THE USE OF AUXILIARY INFORMATION TO DEAL WITH INFORMATIVELY MISSING OR OBSERVED DATA

Vern Farewell MRC Biostatistics Unit Cambridge, UK

Major Collaborators: Andrew Copas, Michael Sweeting

'MISSING' OBSERVATIONS

- Response variable of interest *Y*:
 - Observed: Y^o
 - -Missing: Y^m
- Explanatory variable(s) or covariate(s): X
- \bullet Response or observation indicator: R

'MISSING' OBSERVATIONS

• Missing Completely at Random (MCAR)

 $-f(R \mid Y^o, Y^m, X) = f(R)$

• Covariate Dependent-MCAR (CD-MCAR)

 $- \, f(R \mid Y^o, Y^m, X) = f(R \mid X)$

• Covariate Dependent Missing at Random (CD-MAR)

 $-f(R \mid Y^o, Y^m, X) = f(R \mid X, Y^o)$

• Missing Not at Random (MNAR)

 $-f(R \mid Y^o, Y^m, X) \neq f(R \mid X, Y^o)$

Two Modelling Approaches for MNAR Data

• Selection Model:

 $f(Y,R) = f(Y)f(R \mid Y)$

or

 $f(Y, R \mid X) = f(Y \mid X)f(R \mid Y, X)$ conditioning on X

• Pattern Mixture Model:

 $f(Y,R) = f(Y \mid R)f(R)$

or

 $f(Y, R \mid X) = f(Y \mid R, X)f(R \mid X)$ conditioning on X

National Survey of Sexual Attitudes and Lifestyles (NATSAL)

Involved face-to-face questioning and a self-completion booklet with more sensitive questions.

- **Responders:** provided answers to all questions
- Item non-responders: refused to answer some questions
- Unit non-responders: refused to answer any questions

		Item	\mathbf{Unit}
	Responders	Non-responders	Non-responders
Total	600	100	300

Estimate of level of virginity

Responders only: 12.5%

		Item	\mathbf{Unit}
	Responders	Non-responders	Non-responders
Embarrassed	150	75	
	$\mathbf{20\%}$		
Not	450	25	
Embarrassed	10%		
Total	600	100	300

Estimate of level of virginity

Responders only: 12.5%

		Item	\mathbf{Unit}
	Responders	Non-responders	Non-responders
Embarrassed	150	75	
	$\mathbf{20\%}$	$\mathbf{20\%}$	
Not	450	25	
Embarrassed	10%	10%	
Total	600	100	300

Estimate of level of virginity

Responders only:	12.5%
Responders + Item-nonresponders:	13.2%

		Item	\mathbf{Unit}
	Responders	Non-responders	Non-responders
Embarrassed	150	75	225
	$\mathbf{20\%}$	$\mathbf{20\%}$	
Not	450	25	75
Embarrassed	10%	10%	
Total	600	100	300

Estimate of level of virginity

Responders only:	12.5%
Responders + Item-nonresponders:	13.2%

		Item	Unit
	Responders	Non-responders	Non-responders
Embarrassed	150	75	225
	$\mathbf{20\%}$	$\mathbf{20\%}$	$\mathbf{20\%}$
Not	450	25	75
Embarrassed	10%	10%	10%
Total	600	100	300

Estimate of level of virginity

Responders only:12.5%Responders + Item-nonresponders:13.2%Responders + Item-nonresponders +14.5%Unit-nonresponders

Hepatitis C disease progression

- The Trent hepatitis C cohort follows patients sporadically through visits to hospital clinic
- For patients who attend clinic and are not lost to follow-up
 - -Liver function tests (LFTs) are blood tests collected regularly.
 - -Liver biopsies (invasive procedure) are infrequent and irregular. Each biopsy scored for stage of disease, *e.g.* 1 = Mild, 2 = Moderate, 3 = Cirrhosis
 - Other data collected at clinic visits (alcohol use, treatment regimes, BMI, end-stage liver diseases)

Process of Interest

Progress through biopsy states

Figure 1: Fibrosis Model

The problem

- Liver biopsies are the gold standard in assessing disease stage
- The occurrence of liver biopsies may be informative
- We need to jointly model the examination (liver biopsy) process and outcome process to obtain correct inferences.
- Can the much more frequently recorded LFTs help?

Informative examination scheme as a missing data problem

- Consider whether a biopsy has occurred in each six-month period.
- Associate a single LFT value with each six-month period.

Observations denoted by i = 1, ..., n Y_i - categorical outcome at time t_j (*e.g.* Stage of HCV disease)

Observations denoted by $i = 1, \ldots, n$

 Y_i - categorical outcome at time t_i (e.g. Stage of HCV disease)

 R_i - missing data indicator variable equalling 1 if Y_i recorded at t_i , 0 otherwise

Observations denoted by $i = 1, \ldots, n$

 Y_i - categorical outcome at time t_i (e.g. Stage of HCV disease)

 R_i - missing data indicator variable equalling 1 if Y_i recorded at t_i , 0 otherwise

 Z_i - explanatory variable(s) for outcome Y_i at time t_i

Observations denoted by $i = 1, \ldots, n$

 Y_i - categorical outcome at time t_i (e.g. Stage of HCV disease)

 R_i - missing data indicator variable equalling 1 if Y_i recorded at t_i , 0 otherwise

 Z_i - explanatory variable(s) for outcome Y_i at time t_i

 X_i - surrogate variable for outcome Y_i at time t_i

Observations denoted by $i = 1, \ldots, n$

 Y_i - categorical outcome at time t_i (e.g. Stage of HCV disease)

 R_i - missing data indicator variable equalling 1 if Y_i recorded at t_i , 0 otherwise

 Z_i - explanatory variable(s) for outcome Y_i at time t_i

 X_i - surrogate variable for outcome Y_i at time t_i

 $oldsymbol{Y}^{\scriptscriptstyle O}$ - vector of observed outcomes

 \boldsymbol{Y}^m - vector of missing outcomes

Approaches to joint modelling of Y and R

- There are identifiability problems in estimating relationship between Y and R, since Y is unobserved when R = 0
- Assumptions MUST be made before carrying out any missing data analysis:
 - 1. A covariate dependent missing at random (CD-MAR) assumption $f(\mathbf{R}|\mathbf{Y}^o, \mathbf{Y}^m, \mathbf{Z}) = f(\mathbf{R}|\mathbf{Y}^o, \mathbf{Z})$. If truly CD-MAR, then unbiased inferences can obtained using the observed data, and ignoring the missingness mechanism.
 - 2. If not willing to assume CD-MAR given Y^o and Z, must seek some extra information, X so that $f(R|Y^o, Y^m, Z, X) = f(R|Y^o, Z, X)$

The Partially Hidden Markov model (PHMM)

The Partially Hidden Markov model Likelihood

The likelihood under this model is of the following form:

$$\propto \prod_{i=1}^{n} f(m{r}_{i} | m{x}_{i}, m{y}_{i}^{o}, m{z}_{i}, \psi) \sum_{m{y}_{i}^{m}} f(\{m{y}_{i}^{m}, m{y}_{i}^{o}\} | m{z}_{i}, heta) f(m{x}_{i} | \{m{y}_{i}^{m}, m{y}_{i}^{o}\}, m{z}_{i}, \phi)$$

where ψ and ϕ denote the parameters defining the probability density functions $f(\boldsymbol{r}_i | \boldsymbol{x}_i, \boldsymbol{y}_i^o, \boldsymbol{z}_i)$ and $f(\boldsymbol{x}_i | \{\boldsymbol{y}_i^m, \boldsymbol{y}_i^o\}, \boldsymbol{z}_i)$, respectively.

- Generalization (slightly) of CD-MAR since X cannot be regarded as a covariate for the Y process.
- Might be termed Surrogate-Dependent MAR

Simulation Study

- Simulation study of samples of 300 individuals observed at 5 time points.
- Exponential two-stage model, normally distributed auxiliary variable.
- Negative biases of 8% to 26% in estimation of baseline hazard if MCAR assumption is made incorrectly.
- Negative biases of 3% to 8% for a binary covariate (50% at each level) coefficient.
- PHMM eliminates these biases and gives appropriate coverage etc if observation depends on the auxiliary variable X.
- PHMM offers significant improvement even if MNAR model is correct.

Simulation Study

- Data are generated for 300 individuals at five equally spaced examination times, $(t_0, t_1, t_2, t_3, t_4) = (0, 2, 4, 6, 8)$
- Z = -1 for 50% of individuals and 1 otherwise.
- Transition time out of state 1 is exponential

 $-T|z \sim \text{Exponential}(\lambda_0 e^{\beta z}), \lambda_0 = 0.2, \beta = 0.5.$

- The binary response $Y(t_j|T) = \mathbf{I}[T \le t_j]$ indicator for transition by t_j .
- The auxiliary variables, X, are normally distributed

 $-(X(t_j)|y(t_j)) \sim \mathbf{Normal}(\mu_{y(t_j)}, \sigma^2) \\ -\mu_{y(t_j)} = \phi_0 + \phi_1 y(t_j), \ \sigma = 1 \text{ (independent of } Y)$

• Missing data process is Bernoulli

 $-\mathbf{Pr}\left(R(t_j)=1|y(t_j),x(t_j)\right)=\mathbf{logit}^{-1}\left\{\psi_0+\psi_1y(t_j)+\psi_2x(t_j)\right\}.$

Scenario	Relative bias $(\%)$		95	95% coverage (%)			\mathbf{MSE}		
	IG	PHMM	MNAR	IG	PHMM	MNAR	IG	PHMM	MNAR
MCAR, $\psi_1 = \psi_2 = 0$									
1) X independent of Y, $\phi_1 = 0$	0.1	0.1	0.1	95.9	96.0	94.5	0.009	0.009	0.013
2) $\phi_1 = 0.5$	0.1	0.1	0.1	95.9	95.4	94.5	0.009	0.008	0.013
3) $\phi_1 = 1$	0.1	0.1	0.1	95.9	94.7	94.5	0.009	0.008	0.013
MAR, $\psi_1 = 0, \ \psi_2 = 1$									
1) X independent of Y, $\phi_1 = 0$	0.2	0.2	0.2	96.1	95.7	95.5	0.008	0.008	0.011
2) $\phi_1 = 0.5$	-8.4	0.2	0.2	64.2	96.0	95.2	0.026	0.008	0.011
3) $\phi_1 = 1$	-16.8	0.2	0	12.0	95.0	95.1	0.081	0.007	0.011
MNAR , $\psi_1 = \psi_2 = 1$									
1) X independent of Y, $\phi_1 = 0$	-13.5	-14.0	0.0	21.8	19.1	96.0	0.053	0.057	0.008
2) $\phi_1 = 0.5$	-19.9	-13.1	0.1	1.1	25.0	95.4	0.109	0.051	0.008
3) $\phi_1 = 1$	-26.4	-9.9	0.0	0.0	48.7	94.1	0.188	0.032	0.008

Simulation results for the baseline log hazard

Scenario	Relative bias $(\%)$		95	95% coverage $(%)$			\mathbf{MSE}		
	IG	PHMM	MNAR	IG	PHMM	MNAR	\mathbf{IG}	PHMM	MNAR
MCAR, $\psi_1 = \psi_2 = 0$									
1) X independent of Y, $\phi_1 = 0$	0.4	0.3	0.4	94.8	94.8	94.9	0.009	0.009	0.009
2) $\phi_1 = 0.5$	0.4	0.2	0.4	94.8	95.4	94.9	0.009	0.008	0.009
3) $\phi_1 = 1$	0.4	0.1	0.4	94.8	95.0	94.9	0.009	0.007	0.009
MAR, $\psi_1 = 0, \ \psi_2 = 1$									
1) X independent of Y, $\phi_1 = 0$	0.4	0.3	0.3	94.5	94.4	94.3	0.008	0.008	0.008
2) $\phi_1 = 0.5$	-3.0	0.2	0.3	93.4	94.5	94.4	0.008	0.008	0.008
3) $\phi_1 = 1$	-5.8	0.4	0.6	91.9	94.7	94.3	0.009	0.007	0.008
$\mathbf{MNAR},\ \psi_1=\psi_2=1$									
1) X independent of Y, $\phi_1 = 0$	-4.2	-4.5	0.2	92.4	92.3	94.8	0.007	0.007	0.007
2) $\phi_1 = 0.5$	-6.1	-1.8	0.3	90.6	93.6	94.4	0.008	0.007	0.007
3) $\phi_1 = 1$	-7.8	0.6	0.4	90.0	94.9	95.4	0.008	0.006	0.006

Simulation results for the binary covariate coefficient

Transitions in Trent Cohort Database

	To state					
From state	'None/Mild'	'Moderate'	'Severe/Cirrhosis'	Unknown		
'None/Mild'	326	20	6	403		
'Moderate'	0	8	6	109		
'Severe/Cirrhosis'	0	0	2	100		

Observed disease state transitions in the Trent hepatitis C cohort.

Basline Hazards Estimates

Parameter		Model	
	Ignorable	CD-MAR (ALT)	MNAR
Baseline intensities			
$\lambda_{1,2}$	0.0120	0.0119	0.0119
	(0.0079, 0.0182)	(0.0078,0.0181)	(0.0078, 0.0181)
$\lambda_{2,3}$	0.0773	0.0769	0.0794
	(0.0396, 0.1509)	(0.0399, 0.1485)	(0.0386, 0.1634)

A Different Sort of Example

Return to NATSAL (Survey of Sexual Attitudes and Lifestyle)

- Two surveys in 1990 and 2000
- Interested in changes between 1990 and 2000
- As seen before, bias is expected in each survey.
- Change in bias is relevant to any examination of change in results of the surveys

- Bias will depend on the question.
- Classify questions to be of high, medium and low sensitivity (effectively reflecting expected bias).
- Should any information be the same in the two surveys?
- Population cohort eligible for both surveys are those:
 - Aged 16-34 in 1990.
 - Aged 26-44 in 2000.
- Questions answered by this *common cohort* should be similar if they, e.g., refer to events before a fixed age.

• Homosexual experience before 1990 [High sensitivity]:

-Men: 5.0% (1990) vs 8.5% (2000)

- -Women: 3.5% (1990) vs 6.7% (2000)
- Heterosexual intercourse before 16 years [Medium sensitivity]:

-Men: 24.7% (1990) vs 27.5% (2000)

-Women: 12.9% (1990) vs 18.2% (2000)

From these type of questions. estimate odds ratios (ORs) for change in bias

- High sensitivity: Men 1.80(1.46,2.21); Women 1.99(1.62,2.46)
- Medium sensitivity: Men 1.11(1.01,1.21); Women 1.19(1.10,1.29)

Homosexual partners, past 5 years

- Men: 1.5% (1990) vs 2.6% (2000) \rightarrow OR: 1.75(1.29,2.36) -:
- Women: 0.8% (1990) vs 2.6% (2000) \rightarrow OR: 3.43(2.42,4.87) -:

Change in bias results

• High sensitivity OR: Men 1.80; Women 1.99

Homosexual partners, past 5 years

• Men: 1.5% (1990) vs 2.6% (2000) \rightarrow OR: 1.75(1.29,2.36)

-Minimum established change: 1.29/1.80 = 0.72

• Women: 0.8% (1990) vs 2.6% (2000) \rightarrow OR: 3.43(2.42,4.87)

-Minimum established change: 2.42/1.99 = 1.22

• Classifications of missing data structures are useful.

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.
- The collection and use of auxiliary information which is directly linked to missing or informatively collected data should be sought in such modelling efforts.

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.
- The collection and use of auxiliary information which is directly linked to missing or informatively collected data should be sought in such modelling efforts.
- The type of information and appropriate model is likely to be application specific.

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.
- The collection and use of auxiliary information which is directly linked to missing or informatively collected data should be sought in such modelling efforts.
- The type of information and appropriate model is likely to be application specific.
- Caution is still strongly advised.