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Social Networks

e Social Network: Tool to formally represent and quantify relational social structure.
e Relations can include: sexual partnerships, needle sharing, ’knowing someone’

e Represent mathematically as a sociomatrix, Y, where
Y;; = the value of the relationship from i to j

(a) Sociogram

(b) Sociomatrix
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Exponential-Family Random Graph Models (ERGMs or p*)

e Independence models rarely capture relational structure
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Exponential-family Random Graph Model (ERGM):
(Holland and Leinhardt (1981), Snijders et al, (2006),... )

Ps(Y =y) = C(ﬂ)eﬁlgl(y)+5292(y)+.-.

e g(y) represent features of the social process
e c(0) is the normalizing constant
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Partially-Observed Social Network Data

Some portion of the social network is often unobserved.
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Partial Observation of Social Networks

e Sampling Design: Choose which part to observe:

“Ask 10% of employees about their collaborations”

— Egocentric

— Adaptive
e Out-of-design Missing Data:

“Try to survey the whole company, but someone is out sick”
e Boundary Specification Problem:

“Should a contractor be considered a part of the company?”
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Fitting Models to Partially Observed Social Network Data

e Two types of data: Observed relations (Y,s), and indicators of units sampled (D).

P(Yas, D|B,6) = > P(Y,D|B,9)

Unobserved

= > P(DIY,5)P(Y|B)

Unobserved

e (3 is the model parameter
e 0 is the sampling parameter

If P(D|Y,d) = P(D|Ymws, d) (adaptive sampling or missing at random)

Then
P(Ys, D|B,8) = P(D|Y,8) > P(Y|B)

Unobserved

e Can compute likelihood by summing over the possible values of unobserved,
ignoring sampling
e In practice, use Markov Chain Monte Carlo (MCMCQC)
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Friendships in a School

From the National Longitudinal Survey on Adolescent Health - Wave 1:

e Each student asked to nominate up to 5 male and 5 female friends
e Sex and Grade available for 89 students, 70 students reported friendships.
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Friendships in a School

e Methodological Question: Can we fit a network model to a network with missing
data? Is the fit different from that of just the observed data?

P(D|Y,8) = P(D|Yws,d) (missing at random)

Does observed status depend on unobserved characteristics?
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Structure of Data

e Up to 5 female friends and up to 5 male friends
e 89 students in school
e 70 completed friendship nominations portion of survey

Respondents Non-Respondents
\A
Respondents to
Non-
Respondents Respondents
to T (Observed)
Non- Respondents
Respondents to
Respondents (Observed)
(UnObserved) Non-
Respondents to
Non-
/ Respondents
Non-Respondents (UnObserved)
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coefficient s.e.

Density —1.138 0.19"**
Sex and Grade Factors
Grade 8 Popularity —0.178 0.14
Grade 9 Popularity —0.420 0.16**
Grade10 Popularity —0.339 0.16"
Grade 11 Popularity 0.256 0.19
Grade 12 Popularity 0.243 0.20
Male Popularity 0.779  0.17***
Non-Resp Popularity —0.322 0.10**
Sex and Grade Mixing
Girl to Same Grade Boy 0.308 0.23
Boy to Same Grade Girl —0.453 0.23*
Girl to Older Girl —1.406 0.16"**
Girl to Younger Girl —1.873 0.21**F
Girl to Older Boy —1.412  0.14***
Girl to Younger Boy —2.129  0.24***
Boy to Older Boy —1.444 0.16***
Boy to Younger Boy —2.788 0.35"**
Boy to Older Girl —1.017  0.14***
Boy to Younger Girl —1.660 0.18***
Mutuality 3.290 0.22"*F
Transitivity
Transitive Same Sex and Grade 0.844  0.04***
Cyclical Same Sex and Grade —1.965 0.16™**

Isolation 5.331 0.64™**
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Link-Tracing is Adaptive!

e Can we fit a network model to a network sampled by link-tracing?

P(D|Y,d8) = P(D|Yws,6) (adaptive sampling)
Does observed status depend on unobserved quantities?
P(D|Y,§) = P(seeds)P(D|Y, 6, seeds) = P(seeds)P(D|Yus, 9, seeds)

So if initial sample missing at random, link-tracing adaptive.
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Discussion

Likelihood inference is possible with missing data!

Network models can be applied to partially-observed network data to address
scientific questions about the full network.

— Missing Data (missing at random)

— Sampled Data (egocentric or adaptive)

— Do not need simple random sample to be representative

Some forms of additional information collected in the study can greatly improve

possibilities for inference.

— If not missing at random or adaptive, can use extra information to improve
inference

— Measurement of sampling biases

— Any characteristics of unobserved units

All models fit with an Exponential-Family Random Graph Model using statnet R
software.
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