Parvovirus B19 in five European countries: disentangling the sociological and microbiological mechanisms underlying infectious disease transmission

Nele Goeyvaerts¹, Niel Hens¹, John Edmunds², Marc Aerts¹, Philippe Beutels³

¹ Interuniversity Institute for Biostatistics and statistical Bioinformatics, Universiteit Hasselt & Katholieke Universiteit Leuven, Belgium
² Infectious Diseases Epidemiology Unit, London School of Hygiene & Tropical Medicine, University of London, United Kingdom

³ Centre for Health Economics Research and Modeling Infectious Diseases & Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium

Outline

Introduction

- Parvovirus B19
- Serological Data
- Objectives

2 Methods

- Transmission Dynamics
- Estimating Contact Rates
- Estimating Transmission Rates
- 3 Application and Results
- 4 Conclusion, Discussion and Further Research

< 日 > < 同 > < 三 > < 三 >

- \rightarrow transmission requires sufficiently close contact
- = fifth disease or slapped cheek syndrome
- primarily spread by infected respiratory droplets

causes range of diseases, e.g. erythema infectiosum

- mean infectious period of 6 days
- incubation period > latent period

Parvovirus B19

in children and teenagers: usually mild

currently no vaccine available

 $(0 - 9\% \rightarrow \text{miscarriage})$

イロン イボン イヨン イヨン

Serological Data

- Belgium, England and Wales, Finland, Italy and Poland
- 13406 serum samples collected between 1995 and 2004
- tested for IgG antibodies against parvovirus B19

Country	Year of collection	Age range	Sample size
BE	2001-2003	0-66	3076
EW	1996	1-79	2822
FI	1997-1998	1-79	2499
IT	2003-2004	1-79	2514
PL	1995-2004	1-79	2495

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Objectives

For each country:

- estimate age-specific transmission rates using data on social contacts
- are the contact data fully explaining the observed seroprofile?
- need for an additional age-specific factor?

Comparative study to assess country-specific differences in:

- effectiveness of a close contact
- the shape of an additional age-specific factor

イロン イボン イヨン イヨン

Objectives

For each country:

- estimate age-specific transmission rates using data on social contacts
- are the contact data fully explaining the observed seroprofile?
- need for an additional age-specific factor?

Comparative study to assess country-specific differences in:

- effectiveness of a close contact
- the shape of an additional age-specific factor

understanding age-specific transmission of parvovirus B19 may help to understand transmission of other airborne infections

(日) (同) (日) (日) (日)

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

The Mass Action Principle

Mass Action Principle, Anderson and May (1991)

$$\lambda(a) = D \int_0^\infty \beta(a,a') \lambda(a') X(a') da'$$

- $\lambda(a) =$ rate at which susceptibles acquire infection \rightarrow FOI
- β(a, a') = transmission rate, i.e. per capita rate at which an individual of age a' makes an effective contact with a person of age a, per year
- X(a') = number of susceptibles of age a'
- D = mean duration of infectiousness

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

The Mass Action Principle

Mass Action Principle, Anderson and May (1991)

$$\lambda(a) = D \int_0^\infty \beta(a, a') \lambda(a') X(a') da'$$

- $\lambda(a) =$ rate at which susceptibles acquire infection \rightarrow FOI
- β(a, a') = transmission rate, i.e. per capita rate at which an individual of age a' makes an effective contact with a person of age a, per year
- X(a') = number of susceptibles of age a'
- D = mean duration of infectiousness

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Social Contact Hypothesis

Assume transmission rates are proportional to rates of making a certain type of contact:

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Social Contact Hypothesis

Assume transmission rates are proportional to rates of making a certain type of contact:

Э

Contact Surveys

- multi-country population-based survey in Europe (POLYMOD)
- diary-based questionnaires, May 2005 September 2006
- non-close contact: two-way conversation of at least three words in each others proximity
- close contact: involving any sort of physical skin-to-skin touching
- diary weights based on age and household size

	Recruitment	# participants	# contacts	# close > 15 min
BE	random digit dialling	749	12775	5666 (44%)
FI	population registers	1006	11128	4215 (38%)
GB	face-to-face interview	1012	11876	4961 (42%)
IT	random digit dialling	849	16623	7740 (47%)
PL	face-to-face interview	1012	16501	8036 (49%)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Estimating Mean Number of Contacts

• Y_{ij} = number of contacts in age class j during one day as reported by a respondent in age class i

model: $Y_{ij} \sim \mathsf{NegBin}(m_{ij}, k)$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Estimating Mean Number of Contacts

• $Y_{ij} =$ number of contacts in age class j during one day as reported by a respondent in age class i

model: $Y_{ij} \sim \mathsf{NegBin}(m_{ij}, k)$

- m_{ij} estimated using bivariate smoothing approach:
 - two-dimensional continuous function over age of respondent and age of contact ('contact surface')
 - tensor-product spline basis:

$$\log(\hat{m}_{ij}) = \sum_{\ell=1}^{K} \sum_{p=1}^{K} \hat{\delta}_{\ell p} b_{\ell}(a_{[i]}) d_{p}(a_{[j]}),$$

basis dimension K, parameters $\delta_{\ell p},$ known basis functions b_ℓ and d_p for thin plate regression splines

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimating Contact Rates

 $\bullet\,$ Smooth-then-constrain $\to\,$ reciprocal nature of contacts taken into account:

 $m_{ij}w_i = m_{ji}w_j$

 w_i denotes population size in age class i (demography)

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimating Contact Rates

 \bullet Smooth-then-constrain \rightarrow reciprocal nature of contacts taken into account:

 $m_{ij}w_i = m_{ji}w_j$

 w_i denotes population size in age class *i* (demography)

- Focus on type of contact with high transmission potential for parvovirus B19: close contacts longer than 15 minutes
- K = 13 seems satisfactory basis dimension choice

< 口 > < 同 > < 回 > < 回 > < 回 > <

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimated Daily Contact Rates \hat{m}_{ij}/w_j

IT

PL

Goeyvaerts et al

Tübingen Workshop October 22, 2008

Э

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimating Transmission Rates

IgG antibodies against parvovirus B19 are thought to induce lifelong immunity ↓ MSIR-model

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimating Transmission Rates

IgG antibodies against parvovirus B19 are thought to induce lifelong immunity ↓ MSIR-model

Further assumptions:

- time equilibrium
- closed population of size N
- no mortality due to infection
- type I mortality \rightarrow age L
- type I maternal antibodies \rightarrow age A

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimating q(a, a'), R_0 and v

$$\pi(a) = \begin{cases} 1 & \text{if } a < A \\ 1 - \exp\left(-\int_A^a \lambda(s) ds\right) & \text{if } a \ge A, \end{cases}$$

<ロ> <問> < 同> < 同> < 同> < 同> < 同</p>

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimating q(a, a'), R_0 and v

$$\pi(a) = \begin{cases} 1 & \text{if } a < A \\ 1 - \exp\left(-\int_A^a \lambda(s) ds\right) & \text{if } a \ge A, \end{cases}$$

$$\lambda(a) = \frac{ND}{L} \int_{A}^{L} q(a, a') \hat{c}(a, a') \lambda(a') \exp\left(-\int_{A}^{a'} \lambda(s) ds\right) da', \text{ if } a \ge A.$$

<ロ> <問> < 同> < 同> < 同> < 同> < 同</p>

Transmission Dynamics Estimating Contact Rates Estimating Transmission Rates

Estimating q(a,a'), R_0 and v

$$\pi(a) \quad = \quad \begin{cases} 1 & \text{if } a < A \\ 1 - \exp\left(-\int_A^a \lambda(s) ds\right) & \text{if } a \ge A, \end{cases}$$

$$\lambda(a) = \frac{ND}{L} \int_{A}^{L} \frac{q(a,a')}{\hat{c}(a,a')} \lambda(a') \exp\left(-\int_{A}^{a'} \lambda(s) ds\right) da', \text{ if } a \ge A.$$

- $\bullet\,$ move to discrete age framework \rightarrow solve equations iteratively
- $\bullet\,$ estimate q(a,a') from serological data using maximum likelihood
- estimate:
 - basic reproduction number R_0
 - $\, \bullet \,$ critical immunization level v

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Application Settings

- 1-year age intervals: $[A, 1), [1, 2), \dots, [L 1, L)$
- Demographical parameters:

Country	Year	L	N
BE	2003	78	9800345
EW	1996	77	48532900
FI	1998	77	4899903
IT	2004	81	55522274
PL	1999	73	36563756

- Age of waning maternal antibodies A = 0.5 years
- Mean duration of infectiousness D = 6/365 years

< ロ > < 同 > < 三 > < 三 > <

Two Parametric Models for q(a, a')

Two parametric models for q(a, a'):

- \bullet constant proportionality: $q(a,a^\prime)=q$
- age-dependent proportionality:

$$\log\{q(a, a')\} = \log\{q(a)\} = \gamma_0 + \gamma_1 a$$

 $\rightarrow\,$ allows for age-specific differences in characteristics related to susceptibility

Country	\hat{q}	95% CI for q	\widehat{R}_0	\hat{v}	AIC	BIC
BE	0.066	[0.064, 0.069]	2.93	0.661	3582.682	3588.711
EW	0.059	[0.057, 0.061]	1.85	0.461	3613.435	3619.375
FI	0.053	[0.052, 0.055]	1.56	0.362	2830.118	2835.937
IT	0.027	[0.026, 0.028]	1.79	0.444	3117.140	3122.970
PL	0.048	[0.047, 0.050]	2.26	0.560	3031.943	3037.745

Country	\hat{q}	95% CI for q	\widehat{R}_0	\hat{v}	AIC	BIC
BE	0.066	[0.064, 0.069]	2.93	0.661	3582.682	3588.711
EW	0.059	[0.057, 0.061]	1.85	0.461	3613.435	3619.375
FI	0.053	[0.052, 0.055]	1.56	0.362	2830.118	2835.937
IT	0.027	[0.026, 0.028]	1.79	0.444	3117.140	3122.970
PL	0.048	[0.047, 0.050]	2.26	0.560	3031.943	3037.745

Country	\hat{q}	95%	CI for q	\widehat{R}_0	\hat{v}	AIC		BIC	
BE	0.06	6 [0.06	4, 0.069]	2.93	0.661	3582.6	82	3588.7	'11
EW	0.05	9 [0.05	7, 0.061]	1.85	0.461	3613.4	35	3619.3	875
FI	0.05	3 [0.05	2, 0.055]	1.56	0.362	2830.1	18	2835.9	37
IT	0.02	7 [0.02	6, 0.028]	1.79	0.444	3117.1	40	3122.9	70
PL	0.04	8 [0.04	7, 0.050	2.26	0.560	3031.9	43	3037.7	'45
			-						
Country	Par	ameter	95%	CI	\widehat{R}_0	\hat{v}	A	IC	BIC
BE	$\hat{\gamma}_0$	-2.216	[-2.321,	-2.105]	2.09	0.528	3463	3.918	3475.977
	$\hat{\gamma}_1$	-0.040	[-0.050,	-0.031]					
EW	$\hat{\gamma}_0$	-2.322	[-2.489,	-2.129]	1.64	0.394	3565	5.572	3577.452
	$\hat{\gamma}_1$	-0.047	[-0.069,	-0.030]					
FI	$\hat{\gamma}_0$	-3.003	[-3.117,	-2.878]	1.60	0.377	2830).742	2842.380
	$\hat{\gamma}_1$	0.006	[-0.004,	0.014]					
IT	$\hat{\gamma}_0$	-3.173	-3.312,	-3.027]	1.65	0.396	3067	7.556	3079.215
	$\hat{\gamma}_1$	-0.042	-0.059,	-0.028					
PL	$\hat{\gamma}_0$	-2.365	[-2.674,	-2.053]	1.80	0.447	2999	9.499	3011.103
	$\hat{\gamma}_1$	-0.057	[-0.091,	-0.028]					

Country	\hat{q}	95%	CI for q	\widehat{R}_0	\hat{v}	AIC		BIC	
BE	0.06	6 [0.06	4, 0.069]	2.93	0.661	3582.6	82	3588.7	/11
EW	0.05	9 [0.05	7, 0.061]	1.85	0.461	3613.4	35	3619.3	375
FI	0.05	3 [0.05	2, 0.055]	1.56	0.362	2830.1	18	2835.9	937
IT	0.02	7 [0.02	6, 0.028]	1.79	0.444	3117.1	40	3122.9	970
PL	0.04	8 [0.04	7, 0.050	2.26	0.560	3031.9	43	3037.7	745
Country	Par	ameter	95%	CI	\widehat{R}_0	\hat{v}	A	IC	BIC
BE	$\hat{\gamma}_0$	-2.216	[-2.321,	-2.105]	2.09	0.528	3463	.918	3475.977
	$\hat{\gamma}_1$	-0.040	[-0.050,	-0.031]					
EW	$\hat{\gamma}_0$	-2.322	[-2.489,	-2.129]	1.64	0.394	3565	5.572	3577.452
	$\hat{\gamma}_1$	-0.047	[-0.069,	-0.030]					
FI	$\hat{\gamma}_0$	-3.003	[-3.117,	-2.878]	1.60	0.377	2830	.742	2842.380
	$\hat{\gamma}_1$	0.006	[-0.004,	0.014]					
IT	$\hat{\gamma}_0$	-3.173	[-3.312,	-3.027]	1.65	0.396	3067	.556	3079.215
	$\hat{\gamma}_1$	-0.042	-0.059,	-0.028					
PL	$\hat{\gamma}_0$	-2.365	[-2.674,	-2.053]	1.80	0.447	2999	.499	3011.103
	$\hat{\gamma}_1$	-0.057	[-0.091,	-0.028]					

Country	\hat{q}	95%	CI for q	\widehat{R}_0	\hat{v}	AIC	BIC	
BE	0.06	6 [0.06	4, 0.069]	2.93	0.661	3582.6	82 3588.7	/11
EW	0.059	9 [0.05	7, 0.061]	1.85	0.461	3613.4	35 3619 .3	375
FI	0.053	3 [0.05	2, 0.055]	1.56	0.362	2830.1	18 2835.9	937
IT	0.02	7 [0.02	6, 0.028]	1.79	0.444	3117.1	40 3122.9	970
PL	0.048	8 [0.04	7, 0.050]	2.26	0.560	3031.9	43 3037.7	745
-					~			
Country	Para	ameter	95%	CI	\widehat{R}_0	\hat{v}	AIC	BIC
BE	$\hat{\gamma}_0$	-2.216	[-2.321,	-2.105]	2.09	0.528	3463.918	3475.977
	$\hat{\gamma}_1$	-0.040	[-0.050,	-0.031]				
EW	$\hat{\gamma}_0$	-2.322	[-2.489,	-2.129]	1.64	0.394	3565.572	3577.452
	$\hat{\gamma}_1$	-0.047	[-0.069,	-0.030]				
FI	$\hat{\gamma}_0$	-3.003	[-3.117,	-2.878]	1.60	0.377	2830.742	2842.380
	$\hat{\gamma}_1$	0.006	[-0.004,	0.014]				
IT	$\hat{\gamma}_0$	-3.173	[-3.312,	-3.027]	1.65	0.396	3067.556	3079.215
	$\hat{\gamma}_1$	-0.042	[-0.059,	-0.028]				
PL	$\hat{\gamma}_0$	-2.365	[-2.674,	-2.053]	1.80	0.447	2999.499	3011.103
	$\hat{\gamma}_1$	-0.057	[-0.091,	-0.028]				

Estimated Prevalence and FOI for Belgium

<ロ> <同> <同> < 回> < 回>

E.

Estimated Prevalence and FOI for England & Wales

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Э

Estimated Prevalence and FOI for Finland

<ロ> <同> <同> < 回> < 回>

Э

Estimated Prevalence and FOI for Italy

<ロ> <同> <同> < 回> < 回>

æ

Estimated Prevalence and FOI for Poland

・ロン ・日ン ・日ン ・日ン

E.

$\hat{q}(a)$ as a function of a

$$\hat{q}(a) = \exp(\hat{\gamma}_0 + \hat{\gamma}_1 a)$$

- Italy has an overall smaller proportionality factor
- Interpretation for Italy?
 - lower effectiveness rate compared with other countries (climate...)?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- overreporting close contacts?
- ...?

$\hat{q}(a)$ as a function of a

$$\hat{q}(a) = \exp(\hat{\gamma}_0 + \hat{\gamma}_1 a)$$

- Finland: no need for an additional age-dependent factor
- Interpretation for other countries?
 - children are more susceptible than adults?
 - underreporting of close contacts in children?

Э

• ...?

$\hat{q}(a)$ as a function of a

$$\hat{q}(a) = \exp(\hat{\gamma}_0 + \hat{\gamma}_1 a)$$

- Finland: no need for an additional age-dependent factor
- Other factors involved?

Country	Effective parental leave
FI	99 weeks
PL	53 weeks
EW	25 weeks
IT	24 weeks
BE	18 weeks

Source: Plantenga J. & Siegel M. (2004), Position Paper 'childcare in a changing world', RuG, The Netherlands

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Э

Conclusion and Discussion

- Social contact surveys are useful to gain more insight in the transmission process of airborne infections
- For BE, EW, IT and PL there is need for an additional age-specific factor to explain the observed seroprofile for parvovirus B19
- Country-specific differences in B19 transmission are observed
- (How) can we interpret the age-dependent proportionality factor and country-specific differences?

< 日 > < 同 > < 三 > < 三 >

Discussion and Further Research

- $\bullet\,$ Formal inference on country-specific differences $\rightarrow\,$ joint modeling
- Other functional forms for proportionality factor: gamma, normal, Weibull, ...
- Allow proportionality factor to vary with age of infected a':
 - ${\scriptstyle \bullet }$ bivariate model for q(a,a')
 - sensible?
 - serological data don't provide direct information related to infectiousness
- Other work: analyzing pre-vaccination data on a range of different airborne infections from EW

< ロ > < 同 > < 回 > < 回 > .

Acknowledgements

- ECDC funding support
- SBO-project 'SIMID' funded by the IWT-institute in Flanders
- all co-authors

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・