Is R_0 compatible with spatial epidemics? - new results from long-range percolation

Pieter Trapman

Julius Center for Health Research & Primary Care University Medical Center Utrecht and Department of Mathematics, Vrije Universiteit Amsterdam The Netherlands

July 3, 2008

Pieter Trapman: Spatial epidemics and long-range percolation

UMC Utrecht and VU Amsterdam

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is R_0 ? Textbook definition: The basic reproduction number R_0 is the number of secondary infections per initial infective individual in a further susceptible large population.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of R_0 in homogeneous randomly mixing populations:

- ▶ In the large population limit, *R*₀ corresponds to the offspring mean of a Galton Watson branching process.
- A large outbreak occurs with positive probability if and only if $R_0 > 1$.
- Let Xⁿ_k be the set of individuals in the k-th infection generation in a randomly mixing population of size n and Bⁿ_k := ∪^k_{j=0}Xⁿ_j,

$$\lim_{k \to \infty} \lim_{n \to \infty} (\mathbb{E}(|X_k^n|))^{1/k} = R_0,$$

$$\lim_{k \to \infty} \lim_{n \to \infty} (\mathbb{E}(|\mathcal{B}_k^n|))^{1/k} = \max(R_0, 1).$$

Stronger result: if R₀ > 1, then |Xⁿ_k| and |Bⁿ_k| grow exponentially (with base R₀) with positive probability.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is R_0 ?	R_{*} on networks	Spatial epidemics	Long-range percolation	Discussion

Useful properties of R_0 (previous slide), only hold for randomly mixing populations and very special networks. New definition:

$$R_* = \lim_{k \to \infty} \lim_{n \to \infty} (\mathbb{E}(|\mathcal{B}^n_k|))^{1/k}.$$
 (1)

This quantity is easy to compute in randomly mixing populations, Molloy-Reed and Erdös-Rényi, Barabási-Albert random networks and in general on all networks that are locally tree-like (possibly with individuals replaced by "super-individuals" /cliques). It is hard to compute if structure is more involved and if there is positive clustering.

< ロ > < 同 > < 回 > < 回 > < 回 >

What is R_0 ?	R_{st} on networks	Spatial epidemics	Long-range percolation	Discussion

Consider simplest (toy) model for a spatial SIR epidemic

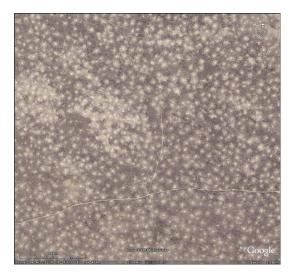
- Individuals are located at the vertices of the square lattice.
- contacts are only possible with nearest neighbours.
- In this model R_{*} = 1: The number of individuals that can be reached within k steps grows at most quadratically, so (𝔅(|𝔅ⁿ_k|))^{1/k} → 1.
- ▶ Models that use some kind of *R*₀, and give it the usual interpretation in spatial epidemics are fated to fail.
- Pair approximation techniques for spatial epidemics are dangerous here.

< □ > < 同 > < 三 >

An Example: Plague in Kazakhstan

- Great gerbils live in burrow systems and usually do not wander too far away from their homes.
- Plague is transmitted via fleas "jumping" from one gerbil to another one that is "passing by".
- Great gerbils eat all vegetation in a circle of radius about 20 metres of their burrow system, this leads to the following picture:

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > < 1 = > <



Pieter Trapman: Spatial epidemics and long-range percolation

UMC Utrecht and VU Amsterdam

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

What is <i>R</i> ₀ ?	R_{st} on networks	Spatial epidemics	Long-range percolation	Discussion

The burrows of the gerbils are located in a rather regular pattern. Because of the nature of the spread R_0 does not seem to be the thing to consider.

See Davis et al. Nature 454, 634-637.

What is <i>R</i> ₀ ?	R_{st} on networks	Spatial epidemics	Long-range percolation	Discussion

Long-range percolation

- ► In reality not only nearest neighbour contacts are made.
- Consider individuals living at the vertices of \mathbb{Z}^d .
- Assume that during the infectious period of fixed length 1, an individual make contacts with an individual at distance r at rate λ(r) independent of other contacts made in the population. λ(r) is non-increasing.
- In a SIR epidemic: The probability of a contact between individuals at distance r is given by p(r) := 1 − e^{-λ(r)}.

Question:

Is it possible to find a function $\lambda(r)$ such that R_* is non trivial?

・ロト ・ 一 マ ト ・ 日 ト ・ 日 ト

What is R_0 ? R_* on networks Spatial epidemics Long-range percolation Discussion

- If for some R > 0, λ(r) = 0 for all r > R, then |B_k| is growing at most quadratically.
- If λ(r) is decaying exponentially, then a large outbreak spreads like a travelling wave.
 (see e.g. Mollison, J. Roy. Statist. Soc.B 39, 283-326).
- ▶ If $\lambda(r)$ is such that $\sum_{x \in \mathbb{Z}^d} p(||x||) = \infty$, then $|\mathcal{B}_1| = \infty$ and $R_* = \infty$. An example $\lambda(r) = \alpha r^{-\beta}$ with $0 < \beta \leq d$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

What is R_0 ? R_* on networks Spatial epidemics Long-range percolation Discussion New results: • If $\lambda(r) = e^{-\beta(r)}$ and $\liminf \beta(r) > d$, then for $k \to \infty$, $|\mathcal{B}_k|^{1/k} \rightarrow 1$ a.s. So. $R_* = 1$. Marek Biskup already showed that if $\lambda(r) = \alpha e^{-\beta}$ with $d < \beta < 2d$, then the graph distance between x and y (if they are in the same component) scales like $(\log ||x - y||)^{\Delta}$. where $\Delta = \frac{\log[2]}{\log[2] + \log[d] - \log[\beta]} > 1.$ • If $\lambda(r) = e^{-(d+g(r))}$ and $g(r) \to 0$, then with some minor extra conditions on g(r). there exist constants $a_1 > 1$ and $a_2 < \infty$, such that lim $\mathbb{P}(a_1 < |\mathcal{B}_k|^{1/k} < a_2|$ large outbreak) = 1.

So if R_* exists, then $1 < R_* < \infty$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Discussion

We showed that it is possible to construct a spatial epidemic for which with positive probability $|\mathcal{B}_k| > c(a_1)^k$ for all $k \in \mathbb{N}$ and some c > 0 and $a_1 > 1$. We did not prove yet whether $|\mathcal{B}_k|^{1/k}$ converges or not

and we did not have a clue about how to deduce R_* from $\lambda(r)$.

< ロ > < 同 > < 三 > .