THE USE OF AUXILIARY INFORMATION TO DEAL WITH INFORMATIVELY MISSING OR OBSERVED DATA

Vern Farewell
MRC Biostatistics Unit
Cambridge, UK

Major Collaborators: Andrew Copas, Michael Sweeting

'MISSING' OBSERVATIONS

- Response variable of interest Y :
- Observed: Y^{o}
- Missing: Y^{m}
- Explanatory variable(s) or covariate(s): X
- Response or observation indicator: R

'MISSING' OBSERVATIONS

- Missing Completely at Random (MCAR)
$-f\left(R \mid Y^{o}, Y^{m}, X\right)=f(R)$
- Covariate Dependent-MCAR (CD-MCAR)
$-f\left(R \mid Y^{o}, Y^{m}, X\right)=f(R \mid X)$
- Covariate Dependent Missing at Random (CD-MAR)
$-f\left(R \mid Y^{o}, Y^{m}, X\right)=f\left(R \mid X, Y^{o}\right)$
- Missing Not at Random (MNAR)

$$
-f\left(R \mid Y^{o}, Y^{m}, X\right) \neq f\left(R \mid X, Y^{o}\right)
$$

Two Modelling Approaches for MNAR Data

- Selection Model:
$f(Y, R)=f(Y) f(R \mid Y)$
or
$f(Y, R \mid X)=f(Y \mid X) f(R \mid Y, X)$ conditioning on X
- Pattern Mixture Model:

$$
f(Y, R)=f(Y \mid R) f(R)
$$

or
$f(Y, R \mid X)=f(Y \mid R, X) f(R \mid X)$ conditioning on X

National Survey of Sexual Attitudes and Lifestyles (NATSAL)

Involved face-to-face questioning and a self-completion booklet with more sensitive questions.

- Responders: provided answers to all questions
- Item non-responders: refused to answer some questions
- Unit non-responders: refused to answer any questions

Mock Example: Level of Virginity

$\left.$| | Responders | Item | Non-responders |
| :--- | :---: | :---: | :---: | | Unit |
| :---: |
| Non-responders | \right\rvert\,

Estimate of level of virginity
Responders only: 12.5\%

Mock Example: Level of Virginity

		Item	Unit
	Responders	Non-responders	Non-responders
Embarrassed	150	75	
	20%		
Not	450	25	
Embarrassed	10%		300
Total	600	100	

Estimate of level of virginity
Responders only: 12.5\%

Mock Example: Level of Virginity

		Item	Unit
	Responders	Non-responders	Non-responders
Embarrassed	150	75	
	20%	20%	
Not	450	25	
Embarrassed	10%	10%	
Total	600	100	$\mathbf{3 0 0}$

Estimate of level of virginity
Responders only:
12.5% Responders + Item-nonresponders: 13.2\%

Mock Example: Level of Virginity

		Item	Unit
	Responders	Non-responders	Non-responders
Embarrassed	150	75	225
	20%	20%	
Not	450	25	75
Embarrassed	10%	10%	
Total	$\mathbf{6 0 0}$	100	$\mathbf{3 0 0}$

Estimate of level of virginity
Responders only:
12.5% Responders + Item-nonresponders: 13.2\%

Mock Example: Level of Virginity

		Item	Unit						
	Responders	Non-responders	Non-responders	$	$	Embarrassed	$\mathbf{1 5 0}$	$\mathbf{7 5}$	20%
:---:	:---:	:---:	:---:						
	20%	20%	75						
Not	450	25	10%						
Embarrassed	10%	10%	$\mathbf{3 0 0}$						
Total	$\mathbf{6 0 0}$	$\mathbf{1 0 0}$							

Estimate of level of virginity

Responders only:
12.5%
Responders + Item-nonresponders: 13.2\%
Responders + Item-nonresponders + 14.5\% Unit-nonresponders

Hepatitis C disease progression

- The Trent hepatitis C cohort follows patients sporadically through visits to hospital clinic
- For patients who attend clinic and are not lost to follow-up
- Liver function tests (LFTs) are blood tests collected regularly.
- Liver biopsies (invasive procedure) are infrequent and irregular. Each biopsy scored for stage of disease, e.g. $1=$ Mild, $2=$ Moderate, $3=$ Cirrhosis
- Other data collected at clinic visits (alcohol use, treatment regimes, BMI, end-stage liver diseases)

Process of Interest
 Progress through biopsy states

Figure 1: Fibrosis Model

The problem

- Liver biopsies are the gold standard in assessing disease stage
- The occurrence of liver biopsies may be informative
- We need to jointly model the examination (liver biopsy) process and outcome process to obtain correct inferences.
- Can the much more frequently recorded LFTs help?

Informative examination scheme as a missing data problem

- Consider whether a biopsy has occurred in each six-month period.
- Associate a single LFT value with each six-month period.

Notation

Observations denoted by $i=1, \ldots, n$
Y_{i} - categorical outcome at time t_{j} (e.g. Stage of HCV disease)

Notation

Observations denoted by $i=1, \ldots, n$
Y_{i} - categorical outcome at time t_{i} (e.g. Stage of HCV disease)
R_{i} - missing data indicator variable equalling 1 if Y_{i} recorded at $t_{i}, 0$ otherwise

Notation

Observations denoted by $i=1, \ldots, n$
Y_{i} - categorical outcome at time t_{i} (e.g. Stage of HCV disease)
R_{i} - missing data indicator variable equalling 1 if Y_{i} recorded at
$t_{i}, 0$ otherwise
Z_{i} - explanatory variable(s) for outcome Y_{i} at time t_{i}

Notation

Observations denoted by $i=1, \ldots, n$
Y_{i} - categorical outcome at time t_{i} (e.g. Stage of HCV disease)
R_{i} - missing data indicator variable equalling 1 if Y_{i} recorded at
$t_{i}, 0$ otherwise
Z_{i} - explanatory variable(s) for outcome Y_{i} at time t_{i}
X_{i} - surrogate variable for outcome Y_{i} at time t_{i}

Notation

Observations denoted by $i=1, \ldots, n$
Y_{i} - categorical outcome at time t_{i} (e.g. Stage of HCV disease)
R_{i} - missing data indicator variable equalling 1 if Y_{i} recorded at
$t_{i}, 0$ otherwise
Z_{i} - explanatory variable(s) for outcome Y_{i} at time t_{i}
X_{i} - surrogate variable for outcome Y_{i} at time t_{i}
Y^{o} - vector of observed outcomes
\boldsymbol{Y}^{m} - vector of missing outcomes

Approaches to joint modelling of Y and R

- There are identifiability problems in estimating relationship between Y and R, since Y is unobserved when $R=0$
- Assumptions MUST be made before carrying out any missing data analysis:

1. A covariate dependent missing at random (CD-MAR) assumption $f\left(\boldsymbol{R} \mid \boldsymbol{Y}^{o}, \boldsymbol{Y}^{m}, \boldsymbol{Z}\right)=f\left(\boldsymbol{R} \mid \boldsymbol{Y}^{o}, \boldsymbol{Z}\right)$.
If truly CD-MAR, then unbiased inferences can obtained using the observed data, and ignoring the missingness mechanism.
2. If not willing to assume CD-MAR given Y^{0} and Z, must seek some extra information, X so that $f\left(\boldsymbol{R} \mid \boldsymbol{Y}^{o}, \boldsymbol{Y}^{m}, \boldsymbol{Z}, \boldsymbol{X}\right)=$ $f\left(\boldsymbol{R} \mid \boldsymbol{Y}^{o}, \boldsymbol{Z}, \boldsymbol{X}\right)$

The Partially Hidden Markov model (PHMM)

The Partially Hidden Markov model Likelihood

The likelihood under this model is of the following form:

$$
\propto \prod_{i=1}^{n} f\left(\boldsymbol{r}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{y}_{i}^{o}, \boldsymbol{z}_{i}, \psi\right) \sum_{\boldsymbol{y}_{i}^{m}} f\left(\left\{\boldsymbol{y}_{i}^{m}, \boldsymbol{y}_{i}^{o}\right\} \mid \boldsymbol{z}_{i}, \theta\right) f\left(\boldsymbol{x}_{i} \mid\left\{\boldsymbol{y}_{i}^{m}, \boldsymbol{y}_{i}^{o}\right\}, \boldsymbol{z}_{i}, \phi\right)
$$

where ψ and ϕ denote the parameters defining the probability density functions $f\left(\boldsymbol{r}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{y}_{i}^{o}, \boldsymbol{z}_{i}\right)$ and $f\left(\boldsymbol{x}_{i} \mid\left\{\boldsymbol{y}_{i}^{m}, \boldsymbol{y}_{i}^{o}\right\}, \boldsymbol{z}_{i}\right)$, respectively.

- Generalization (slightly) of CD-MAR since X cannot be regarded as a covariate for the Y process.
- Might be termed Surrogate-Dependent MAR

Simulation Study

- Simulation study of samples of 300 individuals observed at 5 time points.
- Exponential two-stage model, normally distributed auxiliary variable.
- Negative biases of 8% to 26% in estimation of baseline hazard if MCAR assumption is made incorrectly.
- Negative biases of 3% to 8% for a binary covariate (50% at each level) coefficient.
- PHMM eliminates these biases and gives appropriate coverage etc if observation depends on the auxiliary variable X.
- PHMM offers significant improvement even if MNAR model is correct.

Simulation Study

- Data are generated for 300 individuals at five equally spaced examination times, $\left(t_{0}, t_{1}, t_{2}, t_{3}, t_{4}\right)=(0,2,4,6,8)$
- $Z=-1$ for 50% of individuals and 1 otherwise.
- Transition time out of state 1 is exponential
$-T \mid z \sim \operatorname{Exponential}\left(\lambda_{0} e^{\beta z}\right), \lambda_{0}=0.2, \beta=0.5$.
- The binary response $Y\left(t_{j} \mid T\right)=\mathbf{I}\left[T \leq t_{j}\right]$ indicator for transition by t_{j}.
- The auxiliary variables, X, are normally distributed
$-\left(X\left(t_{j}\right) \mid y\left(t_{j}\right)\right) \sim \operatorname{Normal}\left(\mu_{y\left(t_{j}\right)}, \sigma^{2}\right)$
$-\mu_{y\left(t_{j}\right)}=\phi_{0}+\phi_{1} y\left(t_{j}\right), \sigma=1$ (independent of Y)
- Missing data process is Bernoulli

$$
-\operatorname{Pr}\left(R\left(t_{j}\right)=1 \mid y\left(t_{j}\right), x\left(t_{j}\right)\right)=\operatorname{logit}^{-1}\left\{\psi_{0}+\psi_{1} y\left(t_{j}\right)+\psi_{2} x\left(t_{j}\right)\right\} .
$$

Simulation results for the baseline log hazard

Scenario	Relative bias (\%)			95\% coverage (\%)			MSE		
	IG	PHMM	MNAR	IG	PHMM	MNAR	IG	PHMM	MNAR
MCAR, $\psi_{1}=\psi_{2}=0$									
1) X independent of $Y, \phi_{1}=0$	0.1	0.1	0.1	95.9	96.0	94.5	0.009	0.009	0.013
2) $\phi_{1}=0.5$	0.1	0.1	0.1	95.9	95.4	94.5	0.009	0.008	0.013
3) $\phi_{1}=1$	0.1	0.1	0.1	95.9	94.7	94.5	0.009	0.008	0.013
MAR, $\psi_{1}=0, \psi_{2}=1$ 1) X independent of $Y, \phi_{1}=0$									
1) X independent of $Y, \phi_{1}=0$	0.2	0.2	0.2	96.1	95.7	95.5	0.008	0.008	0.011
2) $\phi_{1}=0.5$	-8.4	0.2	0.2	64.2	96.0	95.2	0.026	0.008	0.011
3) $\phi_{1}=1$	-16.8	0.2	0	12.0	95.0	95.1	0.081	0.007	0.011
MNAR, $\psi_{1}=\psi_{2}=1$									
1) X independent of $Y, \phi_{1}=0$	-13.5	-14.0	0.0	21.8	19.1	96.0	0.053	0.057	0.008
2) $\phi_{1}=0.5$	-19.9	-13.1	0.1	1.1	25.0	95.4	0.109	0.051	0.008
3) $\phi_{1}=1$	-26.4	-9.9	0.0	0.0	48.7	94.1	0.188	0.032	0.008

Simulation results for the binary covariate coefficient

Scenario	Relative bias (\%)			95\% coverage (\%)			MSE		
	IG	PHMM	MNAR	IG	PHMM	MNAR	IG	PHMM	MNAR
MCAR, $\psi_{1}=\psi_{2}=0$									
1) X independent of $Y, \phi_{1}=0$	0.4	0.3	0.4	94.8	94.8	94.9	0.009	0.009	0.009
2) $\phi_{1}=0.5$	0.4	0.2	0.4	94.8	95.4	94.9	0.009	0.008	0.009
3) $\phi_{1}=1$	0.4	0.1	0.4	94.8	95.0	94.9	0.009	0.007	0.009
MAR, $\psi_{1}=0, \psi_{2}=1$									
1) X independent of $Y, \phi_{1}=0$	0.4	0.3	0.3	94.5	94.4	94.3	0.008	0.008	0.008
2) $\phi_{1}=0.5$	-3.0	0.2	0.3	93.4	94.5	94.4	0.008	0.008	0.008
3) $\phi_{1}=1$	-5.8	0.4	0.6	91.9	94.7	94.3	0.009	0.007	0.008
MNAR, $\psi_{1}=\psi_{2}=1$									
1) X independent of $Y, \phi_{1}=0$	-4.2	-4.5	0.2	92.4	92.3	94.8	0.007	0.007	0.007
2) $\phi_{1}=0.5$	-6.1	-1.8	0.3	90.6	93.6	94.4	0.008	0.007	0.007
3) $\phi_{1}=1$	-7.8	0.6	0.4	90.0	94.9	95.4	0.008	0.006	0.006

Transitions in Trent Cohort Database

	To state			
From state	'None/Mild' 'Moderate'	'Severe/Cirrhosis'	Unknown	
'None/Mild'	326	20	6	403
'Moderate'	0	8	6	109
'Severe/Cirrhosis'	0	0	2	100

Observed disease state transitions in the Trent hepatitis C cohort.

Basline Hazards Estimates

Parameter	Model Ignorable		
CD-MAR (ALT)	MNAR		
Baseline intensities	0.0120	0.0119	0.0119
$\lambda_{1,2}$	$(0.0079,0.0182)$	$(0.0078,0.0181)$	$(0.0078,0.0181)$
$\lambda_{2,3}$	0.0773	0.0769	0.0794
	$(0.0396,0.1509)$	$(0.0399,0.1485)$	$(0.0386,0.1634)$

A Different Sort of Example

Return to NATSAL (Survey of Sexual Attitudes and Lifestyle)

- Two surveys in 1990 and 2000
- Interested in changes between 1990 and 2000
- As seen before, bias is expected in each survey.
- Change in bias is relevant to any examination of change in results of the surveys

Comparison of NATSAL-1990 with NATSAL-2000

- Bias will depend on the question.
- Classify questions to be of high, medium and low sensitivity (effectively reflecting expected bias).
- Should any information be the same in the two surveys?
- Population cohort eligible for both surveys are those:
- Aged 16-34 in 1990.
- Aged 26-44 in 2000.
- Questions answered by this common cohort should be similar if they, e.g., refer to events before a fixed age.

Comparison of NATSAL-1990 with NATSAL-2000

- Homosexual experience before 1990 [High sensitivity]:
- Men: 5.0% (1990) vs 8.5% (2000)
- Women: 3.5\% (1990) vs 6.7% (2000)
- Heterosexual intercourse before 16 years [Medium sensitivity]:
- Men: 24.7% (1990) vs 27.5% (2000)
- Women: 12.9\% (1990) vs 18.2% (2000)

From these type of questions. estimate odds ratios (ORs) for change in bias

- High sensitivity: Men $1.80(1.46,2.21) ;$ Women 1.99(1.62,2.46)
- Medium sensitivity: Men 1.11(1.01,1.21); Women 1.19(1.10,1.29)

Comparison of NATSAL-1990 with NATSAL-2000

Homosexual partners, past 5 years

- Men: 1.5% (1990) vs 2.6% (2000) \rightarrow OR: $1.75(1.29,2.36)$
-:
- Women: 0.8\% (1990) vs 2.6\% (2000) \rightarrow OR: 3.43(2.42,4.87)
-:

Comparison of NATSAL-1990 with NATSAL-2000

Change in bias results

- High sensitivity OR: Men 1.80; Women 1.99

Homosexual partners, past 5 years

- Men: 1.5% (1990) vs 2.6% (2000) \rightarrow OR: $1.75(1.29,2.36)$
- Minimum established change: $1.29 / 1.80=0.72$
- Women: 0.8% (1990) vs 2.6% (2000) \rightarrow OR: 3.43(2.42,4.87)
- Minimum established change: $2.42 / 1.99=1.22$

Concluding Remarks

- Classifications of missing data structures are useful.

Concluding Remarks

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.

Concluding Remarks

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.
- The collection and use of auxiliary information which is directly linked to missing or informatively collected data should be sought in such modelling efforts.

Concluding Remarks

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.
- The collection and use of auxiliary information which is directly linked to missing or informatively collected data should be sought in such modelling efforts.
- The type of information and appropriate model is likely to be application specific.

Concluding Remarks

- Classifications of missing data structures are useful.
- Such structures can sometimes give the impression that the solution to missing data is then simply to model the structure.
- The collection and use of auxiliary information which is directly linked to missing or informatively collected data should be sought in such modelling efforts.
- The type of information and appropriate model is likely to be application specific.
- Caution is still strongly advised.

