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Introduction

I We consider a class of stochastic models of epidemics.

I These models describe the spread of a certain parasitic
disease.

I They are generalisations of stochastic models studied by
Barbour & Kafetzaki (1993) and Luchsinger (1999,2001).

I They also include a stochastic version (and with truncated
infection rates) of the model studied by Kretzschmar (1993).

I In this context, it is natural to distinguish hosts according to
the number of parasites that they carry.

I This leads to models with countably infinitely many types, one
for each possible number of parasites.
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Laws of large numbers

I We want to show that the proportion of hosts with k parasites
is close to a certain deterministic function, for each k, with
explicit rates of convergence.

I Infinitely many types cause difficulty: many arguments
standard in finite case are not so in infinite case.

I Example: supercritical Galton-Watson process, finitely many
types, irreducible & aperiodic matrix ⇒ proportions of
individuals of different types obey LLN.

I This is only known to hold under extra conditions in the
infinite case.
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Laws of large numbers

For epidemics with finitely many types there are LLN
approximations, in the limit of large populations (i.e. as population
size goes to infinity). ⇒ Finite dimensional systems of
differential equations

Infinite dimensional systems of differential
equations:
Barbour & Kafetzaki (1993), Luchsinger (2001), Arrigoni (2003).

Still, the arguments there are quite involved, and make use of
special assumptions about detailed form of transition rates.
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Laws of large numbers

I Things are considerably more delicate in infinite dimensions!
An extra difficulty in our case is caused by the fact that the
operator driving the limiting differential equation is
non-Lipschitz.

I Our goal: to establish LLN in substantial
generality, quantifying rate of convergence.

I Models constructed by superimposing state-dependent
transitions upon a process with otherwise independent and
well-behaved dynamics within the individuals.
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Laws of large numbers

I State-dependent components have Lipschitz and growth
conditions.

I This ensures the perturbation of the underlying semi-group
governing independent dynamics not too severe.

I In the process, we also hope for new methods with
applications in other contexts, e.g. models in genetics and
cellular biology, random graph processes (e.g. web graphs),
randomised algorithms.
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I One of our methods is the two-stage approximation used in
this work. We are now also working on another method, using
exponential martingales, which covers certain models we have
not been able to handle here.

I Later: hope to establish a central limit theorem.

I Another important question: what happens to the
stochastic process and its deterministic approximation
long-term?
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Long-term behaviour

I This problem is almost completely wide-open, very little is
known except in special cases...

I What about the convergence of the Markov chain to it
stationary distribution? Under what conditions is it rapidly
mixing, i.e. in time O(log N)? (N is of the order of the
population size.)

I Can we determine the stationary solutions of the limiting
differential equation? In particular, when does it have a
unique, globally attractive fixed point?

I Under what conditions does the stochastic process stay close
to its deterministic limit long-term, perhaps even uniformly in
time?
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Our model

I Sequence of processes XN = (X i
N(t) : i ∈ Z+)t≥0

I State space X := {X ∈ Z∞+ :
∑

i≥0 X i < ∞}

I X i
N(t) ∈ Z+ is the i-th component, interpreted as number of

individuals who carry i parasites at time t.

I We assume that
∑

j≥0 X j
N(0) = N.

I Transitions correspond to individuals changing type, new
arrivals/births and departures/deaths.
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Transitions

X → X + (e(j)− e(i)) at rate X i{ᾱij + αij(N
−1X )},

(i ≥ 0, j ≥ 0, j 6= i);

(Type changes.) This type of transition corresponds to an
infection of one individual, or an individual’s disease state evolving
spontaneously or due to treatment.
αij(x) depends on the overall levels x of infection in community.
Principally there to allow hosts to acquire further parasites through
infection but can also model state-dependent loss of infection e.g.
through treatment offered when higher levels of infection observed.
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−1X )},

(i ≥ 0, j ≥ 0, j 6= i);

(Type changes.) This type of transition corresponds to an
infection of one individual, or an individual’s disease state evolving
spontaneously or due to treatment.
αij(x) depends on the overall levels x of infection in community.
Principally there to allow hosts to acquire further parasites through
infection but can also model state-dependent loss of infection e.g.
through treatment offered when higher levels of infection observed.

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

our

Transitions

X → X + (e(j)− e(i)) at rate X i{ᾱij + αij(N
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Transitions

X → X + e(i) at rate Nβi (N
−1X ), i ≥ 0;

(Births/arrivals)
Thus type of transition models births and immigration of
individuals of different types. We allow dependence on community
levels of infection.
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Transitions

X → X − e(i) at rate X i{δ̄i + δi (N
−1X )}, i ≥ 0.

(Deaths/departures)
This type of transition models deaths and emigration. Again, we
allow dependence on community levels of infection.
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Transitions summary and comments

I In the above the rates ᾱij , αij , βi , δ̄i , δi model different
aspects of the underlying parasite life cycle.

I The rates ᾱij and δ̄i represent parasite communities
developing independently within different hosts, according to
a pure jump Markov process, with host death at rate δ̄i when
parasite load is i .

I ᾱ0· are all zero if only parasite mortality and reproduction are
modelled by ᾱij , but may include part of infection force, so
not true in general.
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Law of large numbers - candidate limit

Natural candidate approximation is by the solution to the ‘average
drift’ infinite dimensional differential equation

dx i (t)

dt
=

∑
l≥0

x l(t)ᾱli +
∑
l 6=i

x l(t)αli (x(t))− x i (t)
∑
l 6=i

αil(x(t))

+ βi (x(t))− x i (t)δi (x(t)), i ≥ 0,

with initial condition x(0) = N−1XN(0);
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with initial condition x(0) = N−1XN(0);
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I This can be expressed as

dx

dt
= Ax + F (x), x(0) = N−1XN(0),

I where (Ax)i =
∑

l≥0 x l ᾱli , i ≥ 0, is a linear operator;

I and operator F is given by

(Fx)i =
∑
l 6=i

x lαli (x)− x i
∑
l 6=i

αil(x) + βi (x)− x iδi (x), i ≥ 0.
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Our space

We shall be working in two spaces:

I The space

`11 = {x ∈ R∞ :
∑
i≥0

(i + 1)|x i | < ∞},

with norm ‖ x ‖11=
∑

i≥0(i + 1)|x i |;
I And the usual `1 with norm ‖ x ‖1=

∑
i≥0 |x i |.
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Main theorem

Theorem
Suppose that certain technical conditions are satisfied,and that
xN(0) := N−1XN(0) satisfies ‖xN(0)− x(0)‖11 → 0 as N →∞, for
some x0 ∈ `11. Let [0, tmax) denote the interval where the above
equation with x0 as initial condition has a solution x in `11.
Then for any T < tmax , there exists a constant K (T ) such that, as
N →∞,

P[N−1 sup
0≤t≤T

‖ XN(t)−NxN(t) ‖1> K (T )N−1/2 log3/2 N] = O(N−1/2),

where xN solves the differential equation with xN(0) = N−1XN(0).
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Other deviation sizes

Theorem
Suppose that certain technical conditions are satisfied,and that
xN(0) := N−1XN(0) satisfies ‖xN(0)− x(0)‖11 → 0 as N →∞, for
some x0 ∈ `11. Let [0, tmax) denote the interval where the above
equation with x0 as initial condition has a solution x in `11.
Then, for any 1/2 < γ ≤ 1, and for any T < tmax , there exists a
constant Kγ(T ) such that, as N →∞,

P[N−1 sup
0≤t≤T

‖XN(t)−NxN(t)‖1 > Kγ(T )Nγ−1 log N] = O(N−γ),

where xN solves the differential equation with xN(0) = N−1XN(0).
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What are the conditions required?

Without getting into technical details, we have conditions of the
following types:

I Conditions ensuring the per capita infection, birth,
immigration and death rates are finite, bounded by constant
multiples of ‖x‖1 + 1.

I This excludes any model in which the per capita infection rate
is a constant K times the parasite density ‖x‖11, e.g.
Kretzschmar (1993).

I Conditions implying that cumulative differences between
states x and y are limited by multiples of ‖x − y‖1, and these
multiples are bounded if ‖x‖11 ∧ ‖y‖11 is.
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Conditions continued

I Conditions constraining overall rate of flow of parasites into
the system through immigration to be finite, and bounded if
parasite density is bounded.

I Conditions limiting the way this influx may depend on
infection state

I Conditions restricting rates of influx of parasites into hosts
through infection. (Limit imposed on the multiplicative rate
of increase of parasites in host; useful if parasites can directly
reproduce in their hosts, at rate influenced by immune
response.)
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Biological interpretation of our norms

I Norms ‖ · ‖1 and ‖ · ‖11 have natural interpretations.

I ‖X − Y ‖1 is the ‘natural’ measure of difference as seen from
the hosts’ point of view

I ‖X − Y ‖11 is the corresponding ‘parasite norm’, a measure of
parasite density.
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Examples

I Our model includes the stochastic non-linear model from
Barbour & Kafetzaki (1993) and stochastic linear model from
Barbour (1994). Both generalised and studied in depth by
Luchsinger (1999,2001).

I Also includes a stochastic version of Kretzschmar (1993) with
truncated infection rates.
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Luchsinger’s non-linear model

I Population size is always N;

I βi (x) = δi (x) = δ̄i = 0, ∀i ≥ 0, x ∈ `11;

I ᾱ is a superposition of generator of pure death process rate
µ > 0 (parasites die independently) and catastrophe process
jumping to 0 at rate κ ≥ 0 (hosts die independently);

I if a host dies, it is replaced by a healthy individual; hence

ᾱi ,i−1 = iµ, ᾱi0 = κ, i ≥ 2; ᾱ10 = µ + κ;

also ᾱ0j = 0;

I contacts at rate λ > 0, only infections of healthy hosts;
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also ᾱ0j = 0;

I contacts at rate λ > 0, only infections of healthy hosts;

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Limit
Examples

Luchsinger’s non-linear model

I Population size is always N;

I βi (x) = δi (x) = δ̄i = 0, ∀i ≥ 0, x ∈ `11;
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Luchsinger’s non-linear model

I If host with i parasites contacts a healthy one, probability pil

of infection with l parasites,
∑

l≥0 pil = 1, ∀i , p00 = 1;

I Fi = (pil , l ≥ 0) is i-fold convolution of F1 (parasites
independent in transmitting offspring), has finite mean;

I Thus αil(x) = 0, i 6= 0, and

α0l(x) = λ
∑
i≥1

x ipil , l ≥ 1, x ∈ `11;
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Luchsinger’s linear model

I Tacitly assume infinite pool of potential infectives, so no
0-coordinate needed;

I Only infected hosts are of interest, their number may vary;

I ᾱ is a generator of simple death process rate µ > 0, but
restricted to reduced state space, so ᾱi ,i−1 = iµ, i ≥ 2;

I incorporate hosts losing infection by taking δ̄i = κ, i ≥ 2
and δ̄1 = κ + µ;

I Only healthy individuals can be infected, and infections with i
parasites occur at a rate λ

∑
l≥1 X lpli , so that

βi (x) = λ
∑

l≥1 x lpli , i ≥ 1, and all αil(x) = δi (x) = 0;
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I ᾱ is a generator of simple death process rate µ > 0, but
restricted to reduced state space, so ᾱi ,i−1 = iµ, i ≥ 2;
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I ᾱ is a generator of simple death process rate µ > 0, but
restricted to reduced state space, so ᾱi ,i−1 = iµ, i ≥ 2;

I incorporate hosts losing infection by taking δ̄i = κ, i ≥ 2
and δ̄1 = κ + µ;

I Only healthy individuals can be infected, and infections with i
parasites occur at a rate λ

∑
l≥1 X lpli , so that

βi (x) = λ
∑
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Proof

I What kind of obstacles are we likely to encounter?

I The first one is to establish that the candidate limit
differential equation has a (unique) solution.

I This is not straightforward, as we are working in infinite
dimensions.

I The representation

dx

dt
= Ax + F (x),

with A a linear operator and F a ‘nice’ operator is crucial to
establishing existence and uniqueness of solution x .
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Technical device: ᾱij

I Let ∆ denote an absorbing ‘cemetery’ state (host’s death).

I Let
ᾱi ,∆ := δ̄i , ᾱii := −α∗(i)− δ̄i , i ≥ 0,

where α ∗ (i) :=
∑

j≥0,j 6=i ᾱij .

I Then ᾱ is the infinitesimal matrix of a time homogeneous
pure jump Markov process W on Z+ ∪∆.
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Semigroups

I Then in our representation, the adjoint AT of A is the
Q-matrix of a time-homogeneous pure jump Markov process.

I By standard theory, the semigroup T (t) it generates is
strongly continuous on `1.

I However, we need it to be strongly continuous on `11, and we
prove this is the case under our assumptions.

I We further show that F is locally `11-Lipschitz continuous,
and then the existence and uniqueness of a continuous (weak)
solution in `11 follows.
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Mild solution

Every solution x also satisfies

x(t) = T (t)x(0) +

∫ t

0
T (t − s)F (x(s)) ds,

where T (t) is the C0 semigroup generated by A.

Conversely, a continuous solution x of the integral equation is
called a mild solution of the initial value problem.
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Mild solution

The following result guarantees the existence and uniqueness of a
mild solution if F is Lipschitz.

Theorem (Pazy 1983, Theorem 1.4, Chapter 6)

Let F : S → S be locally Lipschitz continuous. If A is the
infinitesimal generator of a C0 semigroup etA on S then for every
x0 ∈ S there is a tmax ≤ ∞ such that the initial value problem

dx

dt
= Ax + F (x), x(0) ∈ S ,

has a unique mild solution x on [0, tmax). Moreover, if tmax < ∞,
then limt↑tmax ‖ x ‖= ∞.
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In other words, our infinite-dimensional differential equation has a
unique weak solution, so we at least have a function xN to give
substance to our limit result.

In fact, we also show that, under our conditions, xN is a classical
solution to the differential equation system.
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I It would naturally be good to have tmax = ∞.

I However, our assumptions may not be enough to guarantee
that this is true.

I On the other hand, tmax = ∞ if, for some C < ∞,

‖F (x)‖11 ≤ C‖x‖11.

I This is the case, for example, in Luchsinger’s models.
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Smooth dependence on initial conditions

I Our solution depends smoothly on initial conditions within the
interval of existence.

I Useful for approximating sequence of processes, if initial
condition not fixed for all N, but N−1XN(0) → x(0); gives the
same order of approximation if we replace xN by x .

Lemma
Fix a solution x to the integral equation, and suppose that
T < tmax . Then there is an ε > 0 such that, if y is a solution with
initial condition y(0) satisfying ‖y − x‖11 ≤ ε, then

sup
0≤t≤T

‖x(t)− y(t)‖11 ≤ ‖x(0)− y(0)‖11CT ,

for a constant CT < ∞.
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Two-stage approximation

The rest of our proof goes in two stages:

I First we construct an approximating model X̃N(·), starting
with X̃N(0) = XN(0), and consisting of independent
individuals.

I The process X̃N differs from XN in having the non-linear
elements of the transition rates made linear, by replacing the
Lipschitz state–dependent elements αij(x), βi (x), δi (x) at any
time t by their ‘typical’ values, derived from the differential
equation.

I Standard Chernoff-type bounds show that X̃N(·) stays close to
xN(t) throughout [0,T ].

I Then we couple X̃N(·) and XN(·) so that the distance between
them is small throughout [0,T ].
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Independent process transition rates

Individual’s parasite load evolves according to a time
inhomogeneous Markov process W̃ on Z+ ∪∆ with infinitesimal
matrix

qlj(t) = ᾱlj + α̃lj(t), j 6= l ,∆, l ≥ 0,

ql ,∆(t) = δ̄l + δ̃l(t), l ≥ 0,

qll(t) = −
∑
j 6=l

qlj(t)− δ̄l − δ̃l(t), l ≥ 0, (4.1)

where
α̃il(t) := αil(xN(t)); δ̃i (t) := δi (xN(t)). (4.2)

Individuals also immigrate with rates

Nβ̃i (t) := Nβi (xN(t)). (4.3)
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qlj(t) = ᾱlj + α̃lj(t), j 6= l ,∆, l ≥ 0,

ql ,∆(t) = δ̄l + δ̃l(t), l ≥ 0,

qll(t) = −
∑
j 6=l

qlj(t)− δ̄l − δ̃l(t), l ≥ 0, (4.1)

where
α̃il(t) := αil(xN(t)); δ̃i (t) := δi (xN(t)). (4.2)

Individuals also immigrate with rates

Nβ̃i (t) := Nβi (xN(t)). (4.3)

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Estimates

Independent process transition rates

Individual’s parasite load evolves according to a time
inhomogeneous Markov process W̃ on Z+ ∪∆ with infinitesimal
matrix
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Linearised process deviations

N−1X̃N(t) and x(t) stay ‘close’ together.

Lemma
Suppose that our assumptions hold, and that XN(0) ∈ `11. Then,
for any t ∈ [0,T ] with T < tN

max ,

E‖X̃N(t)− NxN(t)‖1 ≤ 3(MN
T + 1)

√
N log N,

where MN
T = sup0≤t≤T

∑
i≥1(i + 1)|x i

N(t)|. Furthermore, for any

r > 0, there exist constants K
(1)
r > 1,K

(2)
r such that

P[‖X̃N(t)−NxN(t)‖1 > K
(1)
r (MN

T +1)N1/2 log3/2 N] ≤ K
(2)
r GN

T (1)N−r ,

where GN
T = sup0≤t≤T

∑
i≥0 |x i

N(t)|.

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Estimates

Linearised process deviations

N−1X̃N(t) and x(t) stay ‘close’ together.

Lemma
Suppose that our assumptions hold, and that XN(0) ∈ `11. Then,
for any t ∈ [0,T ] with T < tN

max ,

E‖X̃N(t)− NxN(t)‖1 ≤ 3(MN
T + 1)

√
N log N,

where MN
T = sup0≤t≤T

∑
i≥1(i + 1)|x i

N(t)|. Furthermore, for any

r > 0, there exist constants K
(1)
r > 1,K

(2)
r such that

P[‖X̃N(t)−NxN(t)‖1 > K
(1)
r (MN

T +1)N1/2 log3/2 N] ≤ K
(2)
r GN

T (1)N−r ,

where GN
T = sup0≤t≤T

∑
i≥0 |x i

N(t)|.

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Estimates

Linearised process deviations

N−1X̃N(t) and x(t) stay ‘close’ together.

Lemma
Suppose that our assumptions hold, and that XN(0) ∈ `11. Then,
for any t ∈ [0,T ] with T < tN

max ,

E‖X̃N(t)− NxN(t)‖1 ≤ 3(MN
T + 1)

√
N log N,

where MN
T = sup0≤t≤T

∑
i≥1(i + 1)|x i

N(t)|. Furthermore, for any

r > 0, there exist constants K
(1)
r > 1,K

(2)
r such that

P[‖X̃N(t)−NxN(t)‖1 > K
(1)
r (MN

T +1)N1/2 log3/2 N] ≤ K
(2)
r GN

T (1)N−r ,

where GN
T = sup0≤t≤T

∑
i≥0 |x i

N(t)|.

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Estimates

Linearised process deviations

N−1X̃N(t) and x(t) stay ‘close’ together.

Lemma
Suppose that our assumptions hold, and that XN(0) ∈ `11. Then,
for any t ∈ [0,T ] with T < tN

max ,

E‖X̃N(t)− NxN(t)‖1 ≤ 3(MN
T + 1)

√
N log N,

where MN
T = sup0≤t≤T

∑
i≥1(i + 1)|x i

N(t)|. Furthermore, for any

r > 0, there exist constants K
(1)
r > 1,K

(2)
r such that

P[‖X̃N(t)−NxN(t)‖1 > K
(1)
r (MN

T +1)N1/2 log3/2 N] ≤ K
(2)
r GN

T (1)N−r ,

where GN
T = sup0≤t≤T

∑
i≥0 |x i

N(t)|.

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Estimates

Linearised process deviations

N−1X̃N(t) and x(t) stay ‘close’ together.

Lemma
Suppose that our assumptions hold, and that XN(0) ∈ `11. Then,
for any t ∈ [0,T ] with T < tN

max ,

E‖X̃N(t)− NxN(t)‖1 ≤ 3(MN
T + 1)

√
N log N,

where MN
T = sup0≤t≤T

∑
i≥1(i + 1)|x i

N(t)|. Furthermore, for any

r > 0, there exist constants K
(1)
r > 1,K

(2)
r such that

P[‖X̃N(t)−NxN(t)‖1 > K
(1)
r (MN

T +1)N1/2 log3/2 N] ≤ K
(2)
r GN

T (1)N−r ,

where GN
T = sup0≤t≤T

∑
i≥0 |x i

N(t)|.

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Estimates

Linearised process deviations

N−1X̃N(t) and x(t) stay ‘close’ together.

Lemma
Suppose that our assumptions hold, and that XN(0) ∈ `11. Then,
for any t ∈ [0,T ] with T < tN

max ,

E‖X̃N(t)− NxN(t)‖1 ≤ 3(MN
T + 1)

√
N log N,

where MN
T = sup0≤t≤T

∑
i≥1(i + 1)|x i

N(t)|. Furthermore, for any

r > 0, there exist constants K
(1)
r > 1,K

(2)
r such that

P[‖X̃N(t)−NxN(t)‖1 > K
(1)
r (MN

T +1)N1/2 log3/2 N] ≤ K
(2)
r GN

T (1)N−r ,

where GN
T = sup0≤t≤T

∑
i≥0 |x i

N(t)|.

Malwina J Luczak Law of large numbers for epidemic models with countably many types



Introduction
Model

Results
Proofs

Estimates

Coupling strategy

I To estimate deviations of X̃N from XN we couple them so
“distance” between them is small over any finite interval.

I We pair each individual in state i ≥ 1 in XN(0) with individual
in state i in X̃N(0) so all their ᾱ- and δ̄-transitions are
identical.

I Rates of remaining transitions not quite the same, and hence
processes can gradually drift apart.

I Strategy: make transitions identical as far as we can; once a
transition in one process is not matched in the other, the
individuals are decoupled thereafter.

I We show that number of decoupled pairs is small.
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Results
Proofs

Estimates

Coupling details

I Coupling between XN and X̃N realised via a process Z (·) with

Z (t) = ((Z i
l (t), i ≥ 0, 1 ≤ l ≤ 3),Z4(t)) ∈ X 3 × Z+.

I Here, XN(·) = Z1(·) + Z2(·) and X̃N(·) = Z1(·) + Z3(·).
I Also Z1(0) = XN(0) = X̃N(0), Z2(0) = Z3(0) = 0 ∈ X ,

Z4(0) = 0.

I Z4 used only to keep count of certain uncoupled individuals,
either unmatched Z2-immigrants, or Z3 individuals that die;
and of coupled individuals who become uncoupled when one
but not the other dies.
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Estimates

Coupling transition rates

For ᾱ- and α-transitions, for i 6= l (writing X = Z1 + Z2 and e i
l

for coordinate vectors):

Z → Z + (e l
1 − e i

1) at rate Z i
1{ᾱil + (αil(N

−1X ) ∧ αil(xN(t)))};
Z → Z + (e l

2 + e i
3 − e i

1) at rate Z i
1{αil(N

−1X )− αil(xN(t))}+;

Z → Z + (e i
2 + e l

3 − e i
1) at rate Z i

1{αil(N
−1X )− αil(xN(t))}−;

Z → Z + (e l
2 − e i

2) at rate Z i
2{ᾱil + αil(N

−1X )};
Z → Z + (e l

3 − e i
3) at rate Z i

3{ᾱil + αil(xN(t))},

with possibilities for individuals in the two processes to become
uncoupled, when N−1X 6= x(t).
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2{ᾱil + αil(N

−1X )};
Z → Z + (e l

3 − e i
3) at rate Z i
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For ᾱ- and α-transitions, for i 6= l (writing X = Z1 + Z2 and e i
l

for coordinate vectors):

Z → Z + (e l
1 − e i

1) at rate Z i
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Estimates

Coupling transition rates

For birth/immigration transitions:

Z → Z + e i
1 at rate N{βi (N

−1X ) ∧ βi (xN(t))}, i ≥ 0;

Z → Z + e i
2 + e4 at rate N{βi (N

−1X )− βi (xN(t))}+, i ≥ 0;

Z → Z + e i
3 at rate N{βi (N

−1X )− βi (xN(t))}−, i ≥ 0,

with some immigrations not being precisely matched.
Second transition includes an e4 so that each Z2 individual has a
counterpart in either Z3 or Z4.
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For deaths/emigration:
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1 at rate Z i
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−1X ) ∧ δi (xN(t)))}, i ≥ 0;

Z → Z − e i
1 + e i

3 at rate Z i
1{δi (N

−1X )− δi (xN(t))}+, i ≥ 0;

Z → Z − e i
1 + e i

2 + e4 at rate Z i
1{δi (N

−1X )− δi (xN(t))}−, i ≥ 0;

Z → Z − e i
2 at rate Z i

2{δ̄i + δi (N
−1X )}, i ≥ 0;

Z → Z − e i
3 + e4 at rate Z i

3{δ̄i + δi (xN(t))}, i ≥ 0.

Here Z4(·) also counts deaths of uncoupled Z3-individuals, and
uncoupled deaths in X̃N of coupled Z1 individuals.
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Coupling - key bounds

With this construction, we have∑
i≥0

Z i
2(t) ≤ Z4(t) +

∑
i≥0

Z i
3(t) (4.4)

for all t.
Also

VN(t) := Z4(t) +
∑
i≥0

Z i
3(t) (4.5)

is a counting process. We thus have the bound

‖XN(t)− X̃N(t)‖1 = ‖(Z1(t) + Z2(t))− (Z1(t) + Z3(t))‖1

≤
∑
i≥0

{Z i
2(t) + Z i

3(t)} ≤ 2VN(t). (4.6)
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