive after

vaccination.
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Epidemic Modelling: Infection Extinction Time

• We try to control the spread of the disease by immunizing some

proportion of susceptible individuals.

• This proportion of susceptible individuals to be vaccinated depends

on the time that we allow the infectious disease to survive after

vaccination.

• Assume that at an arbitrary time t0 after the infection occurred,

we want to vaccinate a proportion α of susceptible individuals. We

suppose that the vaccination process finishes at time t1. Therefore,

t1 − t0 is the period of time that is taken for immunization, called

the vaccination period. We suppose that vaccination period is

fixed a priori and does not depend on α.
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Epidemic Modelling: Infection Extinction Time

• Optimal proportion of vaccinated individuals:

For fixed τ , we are looking for vaccination policies, which

guarantee that the average time to extinction of an infection

after vaccination period t1, is less than or equal to t1 + τ .

αopt = inf{α : α ≤ 1, µα ≤ τ}
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Epidemic Modelling: Infection Extinction Time

• Optimal proportion of vaccinated individuals:

For fixed τ , we are looking for vaccination policies, which

guarantee that the average time to extinction of an infection

after vaccination period t1, is less than or equal to t1 + τ .

0 t1 + τt0 t1

αopt = inf{α : α ≤ 1, µα ≤ τ}
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Epidemic Modelling: Avian influenza in Vietnam
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Epidemic Modelling: Avian influenza in Vietnam

To apply the simulation method based on the mean of the

extinction time

1) d.f. G(.) is of a gamma distribution
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Epidemic Modelling: Avian influenza in Vietnam

To apply the simulation method based on the mean of the

extinction time

1) d.f. G(.) is of a gamma distribution

2) {pα,k(u)}k≥0 follows a Poisson distribution with parameter λu

(Intuitively, λ represents the power of the virus.)
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Epidemic Modelling: Avian influenza in Vietnam

To apply the simulation method based on the mean of the

extinction time

1) d.f. G(.) is of a gamma distribution

2) {pα,k(u)}k≥0 follows a Poisson distribution with parameter λu

(Intuitively, λ represents the power of the virus.)

3) incubation period for avian influenza virus is estimated between

3 and 7 days (IDSA, 2007) =⇒ mean of gamma is 5 and the

shape is 16, which guarantee that the survival period in 90% of

individuals is between 3 and 7 days

DIMACS - ECDC 2008



Epidemic Modelling: Avian influenza in Vietnam
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Epidemic Modelling: Avian influenza in Vietnam

Data for infected domestic birds detected between 7th December

2006 and 14th January 2007 in South Vietnam
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Epidemic Modelling: Avian influenza in Vietnam
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Epidemic Modelling: Avian influenza in Vietnam

(i) m = 5λ

(ii) first outbreak (in 7th December) = 80

(iii) after incubation period (in 13th and 14th December) = 413

(iv) m = 413/80 (Lotka’s estimator)

(v) The number of individuals incubating the virus at 19th December

we estimate by 2132 = 413 ∗ (413/80)

(vi) αopt(30, 2132) = 0.97.
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Epidemic Modelling: Avian influenza in Vietnam
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Epidemic Modelling: Avian influenza in Vietnam

Histogram of simulated extinction times for α = 0.97.
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Epidemic Modelling: Avian influenza in Vietnam -
conclusion
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Epidemic Modelling: Avian influenza in Vietnam -
conclusion

(i) Control measures applied in Vietnam correspond to a vaccination

level close to 1 (α = 0.97)
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Epidemic Modelling: Avian influenza in Vietnam -
conclusion

(i) Control measures applied in Vietnam correspond to a vaccination

level close to 1 (α = 0.97)

(ii) The optimal vaccination level does not depend on the initial

number of individuals incubating the virus (sensitivity analysis)
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Epidemic Modelling: Open questions for further research
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1) How it can be chosen t0?
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Establishing a threshold in terms of the total progeny

of infected individuals.
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Epidemic Modelling: Open questions for further research

1) How it can be chosen t0?

Establishing a threshold in terms of the total progeny

of infected individuals.

2) How to model the vaccination period?

By age-dependent branching processes in varying

environments.
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Thank you for your attention!


