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We show how to derive the Nielsen identities which govern the gauge dependence of physical 
quantities and the effective action for the gauge fixing vectors in both the 't Hooft gauge and in 
the planar gauge by using an extended set of BRS transformations. We also show that it is 
possible to derive the identities for an effective action which depends on composite operators. 

1. Introduction 

In  this paper  we discuss an alternative method introduced in [1] of deriving the 
Nielsen identifies and show how it may be used to demonstrate the independence of 

physical quantifies, for instance the minimum of the effective potential, from gauge 
variables such as the gauge fixing vectors (v in the ' t  Hooft  gauge and n~ in the 
p lanar  gauge). We shall take the abelian Higgs model as our prototypical gauge 

theory for convenience, though the approach generalizes without difficulty to 

non-abelian gauge theories. 
The effective potential, defined as 

= - E 7 . r ( o  . . . .  (1)  

where /~ is the n-leg 1PI generating functional at zero momentum and v is the 
vacuum expectation value of q~ is an off-shell quantity and one would not expect, 
a priori, such an object to be gauge independent. Some explicit calculations (after 
Jackiw [2]) for massless scalar QED confirm these suspicions. Indeed, if we choose 
the gauge fixing term for the abelian Higgs model to be of the form 

1 
2~ ( oI~At~ + e~vidPi)2 (2) 
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giving a lagrangian of the form 

1 . .  2 ± 2  L = - ! F  r '~ '+  (3~e#i)(3~e#,)+~,,, ~, - e#4_ 4 "  ,u.v-- ~ e% ( o.e#~ ) e#/A ~' 

1 ~ 2 
+ ½e2A2e# 2 - - ~ (  O~A ~ + e vie#i ) + a ~ *  tg~'~ - e2~*t~eij~vie#j, (3) 

where e12 = -E21 = 1 and we have split the complex scalar field into two compo- 
nents, we would find that even the tree-level potential contained the unphysical 
quantities ~ and v [3, 4], 

1 2 lm2~ 2 • 4 
= - - + . ( 4 )  

One possible solution to the problem is to ignore it! One could choose to shift the 
Higgs fields by their tree level vacuum expectation values (provided we did not 
choose a gauge such as (2)) and retain tadpole graphs in higher order calculations 
[5]. This would only work in cases where the vacuum is already determined at the 
tree level, which would preclude the consideration of the Coleman-Weinberg-type 
symmetry breaking, where it is the radiative corrections that lead to the spontaneous 
symmetry breakdown. It would also prevent one examining models in which the 
classical Higgs potential has a larger symmetry than the rest of the lagrangian 
(which gives rise to the so-called pseudo-Goldstone bosons [6]). These, too, require 
the inclusion of one-loop effects to determine the true vacuum. Finally, one might 
also like to check that radiative corrections do not change the minima even in the 
standard case. 

Other solutions that have been advanced are that only in the "physical" unitary 
gauge does the effective potential have any significance [6] and that expressing V in 
terms of renormalized quantities rather than bare ones resolves the problem [7]. 
Alternatively one may work with renormalization group equations rather than the 
effective potential itself [8], or use a modified definition of the effective potential 
which is automatically gauge invariant [9,10]. The correct approach when dealing 
with the standard effective potential was, however, first proposed by Nielsen [11], 
and we follow his approach, drawing heavily on the later work of Aitchison and 
Fraser [12]. 

If one considers the effective potential for a gauge theory such as (3) it will 
depend explicitly on ~ and other gauge fixing variables, so we write it as V(~, ~). 
The vacuum is determined by the condition 

3V 
- - 0 ,  ( 5 )  

9e# 

and spontaneous symmetry breaking occurs when (5) has a non-zero solution, say 
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~o(~)" This situation would be gauge invariant if, under a small change in 4, the 
value of V at the minimum (which is after all a physical quantity) remained 
constant; 

V(~o+ 8~o, 4+  84) = V(~ o, 4) = Vmi,- (6) 

We could write this as 

0Vd  0V 
03 ~ d~ + -~- = 0, (7) 

which states that the total differential of V with respect to ~ at the minimum is zero. 
One may derive similar identities for other physical quantities, such as the mass 

of the Higgs particles and the vector mesons and these are considered in [11] and 
[12]. In this paper we shall consider only the identity for the minimum of the 
effective potential itself, but the method applies to the Nielsen identities for the 
other physical quantities, which are obtained by differentiating the effective poten- 
tial identity with respect to the appropriate semi-classical fields. 

Nielsen's remarkable result was to derive, using the BRS [13] invariance of the 
theory, a set of identities of precisely the form above, thus guaranteeing the gauge 
invariance of physical quantities. They were 

OV OV 
+-g{ + = o, (8a) 

oqm 2 Om 2 OV 
~--~-  + C(~, ~ ) - - ~ -  = 0 if -O---~ = 0, (8b) 

where we have denoted the mass of any of the physical particles in the theory by m. 
A similar equation would also apply for physical couplings such as the electromag- 
netic coupling e. The object C(q~, 4) is obtained as an explicit field-theoretic 
expression and could be calculated in some expansion scheme. We note that eq. (Sa) 
exceeds our requirements, as it does not just apply at the minimum of V. Along the 
characteristics of V, the curves in the 3, ~ plane for which 

d~ C(dp, ~) 
d~ (9) 

V is a constant. The beauty of Nielsen's results is that they enable one to calculate 
in closed form the change in 30 that compensates for the gauge variation. 
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2. Derivation ol the Nielsen identities 

We present in this section an alternative derivation of the Nielsen identities which 
is based on the work of Piguet and Sibold [14]. It sets the Nielsen identities in their 
proper context in a group of identities that control the gauge dependence of the 
generating functionals in a gauge theory. The trick we use is to enlarge the BRS 
transforms to act on the gauge parameter as well and to use the auxiliary field 
method of gauge-fixing that was first promoted by Kugo and Ojima [15]. The 
auxiliary field approach has the great advantage (to mathematicians!) of making all 
the BRS transformations nilpotent, which suggests a possible geometric interpreta- 
tion for the BRS variation in terms of exterior derivations. 

Piguet and Sibold introduce a BRS variation on the gauge parameter 4, where e is 
the anticommuting BRS parameter 

8~ = eX , X grassmannian, (10) 

and show that under this extended set of BRS transformations the Slavnov-Taylor 
identity becomes (in a Yang-Mills theory) 

OF 
S ( F )  + X-g-; = 0 ,  (11) 

a t  

where S is the usual Slavnov operator 

S(F) = T r f  d4x 
8F 8F 8 F S F  _ 8F ] 
8p ~' 8A~ + 8--o- 8"-~ + B ~--~- ]. (12) 

In the above o and p~ are sources for the BRS variations of ~k and A~ respectively 
and B is the auxiliary field which allows us to write the gauge-fixing part of the 
lagrangian in the form 

= 7~B + + ½x~*B + a~* D~ Lgf 1 2 B(O,A ' )  . (13) 

One can easily check that this is invariant under the BRS variations 

8A~, = e O,~k, 8~b = 0, 8q~* = eB, 8~ = e X . (14) 

We also note that in the absence of the last transformation and the corresponding 
½x~P*B term in the lagrangian, eliminating B by gaussian integration in the path 
integral (it has no kinetic terms) gives the standard Fermi gauge-fixing, 

1 
L:-- - 2 + oA* (15) 

The effective action precursor of the Nielsen identity is then simply obtained by 
differentiating (13) w.r.t. X and then setting X = 0 (taking care with the sign of 
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anticommuting quantities in the process) 

S - + --~ = 0 .  (16) 

In [1] we showed how to recast the gauge fixing term in the abelian Higgs model 
into a form which is similar to (13) and which is invariant under the new BRS 
variation in (10). We then performed explicitly the steps leading to (16). We show 
below how the method of extended BRS transformations may be used to demon- 
strate the independence of physical quantities from the gauge-fixing vector v in the 
't Hooft gauge. 

In the older approach [12] we would have found that 

OL 
v, Or, ev,•,( a . A "  + e~v,eo,) - e 2 ~ * ~ e i j v i d P j ,  (17) 

which can be generated from the BRS transform of the operator 

0 = e¢*q,i~v i . (18) 

In our approach we introduce the new BRS transform 

~vi = eOi. (19) 

In addition to the usual BRS transforms for the abelian Higgs model, 

8~*  = e B ,  ~ = O, 6B  = O, 8 A ,  = e 0 ~ ,  ~ i  = eee i j~dP j .  (20) 

The Pi have the appropriate group properties but are anticommuting objects. We 
would modify the gauge fixing term to be invariant under this new transformation 

Lgf = -~B1 2 + B (  O~,A~, + e~vi~Pi) + O~,qj. Ol, q~ _ e~t~.pidp i 

--  e 2 ~ * ~ F . i j v i d P j  . (21) 

The Nielsen identity is then, symbolically 

S - + ~ = 0 ,  (22) 

where 

OF 
- ap--T = r ( e * : ~ % )  = r ( o ) .  (23)  
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We can write this explicitly as 

d4x ( 3F 8 G ( z )  &~(x)  + - -  - -  
3F 3F 3F ~ 3F 

3Ki(x) 8~,(x) + B ( x ) ~ )  + pi G = 0 .  (24) 

If we integrate out the auxiliary field we will replace it by its minimum value in the 
exponent of the path integral, which is given by the solution to its equation of 
motion 

OL 
O'--B = ~B + ( O.A ~ + e~viOi). (25) 

Using (25) we can substitute for B in (24) and we find that 

3F fd4x 8~(x)  a ~ ( x )  + - -  
3F 3F 

3Ki(x) 8~i(x ) ~( O~X~(x) + e~vi~i(x)) 8~*(x) 

OF 
dr" Pi"~"- = O.  (26) 

¢70 i 

We now differentiate w.r.t. P and set p = 0 to get the equivalent of (16) 

f d'xd% (ar(O(z)) 
~YAx) °A(x) + 

~r(o(z)) ~r 8r ~r(o(z)) 

~Ki(x ) ~i(x) -~- ~Ki(x~ ~i(x) 

8 r ( o ( z ) )  
1 (o .X . (x )  + e~v,~,(x)) 8~*(x) 

OF 
- - -  = O .  ( 2 7 )  

tgvi 

Specializing to x-independent ~ and setting the other classical fields to zero gives 

av f d,x~r(o(x)) Ov 
Ovi 8K i(O) 00~ 

e~v,~,~ 3F(O(x)) 
f d4xd% 8~*(z) (28) 

This is identical to the result that one obtains in the older approach and, provided 
that vi~ i -- 0 a point discussed in detail in [12], is of the correct form for a Nielsen 
identity. 

We have made no attempt at discussing the renormalizability of the extended 
actions. However, Piguet and Sibold give an extensive discussion of the renormaliz- 
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ability properties of a Yang-Mills theory with the extra terms in the gauge fixing 
and show that the theory is essentially unchanged in comparison with the usual case. 
Similar considerations would apply to the extended actions in our abelian Higgs 
model. 

3. Nielsen identities in the axial gauge 

In order to further demonstrate the utility of the Piguet-Sibold approach we shall 
give a derivation of the Nielsen identities in the axial gauge. There are two points to 
bear in mind for such a derivation: the first is that there are various possible ways of 
implementing an axial gauge in the path integral with gauge fixings of the form 

½~Ba(fab)-lBb + Ba(n~A~a). (29) 

The most obvious choice with fab= __~ab is pathological for ~ 0 because the 
propagator is of the form 

1 [ n~,p~ + n~p~, p~,p~n 2 ~ p~p, p2 ] 
ip ---2 [ g~'" ( n~,p~' ) + -  J (. .p.)2 + (. .p.)2 (30) 

which goes as O(1) for large p2. This invalidates the usual power counting 
arguments used in demonstrating the renormalizability of the theory [16]. Another 
possible choice is the planar gauge with 

1 02] ab 
fob= (31) 

t " 

The propagator takes a particularly simple form in this gauge 

1 [ p~n,,+p~n~,~ (32) 
ip---~ g~,~ n ¢pF, 

We note that the auxiliary field method of gauge-fixing used in (30) would obviate 
the need for Nielsen-Kallosh ghosts if one were working in a background field 
formalism, where lab would be equal to D2(A)'~b/n 2, where D(A) is the back- 
ground field covariant derivative [17,18]. If we had written the gauge fixing in the 
usual form 

2~(n~a~a)fab(n~a~a), (33) 

where a~ is the quantum field, we would have needed to add the terms 

1 a."ab b (34) o~afabo~b + ~'y y "Y , 

where o~ is a complex anticommuting ghost and -/ is a real commuting ghost to 
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reproduce the required dcrd~ factor that ensures the invariance of the measure. 
This is automatically reproduced upon the integration of the B fields. 

The second point to note is that the axial gauges, like the Fermi gauges, will suffer 
from infrared divergences. However, it is argued by Thompson and Wu [16] that 
these may be regulated in the context of dimensional regularization and do not 
affect the veracity of the identities. With the preceding provisions in mind we write 
the gauge-fixing term in the planar gauge for an abelian Higgs model as 

L,f= ½1~B(-n~---i2 )B + B(n~A~) -~*(n~,O~)~b. (35) 

We now choose to extend the set of BRS transforms acting on our lagrangian by 
including 

8~ = eX, 8n~ = ep~, (36) 

where both X and the components of p~ are anticommuting objects. In order to 
maintain the BRS invariance of the gauge fixing term under these new transforma- 
tions we must add the following 

-~Ix~'[\ O 2n2 )B-~'(pI.~AP" ) -~ ' I \O ~ ] (37) 

We now consider separately the change in F under a change in ~ and n,. In the first 
case we have the equation 

OF) OF 
S - -~X + - ~ - = 0  wi th rn~=0 ,  (38) 

and in the second we have 

s( a r l  + ° r  ~-#p~,) 0 n----~ =0  with 8~ = O. (39) 

We find that the corresponding operator insertions are given by 

(40) 

p.~=O - -  n'U" (41) 
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If we now eliminate the auxiliary field B in the usual manner we can see that 

1 ) OF =F - O---X -~k*( n. A~') , (42) 

01"o.=o ( ( #'n°)A°) (43) O& = 1" qJ* g~'° - n--- 5 -  . 

This allows us to obtain the Nielsen identity in its usual form for 

OV _ OV 
~--~- + C(q,, ~)-~-  = 0 .  (8a) 

C is now given by 

i 2 

C(~,')=ihfd4x(OlT(~) [-½~*(x)(n~A~(x))e~(O)eP2(O) 

x exp( hSeer [~,  ~]) ]10) • 

In a similar manner we can write the equation for n~ dependence 

(44) 

with D~ given by 

av av 
8n---~ + D~(~' ~ ) - ~  = 0 ,  (45) 

D"(q,,~)=ih f d4x(OI T -~ g~'°- n----- T- ~/*(x)aO(x)e~b(O)dP2(O) 

xexP(hSen[~ ,~] ) ] [0  ) . (46) 

C and D ~ do not receive any contributions at the one-loop level We note that 
because there is no mixed A/~ propagator in the planar gauge. The two-loop 
contribution is given by a graph of the form fig. 1. 

4. A Nielsen identity for an effective action containing composite operators 

As well as the usual effective action which has a scalar field as its argument one 
might also like to consider a generalization which depends not only on ~(x) but 
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Fig. 1. The two-loop contribution to C. The dotted line represents the ghost propagator, the straight line 
the scalar propagator and the wavy line the gauge boson propagator. 

also on a possible expectation value for T,~(x)q}(y) ,  which we shall call G ( x ,  y) .  

The physical vacuum for such an action would then be given by 

8r[~,a] 8r[~,G] 
= - 0 .  ( 4 7 )  

8~ 8G 

Such a formalism is useful in the study of dynamical symmetry breaking where an 
object such as Tep(x)da(y) may develop a vacuum expectation value [19]. 

To develop the formalism consider (after [19]) the following action with a 
compound source. 

[' J Z [ J , L ] =  f[D~,]exp ~(S[,~] +Jtq,,+ K,Q,+ ½4,iLu,I,j) , (48) 

where we have lapsed into condensed notation and where the Qi's are the BRS 
variations of the fields. 
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More explicitly 

½ei,,L,jq,j = ½ f d4x d4ycbi(x)Lig(X, y)q~j(y). 

We now define W[J, L] by 

w[J,L]= -~hlnZ[J,L] 
and the classical field ~ as 

~W[J,L] 
8g~(x) = ~,,(x). 

We also have the new relation 

aw[g, L] 
,~I.w(x, y) ½[~i(x)~j(y) + hGij(x, Y)]. 

To obtain the effective action we perform the Legendre transform 

rt , G] = w t  J, i,] - f d4xd&(x)Ji(x) - ½ f d4x d4yqJi(x)Lij(x, y)~pj(y) 

- Xhfd4xd4yGij( x, Y)gi(Y,  x). 

(49) 

We observe from the above definition that 

a r  = - 4 ( x ) -  fd'xL,j(x, y)~j(y) ~,,(x) 
8F 

8Gij(x, Y) = - ½hLij(x , Y). 

(50) 

(51) 

(52) 

The standard effective action corresponds to F[¢), G] evaluated at L = 0, or equiv- 
alently Fie), G] for the values of G which satisfy 8F/SG = 0. One may show that 
F[~, G] is the generating functional for 2-particle-irreducible diagrams with lines 
representing hG(x, y) [19] and it can be computed in a similar manner to F[~] by 
considering the vacuum graphs for the shifted lagrangian, but this time retaining 
only the 2PI graphs. 

We now consider our canonical example, the abelian Higgs model, for which we 
can write the generating functional more explicitly as 

i 
Z[J ,L~= f [Dav] ...[D~i]exp[-~ f d4x [L+ Kiet~eij~j+ J~A ~ 

+4,/,, + ¢*n + n*¢ + JaB 

+ l f a4yep~(x)Lij(x, y)4,j(y)]]. (56) 

(55) 

(54) 

(53) 
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We have again chosen the gauge fixing so that it is invariant under the transforma- 
tion 8~ = X. We use the invariance of the measure and gauge-fixed lagrangian under 
a BRS transformation to obtain 

f d4x f[D¢l(J, o"~-n~ + Jie~eijdpj + i f  d4yeq~(x)eneOl(X)Lij(x, y)~j(y) 

+ ~ f d4yet~(y)ejlqai(x)Lij(x, y) dpl (y)) 

x e x p  = ~X 0~ ' (57) 

where B is the auxiliary field and [Dqq denotes the measure for all the fields. To 
express the terms containing L more succinctly we write them as 

where 

e f  d4x(e~lq~(x)epl(x)fil(x))+ef d4y(ejlq~(y)~(y)f](y)), (58) 

f i l ( x )  = f d4yL,j(x, Y)eOj(Y), 

//(y) -- f d"xL~j(x, y)q~i(x). (59) 

We now note that the invariance of the source term containing Lij under the 
exchange of x and y implies that Lij(x, y) = t j i ( Y ,  X), SO f l  and f2  are equal, as 
are both the terms in (58). We can thus rewrite (57) as 

f d4x f[D~](J. ON,-~B+ Jie~Eij~jq- f d4yet~(x)eildOl(X)Lij(x, y)doj(y)) 

xexp ~ S e . [ e , * l  -- 7 x  0~ " 

This may be transformed, as in the standard case, to an operator identity acting 
on Z 

8 ~ ~ h , 4 ~ 8 ~ OZ 
f d% J~O.~. -n~j'~b+J~-~i+--[Jd y ~ i L i j - ~ j ) Z [ J , L ] = x ' o ~  

(61) 
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This translates to the following identity on W, 

fd'/ J.sw 8w ~w f d ,  SW 8W h_f4 82W ) 
8. - - ' ~ b + J i ~ i  + ~-~iLij-~j + t" d yLij'8~iS~. 

9W 
- x  o 4  " 

329 

(62) 

When one Legendre transforms to get the equivalent identity for F the third and 
fourth terms on the 1.h.s. combine by virtue of (54) to give 

( SF 8F 8F 8F fd'x y2-1 o,,,~ + ~ F ~ -  ,,~, 8r ' - - - -  + 2 f d 4 y  d4z ~1~ [ ~21~ I-1 82F ~giS~k 

OF 
= X 0~ (63) 

If one now considers a translationaUy invariant effective potential defined from the 
effective action by 

fv(~, c, ~) = -r[,, e, f ] Itr~sla~ona~,y ~v~a~t 

one finds (symbolically) a Nielsen identity of the following form 

OV OV OV 
e ~  + n(~, a, e ) ~  + fE(~,a, e ) ~  =0, (64) 

where V, D and E are to be calculated from 2PI vacuum graphs with the internal 
lines set equal to hG. The identity shows how both ~ and G change to compensate 
for a change in the gauge parameter and maintain the gauge independence of 
physical quantifies. 
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this work and the Department of Education for Northern Ireland for providing 
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error in an earlier draft. 
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