
pref R package manual 0.4.0, 31 Jan 2024

Denis Mollison (Heriot-Watt University)

Summary page
1 Package description 2
2 Usage 2
3 Functions associated with data input 3
4 Functions associated with the count 5
5 Functions associated with output 7
6 Examples 7
7 Background: STV 11
8 Development and extensions 13
References 14

Summary

Implements the Single Transferable Vote (STV) electoral system, with clear
explanatory graphics. The core function is Meek’s method, the purest
expression of the simple principles of STV, but which does require electronic
counting. It can handle votes expressing equal preferences for subsets of
the candidates. A function stv.wig implementing the Weighted Inclusive
Gregory (WIG) method is also provided. The principles of STV and an outline
of the steps required to implement it are described in $7.

Example of output for a Scottish Council election

The required vote data format is as an R list (see $ 4 below). A function
pref.data is provided to transform some commonly used data formats into
this format.

1 Package description

The goal of the function stv (see $3) is to count votes from an STV election,
and to provide a clear and full description of the count and the result, using
both numbers and graphics. It uses Meek STV, and allows for votes that
include equal preferences. Graphical output includes expository web pages;
the function stv.result prints a summary of the election count and result.

The function stv.wig ($3) implements the Weighted Inclusive Gregory STV
method, as used in Scottish council elections since 2007; it has the same
options as stv.

[A function, stv.batch, to run counts for multiple elections, as used to
process the complete 2012, 2017 and 2022 Scottish Council elections, is
too fragile to include here, but is available from the author.]

Election data for preference voting come in many formats, ranging from a
simple vote matrix to the incluson of full candidate names and party
affiliations. A function pref.data is provided to translate various common
vote file formats into a flexible R list format, whose only essential element
is a matrix of vote data ($4). This flexible R list format provides the input for
stv and stv.wig. A range of examples from actual elections is included ($6).

The most recent stable version of pref can be installed from CRAN
(https://cran.r-project.org/) using install.packages(pref).

The development version can be installed from Github:
library(devtools)

install_github("denismollison/pref")

Either way, the package can then be loaded into an R session using
library(pref).

2 Usage

First, if vote data are not in the recommended format they should be
converted into an R list, votedata say, using the function pref.data (see $4
below). Then the election count is run using the function stv :

res=stv(votedata,outdirec="stv_out")

2

https://www.macs.hw.ac.uk/~denis/stv_elections/

(or similarly for stv.wig). This sets an output directory, but otherwise uses
the default options for stv : a brief message summarising the result res will
be printed, while full details and plots with webpages to display them will be
stored in outdirec. If you follow the above literally, outdirec will be a
directory called "stv_out" within your working directory; more likely, you will
prefer to replace "stv_out" with the path to a directory of your choice.

Other options (see $3) include an interactive mode that pauses the election
at each stage with fuller details and a plot of the current state of the count
displayed, or omitting graphical output altogether; while the output
directory can be left as the default value of tempdir() so that it is
ephemeral.

For more on output options see $4, $5.

3 Functions associated with data input

The required input format for the key vote counting functions, stv and
stv.wig, is an R list. This section describes that format, and a function
pref.data that converts some commonly used vote data formats into it.

In detail, votedata, vd for short, should be an R list including some or all of
the following elements:

vd$e - election name
vd$s - number of representatives to be elected
vd$c - number of candidates
vd$nv - number of votes
vd$v - matrix of votes (vd$nv × ed$c)
vd$m - multiplicity for each vote (=1 if just one vote per row)
vdn, edf, ed$n2 - name, first name, and abbreviated name for

each candidate
vdp, edcol - party acronyms and party colours of candidates

(if appropriate - otherwise the empty character "")

The first thing to say is that the only essential element here is the vote
matrix ed$v. If the candidates’ names are not given, they will be assumed to
be dimnames(ed$v)[[2]], and if that is empty capital letters A,B,. . . will be
used.

An election name and the number of representatives to be elected are also
essential, but if these are not given the user will be asked for them (see
example Yale in $6).

The function pref.data converts some common preference data formats
into this required format. Its defaults –

3

pref.data(datafile,mult=FALSE,details=TRUE,parties=FALSE,

ballot=FALSE,friendly=FALSE,header=FALSE)

– correspond to the common .blt format, which is for example used for
Scottish council elections; except that for the public Scottish Council
election datasets one needs mult=TRUE, and should also set parties=TRUE.

In more detail, the options are:

mult - if TRUE, the multiplicity of each row of the vote matrix
is given as its first element

details - if FALSE, data are simply a vote matrix, with the
first column containing multiplicities if mult=TRUE and
the first line giving candidate names if header=TRUE

parties - either FALSE, or the name of a file with party
acronyms and colours

ballot - if TRUE, ith entry in a row is the preference number
for candidate i
- if FALSE, rows are candidate numbers in order of
preference, with bracketing indicating equal preference

friendly - if TRUE, file starts with title, then vd$s and vd$c,
then candidate names
- if FALSE, starts with vd$c and vd$s, with candidate
names and election title at end of file (the common ‘.blt’
format)

Other data formats

Hopefully, users with data in other formats will not find it too hard to
convert their data into an R list with components as for vd above. Some
points to note are:

vd$nv is the number of lines of vote data: this will be the actual vote total if
these are all individual votes; otherwise, the vote total is sum(ed$m).
The variable vd$n2 is used to avoid names of excessive length, and to
distinguish two candidates with the same surname; if these are not a
problem for your data, just set vd$n2 = vd$n. If party acronyms and colours
are not relevant, just set vd$p and vd$col to the empty character (i.e. =
rep("",vd$c)). The program will then use its ‘rainbow’ default to choose
colours for the graphics.

STV allowing equal preferences

It should be noted that votedata need not explicitly include information on
whether equal preferences are allowed. The numbers in each row of the
vote matrix establish that voter’s order of preference: if some of the
numbers are equal, stv treats them as equal preferences. On the other

4

hand, stv.wig expects orders of preference to be strict, and will crash if
given data including equal preferences.

4 Functions associated with the count

This section describes the two count functions, stv and stv.wig. Each has
both input and output in the form of an R list; and also, as default, makes
plots of the count stages, and webpages to view them.

The required data input format is described in $3.

For stv, which implements Meek STV allowing equal preferences, the
options and their default values are as follows:

elecdata = stv(votedata,outdirec=tempdir(),plot=TRUE,webdisplay=
FALSE,interactive=FALSE,messages=TRUE,timing=FALSE,map=FALSE)

The value returned here is a list elecdata of results (ed for short), consisting
of all the elements of votedata, supplemented by the following items:

ed$sys - the STV system used (="meek")
ed$elec - the names of those elected, in order of election
ed$itt - candidates in order of election/exclusion, reported

at each stage
ed$narrative - an explanation of each stage of the count, in words
ed$count - a matrix of the votes at each stage and the final

keep values
ed$quotatext - the total number of votes, and initial and

final values of the quota
ed$va - a 3D array showing how votes have transferred (from

first to current preference) for each stage
ed$keep - the keep values (as %s) at each stage
ed$report - a text report on the election (see $5)

This list is stored as a compressed R data file (.rda format) in the directory
outdirec. The default option for outdirec is an ephemeral directory
tempdir(); this choice is to avoid writing to a user’s filespace without
consent. More usually, users will wish to keep election results, and should
make their own choice of outdirec accordingly.

Note that the output file name will be "election name"_"sys".rda, with any
spaces in the election name replaced by underscores ("_"). It is therefore
important that the election name should not include any of the special
characters that operating systems, especially Windows, do not allow in file
names (e.g. quotes or brackets).

5

With the default options, the function stv will also make webpages in
outdirec with plots showing each stage of the count. Note that the plots are
saved as jpegs and then displayed using a function plot_jpeg that relies on
the package jpeg. This is to avoid dependence on local R plotting
parameters. If jpeg is not available, a warning message will be printed and
plot set = FALSE to disable plotting.

If you set webdisplay=TRUE plots should be displayed automatically - but
note that this feature is system-dependent and might fail. The safer option
is to stay with the default option webdisplay=FALSE, and open the web
pages from outdirec later. Note that these webpages include a numerical
display of full details of the count and plots of transfers, each as an option
that requires clicking a button to display.

A full expository option is stv(votedata,outdirec="out",interactive=TRUE,
webdisplay=TRUE); this displays progress in numbers and a plot at each
stage of the count, requiring the user to press ‘return’ for the next stage,
and concludes by displaying the full results as web pages.

When not in interactive mode, the only printed output consists of brief
initial and final messages giving a minimal summary of the election; these
can be suppressed by setting messages=FALSE; conversely, reports on the
process time taken by the count at each stage can be added by setting
timing=TRUE. Finally, the option map is unlikely to be needed for a single
election; it is included to facilitate links to additional information in batch
runs of the function for sets of elections.

The other STV count function, stv.wig, has the same default options as stv:

elecdata = stv.wig(votedata,outdirec=tempdir(),plot=TRUE,
webdisplay=FALSE,interactive=FALSE,messages=TRUE,
timing=FALSE,map=FALSE)

This function implements the ‘Weighted Inclusive Gregory’ (WIG) algorithm,
which has been used for Scottish Council elections since 2007. [Note: it
follows the rules of those elections exactly by truncating variables to 5
decimal places.] This differs from Meek in not allowing transfers to already
elected candidates. While that may seem harmless - or even desirable - it
introduces discontinuities, and the quota cannot be adjusted
satisfactorally: a significant factor in political elections and those with
large numbers of candidates. The sole justification for preferring it to Meek
is that it can if necessary be counted by hand (which is probably not
relevant if you’re reading this). The differences in practice between the WIG
and Meek algorithms can be explored at
www.macs.hw.ac.uk/∼denis/stv_elections, which cross-references each

6

Scottish council count (for 2012 and 2017) with its Meek version.

The value returned by the stv.wig function is a list containing the same
items (mutatis mutandis) as for the stv function, except for the last, keep,
which is not relevant for WIG.

5 Functions associated with output

The varied text and plotting outputs available from the count functions stv
or stv.wig have been set out in the previous section. Note also that the
value returned by these functions, the R list elecdata, contains as one of its
elements a fairly full narrative report of the count, which can be printed out
as follows: if the output list is p17wig, use cat(p17wig$report, sep="\n").
This report replicates the information printed when using a count function
with interactive=TRUE.

Similarly, for the case where a count function has been run with
plot=FALSE, a function stv.plots is provided to create such plots, and
optionally to display them:

od = stv.plots(elecdata,outdirec=tempdir(),webdisplay=FALSE)

The default of a temporary output directory is chosen to avoid writing to
the user’s permanent file space without consent; and the default of
webdisplay=FALSE to avoid possible browser problems. Normal users are
likely to want either to set a permanent outdirec to save their results, or to
use webdisplay=TRUE to display them (or both). The output value od is the
value of outdirec; it is only needed if you do use the default settings. In that
case you can make the output plots permanent in an output directory of
your choice; for example:

dir.create("p17wig")
file.copy(file.path(od,list.files(od)),"p17wig")

6 Examples

This section includes examples for all the input, count and output
functions. But first an example that shows how they can be combined to go
from raw data to presentation of results.

Jedburgh and District 2012

datafile=system.file("extdata","Jedburgh2012.blt",package="pref")
parties12=system.file("extdata","parties_SC2012.txt",package="pref")

7

The first command here loads the full data for a typical Scottish Council
election in the common .blt format. Scottish Council election data files
have two features to note: votes with the same preference order are stored
as one, but with their multiplicty noted in the vector mult; and the data
include each candidate’s party affiliation. The second command uses a
data file parties_SC2012.txt to link each candidate to their party’s standard
colour. Then the command

jed12=pref.data(datafile,mult=TRUE,parties=parties12)

converts the data into the standard R list format described in $3. Next,
running

jed12wig=stv.wig(jed12,outdirec="jed12out",plot=FALSE)

reproduces exactly the official result of this election, in the form of an R list
(see $4), and also stores that R list in a directory jed12wig (created if
necessary) in the current working directory. This ‘silent’ mode may be
appropriate when handling a large number of elections at once, such as a
countrywide set of local elections like this one. Details can then be
extracted subsequently, using cat(jed12wig$report,sep="\n") for a text
narrative of the count, and stv.plots(jed12wig,webdisplay=TRUE) for plots.

An alternative is to create both text and plots when running the count
function, thus:

jed12wig=stv.wig(jed12,outdirec="jed12out",interactive=TRUE)

You may like to add the option webdisplay=TRUE to this command; this will
show plots at each stage of the count, and display them within web pages
once it is complete. Note that you need to press return to move on at each
stage; this feature is provided particularly to work with live vote counting,
so that the result of each stage can be displayed and considered before
moving on to the next stage of the count. The option webdisplay=TRUE can
also be used with stv.plots, but since that function is for use after a count
has been completed it does not have this interactive requirement.

Other examples where pre-processing input data is required

JMT 2002

An example of a charity trustee election using Meek STV allowing equal
preferences; the data are in preference order format, equal preferences
being indicated using brackets. Note that this file has been reordered in
"friendly" format, i.e. with the election title and candidate names at the
beginning of the file.

datafile=system.file("extdata","jmt2002.blt",package="pref")
j02=pref.data(datafile,friendly=TRUE)

8

Then running j02meek=stv(j02) should reproduce exactly the official result
of this election. As in the first example, you may wish to add options
outdirec=. . . or webdisplay=TRUE.

Yale

An example with the simplest possible raw input data, simply a vote matrix.
There are two options here: you can use pref.data as follows:

datafile=system.file("extdata","yale.dat",package="pref")
yale=pref.data(datafile,details=FALSE)

You will be asked for an election name ("Yale") and the number to elect (4).

Or you can ignore pref.data and construct yale directly:

votematrix=system.file("extdata","yale.dat",package="pref")
votes=read.table(votematrix)
yale=list(e="Yale",s=4,v=as.matrix(votes))

You can then use either count function, stv or stv.wig, to run an election
count for these data (see count examples below).

Note that if you use pref.data the missing items of the vote data list will be
filled, with deduced values where possible (e.g. nv and c are the dimensions
of the vote matrix v), and otherwise defaults (e.g. letters A, B, C . . . for
candidate names). For the construction alternative the vote data list will
not be filled in this way; but this does not matter much, as the count
functions do a similar job of filling out.

Further examples using the count functions stv, stv.wig

Council 1999

Another example from an election allowing equal preferences, this time
with data in ballot format.

datafile=system.file("extdata","c99.dat",package="pref")
c99=pref.data(datafile,ballot=TRUE)

Then running c99meek=stv(c99) should reproduce exactly the official
result of this election.

‘Yale - last 12’

As mentioned above, the count for the Yale faculty election example can be
calculated from the vote data list yale, using either count function (*).
However, this example has a large number of candidates, 44 for 4 places.
While the graphics cope, they are difficult to read (easier if you look at plots
of individual stages separately). We can prune the data, starting after 32

9

candidates have been excluded (but none yet elected), to give clearer plots
of the later (and decisive) stages of the election. Note that this is relatively
easily done for data in ballot format, because it simply requires omitting
the 32 columns of the vote matrix corresponding to those candidates.
The resulting reduced vote data list is provided as y12, so that
y12meek=stv(y12) or y12wig=stv.wig(y12) reproduces the later stages
of this election count.

(*) Note that the actual election in this case was held under ‘Cambridge
rules’, so that neither stv nor stv.wig reproduces the official outcome.
Indeed they both agree in filling the 4th place differently from the official
result.

Examples from Scottish Council elections

The following four examples come from Scottish Council elections; using
stv.wig reproduces the official result exactly. The full results for 2012-22
can be found at www.macs.hw.ac.uk/∼denis/stv_elections. For the
elections of 2012 and 2017, both the official count and one using Meek STV
are given, with links to switch between the two for ease of comparison.

Helensburgh Central 2012 hc12wig=stv.wig(hc12)

A very simple example of an election to choose 4 representatives, where 4
candidates had first preference totals of over 20%, and so were elected at
the first stage. Note that in this simple case there is no difference between
different STV methods.

Partick East - Kelvindale 2017 p17wig=stv.wig(p17)

A more typical STV election (see page 1 for a sample of the output web
pages).

North West and Central Sutherland 2017 nws17wig=stv.wig(nws17)

An example exposing one of the flaws of WIG STV: none of the elected
candidates achieved the quota.

Cumnock and New Cumnock 2017 cnc17wig=stv.wig(cnc17)

An example where WIG and Meek give different results: here one of the two
leading parties has fewer first preferences but they are more equally
divided between their two candidates; under Meek this matters less
because reductions in the quota allow more transfers between a party’s
candidates.

10

https://www.macs.hw.ac.uk/~denis/stv_elections

Other output options

The R list data format described in $3, used as output for pref.data and
input for the count functions of $4, is intended to make available to users
the main statistics of any election using preference voting. Users can
extract any part of that, e.g. the vote data matrix, for their own use or
analysis; and they may wish to add to the list other election statistics such
as the size of the electorate, turnout, or number of invalid votes.

The second R list data format, used as output for the count functions, for
convenience includes all the input variables, together with those added by
the count function; the latter are of course dependent on the STV method
employed (Meek or WIG). As already mentioned ($5), one of these is a
narrative report of the election that contains the information printed out by
the count function when run with interactive=TRUE; for example, after
running the last of the above examples, try cat(cnc17wig,sep="\n").

Similarly, the function stv.plots is used to create plots and webpages of
count results when these are not to hand from running the count function
with its default option of plot=TRUE. Compare:

nws17meek=stv(nws17, plot=FALSE)
stv.plots(nws17meek,webdisplay=TRUE)

with
nws17meek=stv(nws17,webdisplay=TRUE)

or make the same comparison omitting ‘webdisplay=TRUE’ (in which case
you should set a permanent outdirec for the plots).

7 Background: STV

The Single Transferable Vote is a system designed to elect representatives
in such a way that each represents the same number of voters. For its
relation to core democratic principles, and comparison with alternative
forms of proportional representation, see Mollison (2023).

In STV, each voter provides their order of preference; these preferences are
used to transfer unused votes or parts of votes from earlier to later
preferences, according to the following algorithm:

(a) Votes are initially assigned to the voter’s first choice

(b) The number of votes required to ensure election is calculated; this is
called the quota. When the total number of votes is v and there are s
seats to be filled, the quota is v/(s+1)

11

(c) Any candidate whose total reaches the quota is elected; if they have
more than the quota, the surplus is transferred to their voters’ next
preferences

(d) If not all seats are filled, the candidate with fewest votes is excluded
and all their votes are transferred to their voters’ next preferences

Steps (b-d) are repeated, as necessary, until all seats are filled.

In counting the votes the only significant difficulty is in distributing the
surplus σi of an elected candidates with vote vi , where fairness suggests
that equal fractions σi/vi of each vote should be transferred, and that, as a
slightly less obvious part of that fairness, transfers should go exactly
where the voter has requested even if the recipient has sufficient votes
already. The latter feature has the knock-on effect of requiring further
transfers, which is why (a) the count requires a computer, and (b) why this
feature was not implemented until computers were available (Meek
published his algorithm in 1969/70).

Meek’s method has a number of other advantages, conceptual and
practical (Mollison 2022), and is widely regarded as the best form of STV.
There is really no good reason why any other method should be used if the
vote data can be gathered securely as a computer file. It is therefore
surprising that it has not previously been available on CRAN.

History of use

The original idea of STV goes back to Thomas Wright Hill (1819), with
various improvements (use of preferential voting (Andrae, Hare), quota
∼ v/(s+1) (Droop) rather than ∼ v/s (Hare), and fractional transfers
(Gregory)) introduced between 1855 and 1881, after which there was little
change until Meek’s reassessment for the computer age nearly 100 years
later. STV has been used for political elections in various countries and
regions, including Tasmania (since 1909) and Ireland (since its
independence in 1921). In the UK it is currently used for the Northern
Ireland Assembly and for Scottish Council elections - the latter provide the
best source of STV data currently available.

STV is also increasingly used for electing the governing bodies of
non-political organisations. Meek STV allowing voters to express equality
of preference has been used by the John Muir Trust and the London
Mathematical Society (since 1998 and 1999 respectively). The program
used for those elections, the first publicly available for STV allowing equal
preferences, was written in Pascal by the late David Hill; it was originally
available through ERS Services.

12

Other STV methods and software

A key motive for this package was to put Meek STV allowing equal
preferences into the public, open software, domain together with output,
particularly graphics, that help the public to understand how STV works.
The hope is that this should make what is widely regarded as the best form
of STV easily available to all for.the long term.

Hill’s program remains available, currently through Civica, but not as open
software; also, as a Pascal program, its prospects of long term support are
limited. A wide range of STV methods are available - commercially -
through Opavote; see https://www.opavote.com/methods/single
-transferable-vote for descriptions of these. The package STV on CRAN
makes available Cambridge (Massachusetts) STV, but this STV method is
widely regarded as obsolete - its legislation prescribes that only counting
methods available in 1941 can be used. The package Vote on CRAN
presents an elegantly written STV program that does allow equal
preferences. However the system used, though it is described as being
‘developed from’ Hill’s 1987 Meek STV program is in fact a generalised
version of WIG, in which the quota is allowed to reduce during the count;
however, this revision of the quota is incomplete, being only for those
elected later in the count, with the consequence that the method fails to
share several key advantages of Meek.

8 Development and extensions

The original work of developing and refining this software went alongside a
study of the large sets of data available from Scotland’s council elections
since 2007, comprising over 1000 individual elections in all. The
development therefore included programs to tidy up such data for
processing, and a program stv.batch to run counts for such large data sets.
This software is not currently at a stage suitable for the public domain, but
is available from the author on request.

A future ambition is to add software for Condorcet’s method (‘majority
rule’), for calculating and analysing results of elections to make a single
choice from preference data.

At a more basic level, it would be useful to include implementations of
other STV counting methods, and to provide more data handling options.
Feedback from users on what would be useful will be welcome.

Any additions or improvements will in the first instance be available
through the development version on github ($2).

13

References

Meek, B. L. (1969) ‘Une nouvelle approche du scrutin transférable’,
Mathématiques et sciences humaines 25, 13-23.

Meek, B. L. (1970) ‘Une nouvelle approche du scrutin transférable (fin)’.
Mathématiques et sciences humaines 29, 33-39.

Mollison, Denis (2022) ‘Why Meek?’ (draft under development)
https://www.macs.hw.ac.uk/∼denis/stv/why_meek.pdf.

Mollison, Denis (2023) ‘Fair votes in practice’,
https://arxiv.org/abs/2303.15310.

Feedback

Comments, and expressions of interest in collaboration, will be very
welcome.

denis.mollison (at) gmail.com

14

https://www.votingmatters.org.uk/ISSUE1/P1.HTM
https://www.votingmatters.org.uk/ISSUE1/P2.HTM
https://www.macs.hw.ac.uk/~denis/stv/why_meek.pdf
https://arxiv.org/abs/2303.15310

	Package description
	Usage
	Functions associated with data input
	Functions associated with the count
	Functions associated with output
	Examples
	Background: STV
	Development and extensions

