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Social Networks

• Social Network: Tool to formally represent and quantify relational social structure.
• Relations can include: sexual partnerships, needle sharing, ’knowing someone’
• Represent mathematically as a sociomatrix, Y , where

Yij = the value of the relationship from i to j
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Exponential-Family Random Graph Models (ERGMs or p*)

• Independence models rarely capture relational structure

Exponential-family Random Graph Model (ERGM):

(Holland and Leinhardt (1981), Snijders et al, (2006),... )

Pβ(Y = y) = c(β)eβ1g1(y)+β2g2(y)+...

• g(y) represent features of the social process
• c(β) is the normalizing constant
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Partially-Observed Social Network Data

Some portion of the social network is often unobserved.
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Partial Observation of Social Networks
• Sampling Design: Choose which part to observe:

“Ask 10% of employees about their collaborations”
– Egocentric
– Adaptive

• Out-of-design Missing Data:
“Try to survey the whole company, but someone is out sick”

• Boundary Specification Problem:
“Should a contractor be considered a part of the company?”
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Fitting Models to Partially Observed Social Network Data

• Two types of data: Observed relations (Yobs), and indicators of units sampled (D).

P (Yobs, D|β, δ) =
X

Unobserved

P (Y, D|β, δ)

=
X

Unobserved

P (D|Y, δ)P (Y |β)

• β is the model parameter
• δ is the sampling parameter

If P (D|Y, δ) = P (D|Yobs, δ) (adaptive sampling or missing at random)

Then
P (Yobs, D|β, δ) = P (D|Y, δ)

X

Unobserved

P (Y |β)

• Can compute likelihood by summing over the possible values of unobserved,
ignoring sampling

• In practice, use Markov Chain Monte Carlo (MCMC)
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Friendships in a School

From the National Longitudinal Survey on Adolescent Health - Wave 1:

• Each student asked to nominate up to 5 male and 5 female friends
• Sex and Grade available for 89 students, 70 students reported friendships.
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Friendships in a School

• Methodological Question: Can we fit a network model to a network with missing
data? Is the fit different from that of just the observed data?

P (D|Y, δ) = P (D|Yobs, δ) (missing at random)

Does observed status depend on unobserved characteristics?
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Structure of Data

• Up to 5 female friends and up to 5 male friends
• 89 students in school
• 70 completed friendship nominations portion of survey
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coefficient s.e.

Density −1.138 0.19∗∗∗

Sex and Grade Factors
Grade 8 Popularity −0.178 0.14
Grade 9 Popularity −0.420 0.16∗∗

Grade10 Popularity −0.339 0.16∗

Grade 11 Popularity 0.256 0.19
Grade 12 Popularity 0.243 0.20
Male Popularity 0.779 0.17∗∗∗

Non-Resp Popularity −0.322 0.10∗∗

Sex and Grade Mixing
Girl to Same Grade Boy 0.308 0.23
Boy to Same Grade Girl −0.453 0.23∗

Girl to Older Girl −1.406 0.16∗∗∗

Girl to Younger Girl −1.873 0.21∗∗∗

Girl to Older Boy −1.412 0.14∗∗∗

Girl to Younger Boy −2.129 0.24∗∗∗

Boy to Older Boy −1.444 0.16∗∗∗

Boy to Younger Boy −2.788 0.35∗∗∗

Boy to Older Girl −1.017 0.14∗∗∗

Boy to Younger Girl −1.660 0.18∗∗∗

Mutuality 3.290 0.22∗∗∗

Transitivity
Transitive Same Sex and Grade 0.844 0.04∗∗∗

Cyclical Same Sex and Grade −1.965 0.16∗∗∗

Isolation 5.331 0.64∗∗∗
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Link-Tracing is Adaptive!

• Can we fit a network model to a network sampled by link-tracing?

P (D|Y, δ) = P (D|Yobs, δ) (adaptive sampling)

Does observed status depend on unobserved quantities?

P (D|Y, δ) = P (seeds)P (D|Y, δ, seeds) = P (seeds)P (D|Yobs, δ, seeds)

So if initial sample missing at random, link-tracing adaptive.



Modeling Networks from Partially-Observed Network Data [27]

Discussion

• Likelihood inference is possible with missing data!
• Network models can be applied to partially-observed network data to address

scientific questions about the full network.
– Missing Data (missing at random)
– Sampled Data (egocentric or adaptive)
– Do not need simple random sample to be representative

• Some forms of additional information collected in the study can greatly improve
possibilities for inference.
– If not missing at random or adaptive, can use extra information to improve

inference
– Measurement of sampling biases
– Any characteristics of unobserved units

• All models fit with an Exponential-Family Random Graph Model using statnet R
software.
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