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1. Introduction 

1.1 Overview 

Parallel computing is an important aspect in computing, as it can reduce the 

time to solve large problems. Skeletons are a common and easy way to do 

parallel computing. In this project we develop and measure two skeletons: 

“ParMap” and “divide and conquer” in parallel and distributed version of Haskell 

[12].  Haskell is de facto standard of functional programming language. GdH 

and GpH are extension of Haskell. Both GdH and GpH provide the ability of 

parallel computing. GpH uses implicit parallelism and GdH uses explicit 

parallelism.  

 

1.2 Contributions 

 

The main contribution of this thesis is to design and implement “ParMap” and 

“divide and conquer” skeletons in GdH to compare their efficiency with other 

skeletons. In “ParMap” skeleton we discuss how and why we optimize the 

simple “ParMap” skeleton. Base on this experience we develop an efficiency 

“divide and conquer” skeleton which avoids the pitfall of the simple “ParMap” 
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skeleton.  

 

We measure both GdH and GpH skeletons and compare them. There are two 

version of “Map” skeletons we develop. They are “GdHParMap” and 

“GdHFarmMap”. To measure these “Map” skeletons we use both regular data 

and irregular data. “GdHFarmMap” get speedup up to 14.34 (irregular data) and 

13.06 (regular data). It is much better than corresponding GpH skeleton which 

get speedup at about 7.47 (irregular data) and 8.8 (regular data). GdH “divide 

and conquer” skeleton also get excellent speedup which is 16.54 in this case. 

Again GdH performance is better than GpH whose “divide and conquer” 

skeleton get speedup at about 8.84.  

 

1.3 Dissertation Outline 

Chapter 2 is a section of background which contains parallel programming, 

parallel computer, parallel Programming Paradigm, skeleton parallelism, 

parallel and distributed programming languages especially GdH and GpH. 

 

Chapter 3 discusses how we implement “GdHParMap”, “GdHFarmMap” and 

“Divide and Conquer” skeleton.  

 

Chapter 4 contains the results of measurement. The result includes regular 
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data results and irregular data results. Then we compare and analysis the 

results. 

 

In Chapter 5 we summary what we have done and what we can do in the future.  
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2 Backgrounds  

In this chapter we discuss some background acknowledgement. First we 

introduce parallel programming and parallel computer in which we define what 

parallelism is. And the following section we introduce two type of parallelism: 

data parallelism and control parallelism. Then we define skeleton parallelism. At 

the end we discuss some programming which includes Haskell, GpH, GdH ,etc  

 

2.1 Parallel Programming 

The processor become faster and faster. No matter how powerful the processor 

is, one-processor computer can not meet the requirement we need. A good 

idea is to use many processors concurrently. The computer, using a set of 

processors to solve computational problem, is named parallel computer. To 

take advantage of parallel computers we need to use parallel programming. 

Parallel programming entails partitioning the problem into smaller problems, 

and scheduling the execution of these smaller sub-programs (processes) onto 

multiple processors in parallel to solve the problem. This section will introduce 

some parallel programming languages, parallelism and design process of 

parallel programming. 
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2.1.1 Parallel Computer 

A parallel computer is a set of processors that are able to work cooperatively to 

solve a computational problem.[9] The model of parallel computer includes 

multicomputer; a distributed-memory MIMD (multiple instruction multiple data) 

computer with a mesh interconnect; a shared-memory multiprocessor, and a 

local area network etc.[9] Here we will discuss “Beowulf” system which is a 

multicomputer.  

 

Figure 2-2-1 Multicomputer 

 

   A multicomputer consists of a number of computers, or nodes, linked by an 

interconnection network. Each computer   executes its own program. This 

program may access local memory and may send and receive messages over 

the network. Messages are used to communicate with other computers or, 

equivalently, to read and write remote memories. In the idealized network, the 

cost of sending a message between two nodes is independent of both node 

Interconnect 

CPU 

Memory 

CPU 

Memory 

CPU 

Memory 
………………

Multicomputer 



 - 10 - 

location and other network traffic, but does depend on message length.[9] 

 

A Beowulf cluster is a collection of personal computer (PCs) interconnected by 

widely available networking technology running any one of several 

open-source Unix-like operating systems.[28] In this project we have a 

“Beowulf” system which contains 32 computers. Each computer has 533MHz 

Celeron processor, 128kB cache, 128MB of DRAM and 5.7GB of IDE disk. 

They are connected through a 100Mb/s fast Ethernet switch with a latency of 

142 us. The operation system is Red Hat 8.0. But we can not guarantee all of 

these computers can always work robustly at all time. So we measure our 

program on up to 16 processors. 

2.1.3 Parallelism 

What is “Parallelism”? Here we list some definition below: 

 

1. “An approach to performing large, complex and/or lengthy tasks that 

involves concurrent operation on multiple processors” [6]. 

2. “Decomposition of a task into smaller tasks to be performed simultaneously, 

i.e. in parallel” [7]. 

3. “Parallelism is the use of similar patterns of words (or grammatical forms) to 

express similar or related ideas or ideas of equal importance” [8]. 
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From the definitions above, we found: 

1. Parallelism is not an object. It is an abstracted methodology or pattern. 

2. A large, complex and/or lengthy task should be decomposed to some 

smaller related tasks. 

3. These tasks could be performed simultaneously. 

4. Parallelism is just the abstracted methodology or pattern to perform the 

point 2 and 3 listed above. 

 

We defined parallelism as “Parallel is the abstracted methodology or pattern 

which decompose large, complex tasks to related smaller tasks and these 

smaller tasks can be run simultaneously”. 

 

There are two levels of parallelism: implicit parallelism and explicit parallelism 

[19]. Implicit Parallelism means a parallel processing system decides 

automatically which parts to run in parallel. In contrast explicit parallelism 

requires programmers annotate his program to indicate which parts should be 

executed as independent parallel tasks.  

 

2.1.4 Design process of parallel programming 

The design process of parallel programming includes four distinct stages: 

Partitioning, Communication, Agglomeration and Mapping. There are three 
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attribute we should think about: Concurrency, Scalability and Locality. 

Concurrency refers to the ability to perform many actions simultaneously; this is 

essential if a program is to execute on many processors. Scalability indicates 

resilience to increasing processor counts and is equally important, as processor 

counts appear likely to grow in most environments. Locality means a high ratio 

of local memory accesses to remote memory accesses (communication); this is 

the key to high performance on multicomputer architectures. [29] 

 

Partitioning: 

 

“The partitioning stage of a design is intended to expose opportunities for 

parallel execution” [9]. This stage focus on “a fine-grained decomposition of a 

problem” [9]. First, programmer find out the data associated with problem. 

Second, programmer determines the right partition for the data. Finally, 

programmer decides how to associate computation with data.  

 

Communication: 

 

As we have talked in parallelism, the tasks generated by partitioning stage are 

related. This means data must be transferred between tasks. “This information 

flow is specified in the communication phase of a design” [9]. There are two 

phases in this stage: 1.We defines channels structure that links the sender and 
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recipient. 2. We specify the message to be sent and received. In [9] 

communication has been classify into four categorize: local/global, 

structured/unstructured, static/dynamic, and synchronous/asynchronous. Local 

communication means each task communicates with a small set of other tasks 

(its “neighbours''); in contrast, global communication requires each task to 

communicate with many tasks. Structured communication refers a task and its 

neighbours form a regular structure, such as a tree or grid; in contrast, 

unstructured communication networks may be arbitrary graphs. In static 

communication, the identity of communication partners does not change over 

time; in contrast, the identity of communication   partners in dynamic 

communication structures may be determined by data computed at runtime and 

may be highly variable. Synchronous communication means producers and 

consumers execute in a coordinated fashion, with producer/consumer pairs 

cooperating in   data transfer operations; in contrast, asynchronous 

communication may require that a consumer obtain data without the 

cooperation of the producer. [29] 

 

Agglomeration 

 

“In the third stage, agglomeration, we move from the abstract toward the 

concrete. We revisit decisions made in the partitioning and communication 

phase with a view to obtaining an algorithm that will execute efficiently on some 
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class of parallel computer” [9]. The number of tasks will be reduced and the 

single task may become greater than before. The goal of this stage is: reducing 

communication cost, retaining flexibility, and reducing software engineering 

costs. 

 

Mapping 

 

“In the fourth and final stage of the parallel algorithm design process, we specify 

where each task is to execute” [9]. To get better performance tasks should be 

able to execute in different processors and communicate frequently on the 

same processor.  

2.2 Parallel Programming Paradigm 

There are many parallel programming paradigms. Data parallelism and control 

parallelism will be introduced. And we will discuss skeleton parallelism later. 

2.2.1 Data Parallelism 

Data parallelism involves performing similar computation on many data objects 

concurrently. It means some code segment runs concurrently on different data 

elements. For example, an operation named “Double” doubles each element in 

an array. One processor deals with the first element in that array. And other 

processor deal with other elements in the array at the same time. The most 
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popular data parallel languages are based on FORTRAN and C [17]. 

 

For instance, the GdHParMap (Chapter 3.1) is a typical example of data 

parallelism. It splits input data list and send them to difference processor to 

evaluate.  

 

Figure 2-2-1 ParMap 

2.2.2 Control Parallelism  

Control parallelism means different operations can be performed 

simultaneously on different processors. It involves: functional decomposition; 

tasks with independent control flow; communication with each other.  

 

Two well-known types of control parallelism are pipelining, in which different 

processors, or groups of processors, operate simultaneously on consecutive 
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stages of a program, and functional parallelism, in which different functions are 

handled simultaneously by different parts of the computer. One part of the 

system, for example, may execute an I/O instruction while another does 

computation, or separate addition and multiplication units may operate 

concurrently. [30] 

2.3 Skeleton Parallelism 

“Within the existing body of parallel algorithms a number of patterns recur 

frequently. These patterns are composed of computations and the interactions 

between them and can be conceptually abstracted from the detail of the 

activities they control. Such abstractions have come to be known as algorithmic 

skeletons or simply as skeletons” [10]. ----The definition of “Skeleton”.  

 

“Skeleton Parallelism” is to use skeleton algorithms as a technique to 

parallelism functional language and program parallel machines.  It can be either 

data or control parallelism. For example, “parMap” (Figure 2-3-1) is a simple 

skeleton which uses data parallelism.  And “Pipeline” [31] is a example of 

control parallelism. (Figure 3-2-2) 

 

parMap :: Strategy b -> (a -> b) -> [a] -> [b] 

parMap strat f xs = map f xs `using` parList strat 

Figure 2-3-1 ParMap Code 
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pipe_naive :: transmissible a => [[a] -> [a] -> [a] 

pipe_naive fs xs = (ppipe fs) # xs 

 

ppipe :: transmissible a => [[a] -> [a]] -> process [a] [a] 

ppipe [f] = process xs -> f xs 

ppipe (f:fs) = process xs -> (ppipe fs) # (f xs) 

Figure 2-3-2 Pipeline Code 

 

2.4 Programming Languages  

2.4.1 Parallel Programming Languages 

There are many parallel programming languages. This is an introduction of 

some typical parallel programming languages. 

 

1. Eden 

Eden is a declarative language for parallel and concurrent programming which 

is defined as an extension of Haskell [1].  

 

2. High Performance FORTRAN (HPF) 

“High Performance Fortran is an informal standard for extensions to Fortran to 
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assist its implementation on parallel architectures, particularly for data-parallel 

computation “[2]. The first version of HPF is HPF 1.0 which developed between 

March 1992 and May 1993 [3]. The latest version is HPF 2.0.  

3. ZPL 

“ZPL is an array programming language designed from first principles for fast 

execution on both sequential and parallel computers” [5]. Foremost ZPL is an 

array programming language. But it is better than traditional array programming 

language for some distinguish characteristics. For example, ZPL has a 

performance model that allows users to know roughly how well their programs 

will run on parallel machines. This property has been pioneered by ZPL in the 

parallel context. [5] 

 

 

2.4.2 Functional Programming 

“Functional Programming is based on the simplest of models, namely that of 

finding the value of an expression” [11]. One of its distinguishing characteristic 

is that it focus on the on the high-level "what" rather than the low-level "how". A 

functional programming is consisted of defining functions and other values. 

 

Given a function named “swap” which swaps two values. We can define it by 

Haskell as below: 



 - 19 - 

-------------------------------------------------------- 

swap :: ( Int, Int ) -> ( Int, Int ) 

swap :: ( a, b ) = ( b, a ) 

-------------------------------------------------------- 

 

We found we don’t need to care how to swap the two values. We just tell system 

what we want. The following code is the same function defined by C/C++. It 

focuses on how we swap the two values. 

 

//swap function by C/C++ 

void swap( int &a, int &b ){ 

  int tmp; 

  tmp = *a; 

  *a = *b; 

  *b = tmp; 

} 

//end swap function 

 

There are lots of functional programming languages. For example, Haskell, 

Lisp, SML etc are functional programming language. We will discuss Haskell 

later. Here we introduced Lisp and SML. 
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Lisp: 

 

“Lisp is a programmable programming language.” –John Foderaro [14]. Lisp is 

the second oldest (high level programming) computer language. (FORTRAN is 

the oldest one.) Lisp was designed by John McCarthy in the late 1950’s. It is a 

strict, dynamically type language. Now lisp has evolved into a family of 

languages. Today Common Lisp and Scheme are most widely used. “In 1994, 

Common Lisp became the first ANSI standard to incorporate object oriented 

programming” [14]. 

 

SML: 

 

“Standard ML is a safe, modular, strict, functional, polymorphic programming 

language with compile-time type checking and type inference, garbage 

collection, exception handling, immutable data types and updatable references, 

abstract data types, and parametric modules ”[13].  

 

The first version of SML was defined in Definition of Standard ML (Milner, Tofte, 

Harper, MIT Press, 1990). The latest version is SML ’97 which was defined in 

The Definition of Standard ML (Revised) (Milner, Tofte, Harper, MacQueen, MIT 

Press, 1997) 
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2.4.2 Haskell 

Haskell is a pure functional computer programming language. “In particular, it is 

a polymorphic typed, non-strict, purely functional language, quite different from 

most other programming languages ”[12]. The features of Haskell are: brevity, 

ease of understanding, no core dumps, and code re-uses strong glue, powerful 

abstractions, and built-in memory management. The latest version is Haskell 

98.  

 

2.5 Parallel and Distributed Functional Programming (GdH and GpH)  

Without any doubt there are many parallel or distributed functional 

programming languages which are being used. E.g. Curry[32], Goffin[33]. In 

this chapter we focus on Glasgow Parallel Haskell (GpH) and Glasgow 

distributed Haskell (GdH). 

 

2.5.1 Glasgow Parallel Haskell (GpH) 

“Glasgow Parallel Haskell (GpH) is a small extension to sequential Haskell that 

executes on multiple processor elements (PEs)”[15]. GpH provides pure 

threads which are non-side-effecting and so perform no I/O.  

 

There are two composition operators in GpH. One is “par” which takes two 
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parameters that are to be evaluated in parallel [21]. The expression a par b has 

the same value as b. The other is “seq” which is a sequential composition 

operator. “par” operator describes which operations should be evaluated in 

parallel. It is not strict in its first argument. The first argument will be sparked. At 

the same time the second will be evaluated by another parallel thread. This 

operator can produce too many small tasks. Sometimes this will not give you 

performance. Another problem is we can not control the order of evaluation. To 

solve these problem “seq” was produced. “seq” defines the order of evaluation. 

Given expression “a ‘seq’ b”, if “a” is not bottom, this expression has the value 

of “b”. Otherwise it has the value of “a”. The corresponding dynamic behavior is 

to evaluate “a” to weak head normal form (WHNF) before returning “b” [21]. 

 

2.5.2 Glasgow distributed Haskell (GdH) 

“Glasgow distributed Haskell (GdH) is intended to provide a high-level 

distributed programming model consisting of a hierarchy of threads – the 

explicitly placed I/O threads of Concurrent Haskell and the Implicit pure threads 

of GpH ”[15]. 

 

To provide a high-level distributed programming model it consist of two classes 

of threads: pure threads and side-effecting I/O threads [22]. The implicit pure 

threads are achieved by using shared variables. It also is introduced and 
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synchronised using parallel and sequential composition. “Explicit 

communication and synchronisation is provided using polymorphic 

semaphores (MVars) within the I/O monad “[22]. Without doubt the MVars has 

been extended for the distributed context to provide explicit synchronisation 

and communication between remote I/O threads. 

 

Four primitive mechanisms were implemented in GdH. They are listed as 

follows: 1. a list of processor element (PE) identifiers. It provides the calls to 

read the existing PE tables held in the runtime system (RTS). 2. A remote 

co-routine operation (revalIO). The revalIO operation encapsulates both remote 

thread creation and the communication of result [22]. 3. A mechanism for 

retrieving the owning PE of an immobile object. 4. Distributed exception 

handling. 

 

2.5.3 Relationship among GpH, GdH and GHC 

 

“Haskell is the de facto standard non-strict functional language and the 

Glasgow Haskell Compiler (GHC) is arguably the best non-strict Haskell 

implementation” [15]. Glasgow Haskell Compiler (GHC) not only implements 

Haskell 98 but also supports concurrency and exceptions for Concurrent 

Haskell. So the version, which base on GUM RTS, supports parallelism and a 
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shared heap across multiple PEs for GpH. Meanwhile GdH is a minimal 

superset of the GpH and Concurrent Haskell languages. 

The relationship between GpH, Concurrent Haskell, and GdH is shown as 

follow: 

 

Figure 2-5-1 Relationship of GdH, GpH and GHC 
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3 Designing and Implementing Skeletons 

To investigate the use of explicit coordination in Glasgow distributed Haskell 

(GdH) for constructing parallel skeletons, we implement two skeletons: 

“ParMap” and “Divide and Conquer” using GdH. In theory, GdH should get 

better performance than GpH which use implicit parallelism. We choose 

corresponding GpH skeletons to measure and compare with GdH skeletons. 

The GpH skeletons we chose are parMap, chunkMap and divConq which you 

can find them in [34]. We also implement a GpH skeleton which tries to use 

explicit parallelism. From this program we can know what performance we can 

get if we use explicit parallelism over implicit parallelism. In the following section 

we just explain GpH program briefly. For detail you can find in [34].  

3.1 ParMap 

The first skeleton we developed is “map”. In a map, each data item appearing 

onto the input stream is split into its basic components, each one of the 

components is processed using a function “f”, which performs computing over 

the basic component, and finally the computed components are re-assembled 

into a data structure to the original one.  

 

The whole process of map skeleton is explained as follow: 

 

Given the “map f xs” has the type: a vector stream -> b vector stream 
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Assumes the function “f” has type: a -> b 

Provided that the input stream is xn: …: x1: x0 

 

GpH 

GpH ParMap simply use “par” to evaluate first data on one PE and then 

evaluate the rest data concurrently. The core code is listed below: 

parMap f (x:xs) = fx `par` fxs `seq` (fx:fxs) 

  where 

    fx = f x 

    fxs = parMap f xs 

 

The simple GpH ParMap above produces too many communications when 

number of processors is equal or more than 2. If we can force one processor to 

evaluate more data we can reduce a lot of communication. “chunkMap” is just 

the function that we can specify how many data to be evaluate once on a 

processor. The usage is listed as follow: 

chunkMap 6 rnf fib (replicate 100 30) 

 

GdH 

First the input stream is split into basic components: xn… x1, x0. Then each of 

components is sent to a worker to be evaluated. At the end the computed 

components are re-assembled into original data structure. The figure 3-1-1 
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shows the behavior of map. 

 

Figure 3-1-1 GdHParMap Behavior 

The core GdH source code is explained as follow: 

First we get all processors’ ID. If there is only one processor we will evaluate 

input stream by sequence map function and return results. Otherwise we will 

evaluate it in parallel as follow:  

--we define how the data will be evaluated on remote processor and save result 

into an MVar value: 

let remote te mVar = do 

  put mVar mVar te `demanding` rnf te 

  return () 

--we build a list of PEId whose length is as same as the length of input stream. 

Let ips = repeatPE (length ls) ps 

--we also build a list of MVar whose length is as same as the length of input 

stream. And the list of MVar will be stored in an MVar value. They store each 
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result. So we can fetch them from the MVar value later. 

createMVarList (length ls) mList 

ms <- takeMVar mList 

--combine all elements and create remote tasks on remote processors. 

Let zs = zip3 ips ls ms 

Let work (pe,ts,mVar) = do 

     Let te = f ts 

     rforkIO (remote te mVar) pe 

mapMV work zs 

--At the end we fetch each result and return. 

Rs <- getResult ms 

Return rs 

 

In order to reduce the number of communication we develop another map 

skeleton named “FarmMap”. As what we said, if there are n basic components 

this skeleton needs n workers to evaluate input stream. In this project we use 

Beowulf Systems to evaluate our skeletons. A Beowulf is a collection of 

personal computers (PCs) interconnected by widely available networking 

technology running any one of several open-source Unix-like operating 

systems[28]. So the communication between two processors is network 

communication. This type of communication is very expensive. It would be 

better if we could reduce this communication. For this reason we developed a 
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Farm Map skeleton. The whole process is explained as follow: 

 

Given the “map f xs” has the type: a vector stream -> b vector stream 

Assumes the function has type: a -> b 

Provided that the input stream is xn: …: x1: x0 

Assumes the number of processor(s) is m 

 

First we divide input data into m chunks. If the number of components is less 

than m there will be (n-m) empty chunk(s). When (mod n m) equals 0 each 

chunk contains n/m components. Otherwise the last chunk contains n-n/(m-1) 

components and other chunks contain n/(m-1) components. Each chunk is 

treated as a task and is picked by a worker. Because the number of processor(s) 

equals tasks’ number the communication’s scale in proportion to the amount of 

processors. Normally there are m*2 communications (send and receive) in 

Farm Map skeletons. If n>>m we can reduce a large number of 

communications.  
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Figure 3-1-2 GdHFarmMap Behavior 

The core GdH source code is explained as follow: 

--we get the number of available processors first. We assume there are n 

processors. The input stream will be split into n chunks.  

ps <- allPEId 

let n = length ps 

let ts = unshuffle n ls    

--defines the remote te and prepare MVar values list 

let remote te mVar = do  

  putMVar mVar te `demanding` rnf te 

  return () 

mList <- newEmptyMVar 

createMVarList n mList 

ms <- takeMVar mList 

Task 1 

Task m 

Input Output 

Worker 1 

Worker m 
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--combine elements and evaluate data in parallel 

let zs = zip3 ps ts ms 

let work (pe,ts,mVar) = do 

  let te = map f ts 

  rforkIO (remote te mVar) pe 

mapMV work zs 

--get result. Now the result is not the original data structure 

rs <- getResult ms 

--reassemble the result to original data structure and return it 

return (shuffle rs) 

3.2 Divide and Conquer 

The second skeleton we developed is “Divide and Conquer” skeleton. This 

skeleton is a data-parallel and nested skeleton. The simple divide and conquer 

skeleton is to divide problem into two (or more than two) sub-problem if it can be 

divided. And the sub-problem will be divided into other two (or more than two) 

sub-problem if it can be divided again. This action will be processed until it can 

not be divided. Then all the lowest level sub-problem will be evaluated in 

parallel. The results will be transmitted to upper level and be combined by 

“Conquer” which is defined by user.  This action will be repeated until the all 

problems have been computed. Figure 3-2-1 shows how the problem is to be 

divided. Figure 3-2-2 shows how the results are to be return and be combined. 
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In our project we use this skeleton to evaluate “Fib n”. As a result each data will 

be spitted into two parts (“n-1”, “n-2”) if it can be spitted. In GdH one part will be 

evaluated on original processor and another part will be evaluated on other 

processor. Figure 3-2-3 shows one possible distribution. In GpH we can not 

specify which processor we should use. The only thing we could do is to tell 

system that we want these tasks to be evaluated in parallel. In order to avoid 

extra network communication we add a condition over whether the data can be 

Figure 3-2-1 DC Divide 

Figure 3-2-2 DC Conquer 
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further divided or not. If there is one or more than one free processors it means 

the data can be divided. Otherwise the data can not be divided. 

 

 

 

 

 

 

 

The core GdH source code is explained as follow: 

--There are two important function in our divide and conquer skeleton. One is 

“divConq”, the other is “divConqToIP”. “divConq” is the main function which 

should be used by users. “divConqToIP” is the function to implement parallelism. 

“divConq” creates some necessary values and sends them to “divConqToIP” 

when it invokes “divConqToIP”. "divConqToIP” does nested actions to compute 

data in parallel. It decides which processor can be used to evaluate 

sub-problem from a PEId list. It will delete the PEId from that list if 

“divConqToIP” decides to use this processor. Or it will evaluate data in 

sequence if there is no more free processor or the data can not be divided.  

--we define pFib which uses divide and conquer skeleton to evaluate “fib n” 

function. 

pFib :: Int -> IO Int 

PE2 

PE1 

PE1 

PE3 PE1 

PE2 

PE4 

Figure 3-2-3 GdHDC Divide 
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pFib n = divConq fib n threshold conq divide 

     where  

     --If n<=30 we evaluate it in sequence. 

     threshold n = n <= 30 

     --The way we divide the data. 

     divide n = (n-1, n-2) 

     --The definition of conquer 

     conq l r = l + r + 1 

--some source code in “divConqToIP” function 

--Create two Mvar values to store the divided sub-problem’s result 

mL <- newEmptyMVar 

mR <- newEmptyMVar 

--Here we run the two divided sub-problems 

right mR (head nextPEl) 

left mL 

--Waits for the result 

mrsR <- takeMVar mR 

mrsL <- takeMVar mL 

--Combines the two results  

let te = conquer mrsL mrsR 

putMVar mrs te `demanding` rnf te 

return () 
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where 

 (lt,rt) = divide arg 

 left ml = do 

  --evaluate one part on original processor 

  divConqToIp f lt threshold conquer divide mPEs mAllPE ml 

  --evaluate another part on other processor 

  right mr nextPE = do 

  rforkIO (divConqToIp f rt threshold conquer divide mPEs mAllPE mr) 

nextPE 
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4. Evaluating Skeletons 

In this chapter we discuss how we evaluate our skeleton: we evaluate “Map” 

skeleton with regular data and irregular data. And we use “fib 42” to evaluate 

“divide and conquer” skeleton. We list all result and build speedup graph. At the 

end we compare and analysis these results. 

4.1 ParMap 

 

To evaluate these skeletons we chose regular data and irregular data and the 

function is the Fibonacci (fib) function. The reasons we chose this data and 

function are below: The “fib” function is a well-known and very simple function. 

The key reason we chose this function is it can consume a long CPU time in a 

simple way.  To evaluate parallelism, regular data can give us reliable result. On 

the other hand irregular data always occurs in real world. So we chose both 

regular data and irregular data to evaluate skeletons. As we said the 

communication between two processors is very expensive. This 

communication can not be avoided in parallel computing. So the smaller ratio 

which the communications occupy in the whole process the better result we can 

get. The work could not be too small. As a result we chose “fib 30” for regular 

data and chose “fib x (25<x<32) “for irregular data. The scale of tasks can not 

be too small. For this reason we chose 100 tasks.  
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For each skeleton we evaluate it many times and record all results. We have 

two steps to choose final result: First we abandon all extreme results. For 

example, if we got 5 results: 50s, 10s, 48s, 120s and 51s, we will abandon two 

bad results (10s and 120s). They occur by accident and are not common results. 

Secondly we choose the median. In this case “50s” will be our final result. 

 

4.1.1 Regular Data 

As we said we evaluate the skeletons many times. And record all result. At the 

end the final result is chosen after two steps. The “GdHWorkPool” designed by 

Dr Robert. The “GpHShuMap” which is given in Appendix A5 is poorly designed 

GpH skeleton. We also evaluate them as contrast. 

 

The final results are below: 

PEs 

Skeletons 

1 2 4 8 16 

GpHParMap 176.76 227.63 128.73 36.30 20.69 

GpHChunkMap 170.36 69.75 42.45 33.31 19.35 

GdHParMap 140.75 140.57 65.67 32.61 16.08 

GdHFarmMap 143.11 72.90 36.80 19.76 10.96 

GdHWorkPool 107.92 57.69 28.63 14.53 8.64 

GpHShuMap 168.45 113.86 56.32 33.18 40.2 

Table 4-1-1 Regular Data Measurement 



 - 38 - 

0

50

100

150

200

250

1 PEs 2 Pes 4 Pes 8 Pes 16 Pes

GpHParMap
GpHChunkMap
GdHParMap
GdHFarmMap
GdHWorkPool
GpHShuMap

Figure 4-1-1 Regular Data Measurement 

 

The following table and figure are speedup result. It bases on the runtime result. 

If we assume the runtime results are R1, R2 … Rn. Then speedup result will be 

Xn=R1/Rn. 

 

 

 

 

 

 

 

Replicate 100 30 
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The speedup: 

PEs 

Skeletons 

1 2 4 8 16 

Ideal 1 2 4 8 16 

GpHParMap 1 0.78 1.37 4.87 8.54 

GpHChunkMap 1 2.44 4.01 5.11 8.8 

GdHParMap 1 1.00 2.14 4.32 8.75 

GdHFarmMap 1 1.96 3.89 7.24 13.06 

GdHWorkPool 1 1.87 3.77 7.43 12.50 

GpHShuMap 1 1.48 3.00 5.08 4.19 

Table 4-1-2 Regular Data Speedup 
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4.1.2 Irregular Data 

The runtime result: 

 

PEs 

Skeletons 

1 2 4 8 16 

GpHParMap 132.31 165.88 97.41 27.65 22.92 

GpHChunkMap 165.48 73.16 38.47 62.30 21.37 

GdHParMap 86.05 76.47 42.96 18.97 8.89 

GdHFarmMap 87.46 42.76 25.00 11.71 6.13 

GdHWorkPool 108.01 57.63 28.63 14.53 8.64 

Table 4-1-3 Irregular Data Measurement 
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Figure 4-1-3 Irregular Data Measurement 
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The speedup results: 

 

PEs 

Skeletons 

1 2 4 8 16 

Ideal 1 2 4 8 16 

GpHParMap 1 0.80 1.36 4.79 5.77 

GpHChunkMap 1 2.26 4.30 2.67 7.74 

GdHParMap 1 1.13 2.00 4.54 9.68 

GdHFarmMap 1 2.05 3.50 7.47 14.34 

GdhWorkPool 1 1.88 3.78 7.44 12.51 

Table 4-1-4 Irregular Data Speedup 
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Figure 4-1-4 Irregular Data Speedup 
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4.1.3 Discussion 

Gdh VS GpH 

From figure 4-1-1 we can find that some GdH skeletons run slower than GpH on 

1 PE. But they always run faster than GpH at 16 PEs. GdH scales much better 

than GpH and the figure 4-1-2 confirms this. As GpH use implicit parallelism, it 

needs extra communications to indicate which processor can be used. In 

contrast GdH uses explicit it does not need that communication. In theory GdH 

should get better performance than GpH. So this result is what we expected. In 

GdH we can specify the processor to evaluate problem. On the other hand, we 

don’t need to worry about which processor we should choose to evaluate our 

problem in GpH. GpH evaluates the problem by implicit parallelism. As a result 

we must do more jobs to select processor for the tasks in GdH. At the same 

time GpH need some time to inquire which processor can be used. But on 1 

processor this communication is lightweight. When the number of processor 

grows to 16, the communication changes to cross processor communication. 

This kind of communication is very expensive. That is why GpH runs faster on 1 

processor and slower on 16 processors.  

 

In the irregular data runtime (Figure 4-1-3) and speedup graphs (Figure 4-2-4) 

we fund that the above conclusion is not always the valid. The reason is the 

different parallelism and the strategy we used. The source data we evaluated is 

chosen from 25 to 33 randomly. To evaluate fib 33 takes much more time than 
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to evaluate fib 25. In GdH, except gdhWorkPool, we only consider the number 

of tasks, not matter how long each task need we evaluate them on the some 

way. The worst situation is: Some heavy tasks are sent to the same processor 

and all other processors have to wait this processor. In GpH system inquires 

which processor can be used. The worst situation above can not happen if each 

task is small enough. The exception is gdhWorkPool. It sends task to processor 

when the processor is free. So the worst situation is avoided.  

 

GpHShuMap (Appendix A5 or A11): 

This function is a poorly designed GpH function. As we said GpH uses implicit 

parallelism. “GpHShuMap” try to use explicit parallelism in GpH. It divides the 

list into some chunks and tries to dump each to one processor. But GpH will 

relocate the task to processors. This behaviour force GpH to do some extra 

communication. This is the reason why GpHShuMap has longer runtime on 16 

processors than on 8 processors. 

Figure 4-1-5 GpHShuMap 
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tasks 
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Ideal PE 

Ideal PE 

Real PE 
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GdHParMap (Appendix A1 or A7) 

We fund that the time ParMap run on 2 processors is so close to the time on 1 

processor. As we said GdH need some expensive communication when 

processors are more than 1.  We define Te as the time to evaluate. Np is 

number of processor. C is cross-processors communication. Ta is total time. 

The time on 1 processor is: Ta = Te. The time on more than 1 processor is: Ta = 

Te/Np + C. If C is close to Te, there is not speedup from 1 processor to 2 

processors. But it has speedup from 2 to N (N>2) processors. As a result 

GdHParMap didn’t get good speedup from 1 to 2 processors. But it runs faster 

and faster when processor is increased. From table 4-1-5 we can see the 

excellent speedup from 2 to 16 processors. (Results base on regular data.) 

 

GdHParMap 2PEs 4PEs 8PEs 16PEs 

Runtime 140.57 65.67 32.61 16.08 

Ideal 1 2 4 8 

Speedup 1 2.14 4.31 8.74 

Table 4-1-5 GdHParMap Speedup 

 

GpHParMap (Appendix A3 or A9) 

GpHParMap is a simple GpH skeleton given in Appendix A3 or A9. When the 

processors increased from 1 to 2 it can have no speedup because of the 

expensive communication. The reason is similar to the same situation of 

GdHParMap. From table 4-1-2 we can see the GpHParMap and GdHParMap 
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get very similar speedup at the end. It does not mean they have similar 

performance. GdHParMap is optimized for 1 processor. GdHParMap does not 

do extra job on 1 processor. It just evaluates the task in sequence.  That is why 

it runs fastest on 1 processor. Compared with GpHParMap, GdHParMap is 

always better on 1 processor all the way to 16 processors. 

 

GpHChunkMap (Appendix A4 or A10) 

For a GpH program it achives good speedup from 1 processor to 2 processors. 

It is benefited from its strategy of evaluation. It divides all tasks into chunks. If 

we define “Nc” as the number of chunks, the total time of evaluation is: Ta = 

Te/Np + C/Nc. So it got good speedup from 1 processor to 2 processors even if 

cross-processors communication is so expensive. At the same time each chunk 

contains some tasks. If the tasks in one chunk are very heavy the other 

processors should wait the processor which evaluates the heavy chunk. This is 

the reason why it can not get good performance when measure irregular data. 

 

GdHFarmMap (Appendix A2 or A8) 

The parallelism of this skeleton is very similar to GpHChunkMap. The 

difference is implicit and explicit controls of work definition. In GdHFarmMap it 

can know how many processors it got. So it can divide all tasks into chunks 

whose number equals the number of processors. It reduces the communication 

as little as notably. As a result it gets the best speedup in regular data. 
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Fortunately it gets the best speedup in irregular data as well. The reason is 

there is no too heavy tasks to be evaluated in one chunk. If one chunk contains 

some heavy tasks GdHFarmMap could not get good speedup.  

 

4.2 Divide and Conquer 

To evaluate this skeleton we also choose “fib” function. After some testing we 

choose “fib 42” to evaluate. The reason is it has a runtime of about 400 seconds. 

The result is listed below: 

 

Runtime result: 

 1PE 2PEs 4PEs 8PEs 16PEs 

GpHDC 361.56 797.70 400* 191.93 40.91 

GdHDC 454.21 282.73 108.61 68.78 27.47 

Table 4-2-1 Divide and Conquer Measurement 
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The speedup results: 

 1PE 2PEs 4PEs 8PEs 16PEs 

GpHDC 1 0.45 0.9 1.88 8.84 

GdHDC 1 1.61 4.18 6.60 16.54 

Table 4-2-2 Divide and Conquer Speedup 
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Figure 4-2-2 Divide and Conquer Speedup 

 

GpHDC 

In our project we evaluate “fib 42”. And we define it divide until “fib 30”. There 

will be at most )3042(2 −  sub-tasks. If there are two processors there would be at 

most )3042(2 − /2 communications. That is why it can not have good speedup on 

two and four processors. From two processors the communications time has 

been reduced as the processors increased. In this case it gets speedup from 8 

processors.  

 

GdHDC  

GdH uses explicit parallelism. So it stops dividing when it meets the 

requirement or there are no more processors. As a result there are very few 



 - 49 - 

communications for each processor. We can see the speedup is so close to 

ideal speedup.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 50 - 

 

5 Conclusion 

In this chapter we summary what we have done and draw conclusion. And then 

we discuss how we can extend our project in the future.  

5.1 Summary 

In chapter 2 we introduce parallel computing, parallelism, skeletons, parallel 

programming languages, Haskell, GpH, and GdH etc. In this chapter we 

defined what parallelism is. We also listed other similar languages. We pointed 

out the relationship of the GdH, GpH and Haskell. Chapter 3 introduced how we 

design and implement the skeletons. In this section we explain how some core 

code works. We listed some core code and add comment with the code. 

Chapter 4 contains the results of measurement. The result includes regular 

data results and irregular data results. Then we compare and analysis the 

results. The skeletons which is implemented in GdH is better than the skeletons 

implemented in GpH. 

 

In Chapter 3 we develop two GdH skeletons which are “map” and “divide and 

conquer”, evaluate them and compare them with the corresponding GpH 

skeletons. As  GdH have more concept than GpH, we find GdH is a little more 

difficult than GpH to implement. But it gives us more flexible controls. In GdH 



 - 51 - 

we can specify which tasks should be evaluated on which processor.  To be a 

good parallel algorithm one of the keys is to reduce communications. For 

example, the “GdHParMap” and the “GpHParMap” produces too many 

communications. As a result, both of them can not get good speedup when 

processors increase from 1 to 2. (See Table 4-1-2 or Table 4-1-4)  

 

5.2 Future work 

To deal with real world problem these two skeletons are not enough. More GdH 

skeletons should be developed. For example, the “Fold” and the “pipeline” are 

well-know and useful.  

 

In “GdHFarmMap” there should be a mechanism to predicate the runtime of 

task. It is dangerous if some heavy tasks are divided into one chunk. In “divide 

and Conquer” it should have a load-balancing algorithm. Otherwise one 

process may be heavily loaded while other are idle.  

 

We can compare them with other parallel functional language skeletons. For 

example Eden.  
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Appendix  

A  Map Skeletons 

A.1: GdHParMap (Regular Data) 

module Main(main) where 

 

import Distributed 

import Strategies 

 

mapMV :: (a->IO b) -> [a] -> IO () 

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result 

 

---------------------------------------------------------------- 

 

createMVarList :: Int -> MVar [MVar a] -> IO () 

createMVarList 0 ms = return () 

createMVarList n ms = do 

  b <- isEmptyMVar ms 

  if (b) 

    then 

   do 
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   mVar <- newEmptyMVar 

   putMVar ms ([mVar]) 

   createMVarList (n-1) ms 

    else 

   do 

   mVar <- newEmptyMVar 

   mVars <- takeMVar ms 

   putMVar ms (mVar:mVars) 

   createMVarList (n-1) ms 

---------------------------------------------------------------- 

getResult :: [MVar a] -> IO [a] 

getResult [] = return [] 

getResult (x:xs) = do  

  rs <- takeMVar x 

  rss <- getResult xs 

  return (rs:rss) 

---------------------------------------------------------------- 

 

repeatPE :: Int -> [a] -> [a] 

repeatPE 0 _ = [] 

repeatPE _ [] = [] 

repeatPE n pes  
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 | n < 0 = pes 

 | (length pes) >= n =pes 

 | otherwise = pes ++ (repeatPE (n - (length pes)) pes) 

--------------------------------------------------------------- 

--parMap 

 

gdhParMap :: NFData b => (a->b) -> [a] -> IO [b] 

gdhParMap f ls =do 

  ps <- allPEId            -- get all the PEs 

  let n = length ps 

  if n < 2  -- only 1 pe 

    then 

   do 

   let rs = map f ls 

   return rs `demanding` rnf rs 

    else 

   do 

   let ips = repeatPE (length ls) ps 

   let remote te mVar = do  

    putMVar mVar te `demanding` rnf te 

    return () 

   mList <- newEmptyMVar 
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   createMVarList (length ls) mList 

   ms <- takeMVar mList 

   let zs = zip3 ips ls ms 

   let work (pe,ts,mVar) = do 

     let te = f ts 

     rforkIO (remote te mVar) pe 

   mapMV work zs 

   rs <- getResult ms 

   return rs 

     

-- -------------------------------------------------------------------- 

fib :: Int -> Int 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2) + 1 

 

----------------------------------------------------------------------- 

 

main = do 

 rs <- gdhParMap fib (replicate 100 30) 

 print rs 
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A.2: GdHFarmMap (Regular Data) 

module Main(main) where 

 

import Distributed 

import Strategies 

 

mapMV :: (a->IO b) -> [a] -> IO () 

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result 

 

--------unshuffle function--------------------- 

unshuffle :: Int -> [a] -> [[a]] 

unshuffle n [] = replicate n [] 

unshuffle n xs 

          | len < n = map (:[]) xs ++ replicate (n-len) [] 

          | otherwise = zipWith (:) (take n xs) xss 

                      where xss = unshuffle n (drop n xs) 

                            len = length xs 

 

--------shuffle function----------------------- 

shuffle :: [[b]] -> [b] 

shuffle [] = [] 

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss) 
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            where nonEmptyxss = filter (not.null) xss 

 

---------------------------------------------------------------- 

 

createMVarList :: Int -> MVar [MVar a] -> IO () 

createMVarList 0 ms = return () 

createMVarList n ms = do 

  b <- isEmptyMVar ms 

  if (b) 

    then 

   do 

   mVar <- newEmptyMVar 

   putMVar ms ([mVar]) 

   createMVarList (n-1) ms 

    else 

   do 

   mVar <- newEmptyMVar 

   mVars <- takeMVar ms 

   putMVar ms (mVar:mVars) 

   createMVarList (n-1) ms 

---------------------------------------------------------------- 

getResult :: [MVar a] -> IO [a] 
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getResult [] = return [] 

getResult (x:xs) = do  

  rs <- takeMVar x 

  rss <- getResult xs 

  return (rs:rss) 

----------------------------------------------------------------- 

--farm 

 

gdhFarmMap :: NFData b => (a->b) -> [a] -> IO [b] 

gdhFarmMap f ls =do 

  ps <- allPEId              -- get all the PEs 

  let n = length ps 

  let ts = unshuffle n ls   -- build up a list of task lists 

  let remote te mVar = do  

    putMVar mVar te `demanding` rnf te 

    return () 

  mList <- newEmptyMVar 

  createMVarList n mList 

  ms <- takeMVar mList 

  let zs = zip3 ps ts ms 

  let work (pe,ts,mVar) = do 

    let te = map f ts 
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    rforkIO (remote te mVar) pe 

  mapMV work zs 

  rs <- getResult ms 

  return (shuffle rs) 

     

-- -------------------------------------------------------------------- 

fib :: Int -> Int 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2) + 1 

 

----------------------------------------------------------------------- 

 

main = do 

 rs <- gdhFarmMap fib (replicate 100 30) 

 print rs 

 

A.3: GpHParMap (Regular Data) 

module Main(main) where 

 

import Parallel 
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import Strategies 

 

----------------------------------------------------- 

--fib 

fib :: Int->Int 

fib 0 = 1 

fib 1 = 1 

fib n = f (n-1) + f (n-2) + 1 

 

----------------------------------------------------- 

--main  

main = print ( parMap rnf f (replicate 100 30) ) 

A.4: GpHChunkMap (Regular Data) 

module Main(main) where 

 

import Strategies 

 

------------------------------------------------------------------ 

--chunkMap 

chunkMap :: Int -> Strategy b -> (a->b) -> [a] -> [b] 

chunkMap n strat f xs = map f xs `using` parListChunk n strat 
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------------------------------------------------------------------ 

--fib 

fib :: Int -> Int 

fib 0 = 1 

fib 1 = 1 

fib n = fib(n-1) + fib(n-2) + 1 

 

main =  print (chunkMap 6 rnf fib (replicate 100 30)) 

A.5: GpHShuMap (Regular Data) 

module Main(main) where 

 

import Parallel 

import System 

import Strategies 

 

----------------------------- 

--unshuffle function 

unshuffle :: Int -> [a] -> [[a]] 

unshuffle n [] = replicate n [] 

unshuffle n xs 
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          | len < n = map (:[]) xs ++ replicate (n-len) [] 

          | otherwise = zipWith (:) (take n xs) xss 

                      where xss = unshuffle n (drop n xs) 

                            len = length xs 

 

------------------------------- 

--shuffle function 

shuffle :: [[b]] -> [b] 

shuffle [] = [] 

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss) 

            where nonEmptyxss = filter (not.null) xss 

 

-------- ---------------------------- 

--fibonacci  function 

f :: Int -> Int 

f 0 = 1 

f 1 = 1 

f n = f (n-1) + f (n-2)+ 1 

 

----------------------------------- 

--map function 

shuMap :: (Strategy b) -> Int -> (a->b) -> [a] -> [b] 
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shuMap s _ f [] = [] 

shuMap s 0 f xs = map f xs 

shuMap s 1 f xs = map f xs 

shuMap s n f xs = shuffle (parMap (seqList s) (map f) xn) 

       where 

  xn = unshuffle n xs 

 

---------------------------------- 

--main function 

main = print (shuMap rnf 6 f (replicate 100 30)) 

A.6: GdHWorkPool (Regular Data) 

module Main(main) where 

 

import Distributed 

import MutSig 

import Bounded 

import PrelIOBase (unsafePerformIO) 

import Strategies 

 

import IO 

debug :: String -> IO () 
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debug s = return () 

 

-- -------------------------------------------------------------------- 

--wrapper 

 

data NFData a => Task a =  Task (MVar a) a 

 

parBody :: NFData b => ([Task b] -> IO ()) -> (a->b) -> [a] -> [b] 

parBody way f ls = unsafePerformIO (  

 do 

 debug "parBody" 

 let ms = map f ls         -- the map 

 ts <- mapM newTask ms     -- allocate task for each list item  

 forkIO (way ts)           -- start evaluating all tasks 

 let rs = map waitTask ts  -- method to access each tasks result 

 return rs ) 

 

newTask :: NFData a => a -> IO (Task a) 

newTask l = do 

 m <- newEmptyMVar 

 return (Task m l) 
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doTask :: NFData a => Task a -> IO () 

doTask (Task m v) = do 

 debug "doTask" 

 putMVar m v `demanding` rnf v 

  

waitTask :: NFData a => Task a -> a 

waitTask (Task m _) = unsafePerformIO ( 

 do 

 r <- takeMVar m 

 putMVar m r      -- in case we fetch it again 

 return r ) 

 

mapMV :: (a->IO b) -> [a] -> IO () 

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result 

 

-- -------------------------------------------------------------------- 

--workpool 

 

workPool :: NFData b => (a->b) -> [a] -> [b] 

workPool f ls = parBody way f ls 

 where way ts = do 

  ps <- allPEId               -- get all the PEs 
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  c <- newMutex ts            -- protect the list of tasks 

 

  let getTaskRmt = lock c safe 

   where 

     safe []     = return ([],Nothing) 

     safe (t:ts) = return (ts,(Just t)) 

 

  let pre = 2 

 

  let worker = do 

   b <- newBound pre 

    

   let driver = do 

    jt <- getTaskRmt 

    writeBound b jt 

    case jt of 

      (Just t)  -> driver 

      (Nothing) -> return () 

    

   let slave = do 

    jt <- readBound b 

    case jt of 
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      (Just t) -> do 

     doTask t 

     slave  

      (Nothing) -> return () 

 

   forkIO driver 

   slave 

 

  mapMV (\p -> rforkIO worker p) ps  -- create the workers 

   

-- -------------------------------------------------------------------- 

fib :: Int -> Int 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2)+ 1 

 

----------------------------------------------------------------------- 

 

main = print (workPool fib (replicate 100 30)) 
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A.7: GdHParMap (Irregular Data) 

module Main(main) where 

 

import Distributed 

import Strategies 

 

mapMV :: (a->IO b) -> [a] -> IO () 

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result 

 

---------------------------------------------------------------- 

 

createMVarList :: Int -> MVar [MVar a] -> IO () 

createMVarList 0 ms = return () 

createMVarList n ms = do 

  b <- isEmptyMVar ms 

  if (b) 

    then 

   do 

   mVar <- newEmptyMVar 

   putMVar ms ([mVar]) 

   createMVarList (n-1) ms 

    else 
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   do 

   mVar <- newEmptyMVar 

   mVars <- takeMVar ms 

   putMVar ms (mVar:mVars) 

   createMVarList (n-1) ms 

---------------------------------------------------------------- 

getResult :: [MVar a] -> IO [a] 

getResult [] = return [] 

getResult (x:xs) = do  

  rs <- takeMVar x 

  rss <- getResult xs 

  return (rs:rss) 

---------------------------------------------------------------- 

 

repeatPE :: Int -> [a] -> [a] 

repeatPE 0 _ = [] 

repeatPE _ [] = [] 

repeatPE n pes  

 | n < 0 = pes 

 | (length pes) >= n =pes 

 | otherwise = pes ++ (repeatPE (n - (length pes)) pes) 

--------------------------------------------------------------- 
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--farm 

 

gdhParMap :: NFData b => (a->b) -> [a] -> IO [b] 

gdhParMap f ls =do 

  ps <- allPEId            -- get all the PEs 

  let n = length ps 

  if n < 2  -- only 1 pe 

    then 

   do 

   let rs = map f ls 

   return rs `demanding` rnf rs 

    else 

   do 

   let ips = repeatPE (length ls) ps 

   let remote te mVar = do  

    putMVar mVar te `demanding` rnf te 

    return () 

   mList <- newEmptyMVar 

   createMVarList (length ls) mList 

   ms <- takeMVar mList 

   let zs = zip3 ips ls ms 

   let work (pe,ts,mVar) = do 
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     let te = f ts 

     rforkIO (remote te mVar) pe 

   mapMV work zs 

   rs <- getResult ms 

   return rs 

     

-- -------------------------------------------------------------------- 

fib :: Int -> Int 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2) + 1 

 

----------------------------------------------------------------------- 

 

main = do 

 rs <- gdhParMap fib dataL 

 print rs 

 where 

    dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 

31, 

                25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29, 

                29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25, 
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                27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21, 

                26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 

                26, 26, 27, 31, 29, 25, 28] 

A.8: GdHFarmMap (Irregular Data) 

module Main(main) where 

 

import Distributed 

import Strategies 

 

mapMV :: (a->IO b) -> [a] -> IO () 

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result 

 

--------unshuffle function--------------------- 

unshuffle :: Int -> [a] -> [[a]] 

unshuffle n [] = replicate n [] 

unshuffle n xs 

          | len < n = map (:[]) xs ++ replicate (n-len) [] 

          | otherwise = zipWith (:) (take n xs) xss 

                      where xss = unshuffle n (drop n xs) 

                            len = length xs 
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--------shuffle function----------------------- 

shuffle :: [[b]] -> [b] 

shuffle [] = [] 

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss) 

            where nonEmptyxss = filter (not.null) xss 

 

---------------------------------------------------------------- 

 

createMVarList :: Int -> MVar [MVar a] -> IO () 

createMVarList 0 ms = return () 

createMVarList n ms = do 

  b <- isEmptyMVar ms 

  if (b) 

    then 

   do 

   mVar <- newEmptyMVar 

   putMVar ms ([mVar]) 

   createMVarList (n-1) ms 

    else 

   do 

   mVar <- newEmptyMVar 

   mVars <- takeMVar ms 
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   putMVar ms (mVar:mVars) 

   createMVarList (n-1) ms 

---------------------------------------------------------------- 

getResult :: [MVar a] -> IO [a] 

getResult [] = return [] 

getResult (x:xs) = do  

  rs <- takeMVar x 

  rss <- getResult xs 

  return (rs:rss) 

----------------------------------------------------------------- 

--farm 

 

gdhFarmMap :: NFData b => (a->b) -> [a] -> IO [b] 

gdhFarmMap f ls =do 

  ps <- allPEId              -- get all the PEs 

  let n = length ps 

  let ts = unshuffle n ls   -- build up a list of task lists 

  let remote te mVar = do  

    putMVar mVar te `demanding` rnf te 

    return () 

  mList <- newEmptyMVar 

  createMVarList n mList 
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  ms <- takeMVar mList 

  let zs = zip3 ps ts ms 

  let work (pe,ts,mVar) = do 

    let te = map f ts 

    rforkIO (remote te mVar) pe 

  mapMV work zs 

  rs <- getResult ms 

  return (shuffle rs) 

     

-- -------------------------------------------------------------------- 

fib :: Int -> Int 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2) + 1 

 

----------------------------------------------------------------------- 

 

main = do 

 rs <- gdhFarmMap fib dataL 

 print rs 

 where 

    dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 
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31, 

                25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29, 

                29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25, 

                27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21, 

                26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 

                26, 26, 27, 31, 29, 25, 28] 

A.9: GpHParMap (Irregular Data) 

module Main(main) where 

 

import Parallel 

 

 

------------------------------------------ 

--fib 

fib :: Int -> Int 

fib 0 = 1 

fib 1 = 1 

fib n = fib(n-1) +fib(n-2) +1 

 

---------------------------------------- 

-- map function 
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parMap :: (a->b) -> [a] -> [b] 

parMap f [] = [] 

parMap f (x:xs) = fx `par` fxs `seq` (fx:fxs) 

  where 

    fx = f x 

    fxs = parMap f xs 

 

---------------------------------------- 

-- main function 

main = print ( parMap f dataL ) 

       where 

  dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 31, 

   25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29, 

   29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25, 

   27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21, 

   26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 26, 26, 27, 31, 29, 25, 28] 

A.10: GpHChunkMap (Irregular Data) 

module Main(main) where 

 

import Strategies 
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chunkMap :: Int -> Strategy b -> (a->b) -> [a] -> [b] 

chunkMap n strat f xs = map f xs `using` parListChunk n strat 

 

fib :: Int -> Int 

fib 0 = 1 

fib 1 = 1 

fib n = fib(n-1) + fib(n-2) + 1 

 

main =  do 

 let tmp =  chunkMap 6 rnf fib dataL 

 print tmp 

 where 

   dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 31, 

    25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29, 

    29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25, 

    27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21, 

    26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 26, 26, 27, 31, 29, 25, 28] 

A.11: GpHShuMap (Irregular Data) 

module Main(main) where 

 

import Parallel 
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import System 

import Strategies 

 

----------------------------- 

--unshuffle function 

unshuffle :: Int -> [a] -> [[a]] 

unshuffle n [] = replicate n [] 

unshuffle n xs 

          | len < n = map (:[]) xs ++ replicate (n-len) [] 

          | otherwise = zipWith (:) (take n xs) xss 

                      where xss = unshuffle n (drop n xs) 

                            len = length xs 

 

------------------------------- 

--shuffle function 

shuffle :: [[b]] -> [b] 

shuffle [] = [] 

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss) 

            where nonEmptyxss = filter (not.null) xss 

 

------------------------------------ 

--fibonacci  function  
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fib :: Int -> Int 

fib 0 = 1 

fib 1 = 1 

fib n = f (n-1) + f (n-2) 

 

----------------------------------- 

--map function 

shuMap :: (Strategy b) -> Int -> (a->b) -> [a] -> [b] 

shuMap s _ f [] = [] 

shuMap s 0 f xs = map f xs 

shuMap s 1 f xs = map f xs 

shuMap s n f xs = shuffle (parMap (seqList s) (map f) xn) 

       where 

  xn = unshuffle n xs 

 

---------------------------------- 

--main function 

main =  print shuMap rnf 6 f dataL 

 where 

   dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 31, 

    25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29, 

    29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25, 



 - 84 - 

    27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21, 

    26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 26, 26, 27, 31, 29, 25, 28] 

A.12: GdHWorkPool (Irregular Data) 

module Main(main) where 

 

import Distributed 

import MutSig 

import Bounded 

import PrelIOBase (unsafePerformIO) 

import Strategies 

 

import IO 

debug :: String -> IO () 

debug s = return () 

 

-- -------------------------------------------------------------------- 

--wrapper 

 

data NFData a => Task a =  Task (MVar a) a 

 

parBody :: NFData b => ([Task b] -> IO ()) -> (a->b) -> [a] -> [b] 
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parBody way f ls = unsafePerformIO (  

 do 

 debug "parBody" 

 let ms = map f ls         -- the map 

 ts <- mapM newTask ms     -- allocate task for each list item 

 forkIO (way ts)           -- start evaluating all tasks 

 let rs = map waitTask ts  -- method to access each tasks result 

 return rs ) 

 

newTask :: NFData a => a -> IO (Task a) 

newTask l = do 

 m <- newEmptyMVar 

 return (Task m l) 

 

doTask :: NFData a => Task a -> IO () 

doTask (Task m v) = do 

 debug "doTask" 

 putMVar m v `demanding` rnf v 

  

waitTask :: NFData a => Task a -> a 

waitTask (Task m _) = unsafePerformIO ( 

 do 
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 r <- takeMVar m 

 putMVar m r      -- in case we fetch it again 

 return r ) 

 

mapMV :: (a->IO b) -> [a] -> IO () 

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result 

 

-- -------------------------------------------------------------------- 

--workpool 

 

workPool :: NFData b => (a->b) -> [a] -> [b] 

workPool f ls = parBody way f ls 

 where way ts = do 

  ps <- allPEId               -- get all the PEs 

  c <- newMutex ts            -- protect the list of tasks 

 

  let getTaskRmt = lock c safe 

   where 

     safe []     = return ([],Nothing) 

     safe (t:ts) = return (ts,(Just t)) 

 

  let pre = 2 
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  let worker = do 

   b <- newBound pre 

    

   let driver = do 

    jt <- getTaskRmt 

    writeBound b jt 

    case jt of 

      (Just t)  -> driver 

      (Nothing) -> return () 

    

   let slave = do 

    jt <- readBound b 

    case jt of 

      (Just t) -> do 

     doTask t 

     slave  

      (Nothing) -> return () 

 

   forkIO driver 

   slave 
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  mapMV (\p -> rforkIO worker p) ps  -- create the workers 

   

-- -------------------------------------------------------------------- 

fib :: a -> b 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2) 

 

----------------------------------------------------------------------- 

 

main = print (workPool fib (replicate 100 30)) 

 

B Divide and Conquer Skeletons 

B.1 GpHDC 

module Main(main) where 

 

import Strategies 

 

----------------------------------------------------------- 

--GpHDC 
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divConq :: (a->b) -> a -> (a->Bool) -> (b->b->b) -> (a->Bool) -> (a->(a,a)) ->b 

divConq f arg threshold conquer divisible divide 

  | not (divisible arg) = f arg 

  | otherwise = conquer left right `using` strategy 

 where 

     (lt,rt) = divide arg 

     left    = divConq f lt threshold conquer divisible divide 

     right   = divConq f rt threshold conquer divisible divide 

     strategy= \_ -> if threshold arg 

    then (seqPair rwhnf rwhnf) $ (left,right) 

    else (parPair rwhnf rwhnf) $ (left,right) 

 

-------------------------------------------------------------------------- 

--fib 

fib :: Int -> Int 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2) 

 

------------------------------------------------------------------------ 

--pfib 

pfib :: Int -> Int 
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pfib n = divConq fib n threshold conq divisible divide 

 where 

   threshold n = n <= 30 

   divide n    = (n-1, n-2) 

   divisible n = n > 30   

   conq m n = m + n + 1 

 

main = print (pfib 42) 

B.2 GdHDC 

module Main(main) where 

 

import Distributed 

import Strategies 

---------------------------------------------------------------------------------- 

--fib 

fib :: Int -> Int 

fib 1 = 1 

fib 2 = 1 

fib n = fib (n-1) + fib (n-2) + 1 

---------------------------------------------------------------------------------- 

--getNextPE 
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getNextPE :: MVar [PEId]-> IO [PEId] 

getNextPE mv = do 

 ms <- takeMVar mv 

 if length ms < 1 

   then 

  do 

  putMVar mv [] 

  return [] 

   else 

  do 

         let headPE = head ms  

         let ms1 =  drop 1 ms 

         putMVar mv ms1 

         return (headPE:[]) 

---------------------------------------------------------------------------------- 

--divConqToIp 

divConqToIp ::  NFData b => (a->b) -> a -> (a->Bool) -> (b->b->b) -> (a->(a,a)) 

-> MVar [PEId] -> MVar [PEId] -> MVar b ->IO ()  

divConqToIp f arg threshold conquer divide mPEs mAllPE mrs 

  | threshold arg =do 

     let rs = f arg 
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     putMVar mrs rs `demanding` rnf rs 

     return () 

  | otherwise = do 

   nextPEl <- getNextPE mPEs 

   if length nextPEl < 1 

     then 

    do 

    let rs = f arg 

    putMVar mrs rs `demanding` rnf rs 

    return () 

     else 

    do 

    mL <- newEmptyMVar 

    mR <- newEmptyMVar 

    right mR (head nextPEl) 

    left mL 

           mrsR <- takeMVar mR 

                         mrsL <- takeMVar mL  

    let te = conquer mrsL mrsR 

    putMVar mrs te `demanding` rnf te 

    return () 

    where 
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    (lt,rt) = divide arg 

    left ml = do 

     sfPE <- myPEId 

     divConqToIp f lt threshold conquer divide mPEs mAllPE ml 

    right mr nextPE = do 

     rforkIO (divConqToIp f rt threshold conquer divide mPEs 

mAllPE mr) nextPE 

---------------------------------------------------------------------------------- 

--deleOwn 

 

delOwn :: Eq a => a -> [a] -> [a] 

delOwn own items  

 | length items < 1 = [] 

 | otherwise = 

  if((head items) == own) 

    then 

   drop 1 items 

    else 

   delOwn own ((tail items) ++  (take 1 items)) 

 

---------------------------------------------------------------------------------- 

--divConq 
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divConq :: NFData b => (a->b) -> a -> (a->Bool) -> (b-> b-> b) -> (a->(a,a)) ->IO 

b 

divConq f arg threshold conquer divide  

  | threshold arg = do 

      return (f arg) 

  | otherwise = do 

      ps <- allPEId 

      myPE <- myPEId 

      let psb = delOwn myPE ps 

        mPEs <- newEmptyMVar 

      mAllPE <- newEmptyMVar 

      mrs <- newEmptyMVar 

         putMVar mPEs psb 

      putMVar mAllPE ps 

          rforkIO (divConqToIp f arg threshold conquer divide mPEs mAllPE 

mrs) myPE 

      rs <- takeMVar mrs 

          return rs 

------------------------------------------------------------------------------------------------------- 

--pFib 

pFib :: Int -> IO Int 



 - 95 - 

pFib n = divConq fib n threshold conq divide 

     where  

     threshold n = n <= 30 

     divide n = (n-1, n-2) 

     conq l r = l + r + 1 

------------------------------------------------------------------------------------------------------ 

 

main = do 

 rs <- pFib 42 

 print rs 


