
 - 1 -

List of Table ..3
List of figure...4
1. Introduction ...5

1.1 Overview...5
1.2 Contributions ..5
1.3 Dissertation Outline ..6

2 Backgrounds..8
2.1 Parallel Programming ...8

2.1.1 Parallel Computer...9
2.1.3 Parallelism ...10
2.1.4 Design process of parallel programming .. 11

2.2 Parallel Programming Paradigm ...14
2.2.1 Data Parallelism..14
2.2.2 Control Parallelism ...15

2.3 Skeleton Parallelism..16
2.4 Programming Languages ..17

2.4.1 Parallel Programming Languages ...17
2.4.2 Functional Programming ...18
2.4.2 Haskell ...21

2.5 Parallel and Distributed Functional Programming (GdH and GpH).................................21
2.5.1 Glasgow Parallel Haskell (GpH)...21
2.5.2 Glasgow distributed Haskell (GdH) ...22
2.5.3 Relationship among GpH, GdH and GHC ..23

3 Designing and Implementing Skeletons ..25
3.1 ParMap..25
3.2 Divide and Conquer ..31

4. Evaluating Skeletons ...36
4.1 ParMap..36

4.1.1 Regular Data ...37
4.1.2 Irregular Data ..40
4.1.3 Discussion ...42

4.2 Divide and Conquer ..46
5 Conclusion ...50

5.1 Summary...50
5.2 Future work...51

Reference ..52
Appendix..55
A Map Skeletons ...55

A.1: GdHParMap (Regular Data) ...55
A.2: GdHFarmMap (Regular Data) ..59
A.3: GpHParMap (Regular Data) ...62
A.4: GpHChunkMap (Regular Data) ..63
A.5: GpHShuMap (Regular Data) ..64
A.6: GdHWorkPool (Regular Data)..66

 - 2 -

A.7: GdHParMap (Irregular Data) ..71
A.8: GdHFarmMap (Irregular Data) ...75
A.9: GpHParMap (Irregular Data) ..79
A.10: GpHChunkMap (Irregular Data)...80
A.11: GpHShuMap (Irregular Data) ...81
A.12: GdHWorkPool (Irregular Data) ..84

B Divide and Conquer Skeletons ...88
B.1 GpHDC ..88
B.2 GdHDC ..90

 - 3 -

List of Table

Table 4-1-1 Regular Data Measurement………………………………………37

Table 4-1-2 Regular Data Speedup…………………………………………….39

Table 4-1-3 Irregular Data Measurement………………………………………40

Table 4-1-4 Irregular Data Speedup…………………………………….……….41

Table 4-1-5 GdHParMap Speedup……………………………………………….44

Table 4-2-1 Divide and Conquer Measurement……………………..…………..46

Table 4-2-2 Divide and Conquer Speedup……………………………………….47

 - 4 -

List of figure

Figure 2-2-1 Multicomputer……………………………………………………….9

Figure 2-2-1 ParMap………………………………………………………………15

Figure 2-3-1 ParMap Code………………………………………………………..16

Figure 2-3-2 Pipeline Code………………………………………………………17

Figure 2-5-1 Relationship of GdH, GpH and GHC…………………….……24

Figure 3-1-1 GdHParMap Behaviour…………………………………………....27

Figure 3-1-2 GdHFarmMap Behaviour………………………………………….30

Figure 3-2-1 DC Divide…………………………………………………………….32

Figure 3-2-2 DC Conquer……………………………………………………….…32

Figure 3-2-3 GdHDC Divide………………………………………………….……33

Figure 4-1-1 Regular Data Measurement………………………………………38

Figure 4-1-2 Regular Data measurement………………………………………39

Figure 4-1-3 Irregular Data Measurement………………………………….……40

Figure 4-1-4 Irregular Data Speedup……………………………………………..41

Figure 4-1-5 GpHShuMap…………………………………………………………43

Figure 4-2-1 Divide and Conquer Measurement………………………………..47

Figure 4-2-2 Divide and Conquer Speedup……………………………….……..48

 - 5 -

1. Introduction

1.1 Overview

Parallel computing is an important aspect in computing, as it can reduce the

time to solve large problems. Skeletons are a common and easy way to do

parallel computing. In this project we develop and measure two skeletons:

“ParMap” and “divide and conquer” in parallel and distributed version of Haskell

[12]. Haskell is de facto standard of functional programming language. GdH

and GpH are extension of Haskell. Both GdH and GpH provide the ability of

parallel computing. GpH uses implicit parallelism and GdH uses explicit

parallelism.

1.2 Contributions

The main contribution of this thesis is to design and implement “ParMap” and

“divide and conquer” skeletons in GdH to compare their efficiency with other

skeletons. In “ParMap” skeleton we discuss how and why we optimize the

simple “ParMap” skeleton. Base on this experience we develop an efficiency

“divide and conquer” skeleton which avoids the pitfall of the simple “ParMap”

 - 6 -

skeleton.

We measure both GdH and GpH skeletons and compare them. There are two

version of “Map” skeletons we develop. They are “GdHParMap” and

“GdHFarmMap”. To measure these “Map” skeletons we use both regular data

and irregular data. “GdHFarmMap” get speedup up to 14.34 (irregular data) and

13.06 (regular data). It is much better than corresponding GpH skeleton which

get speedup at about 7.47 (irregular data) and 8.8 (regular data). GdH “divide

and conquer” skeleton also get excellent speedup which is 16.54 in this case.

Again GdH performance is better than GpH whose “divide and conquer”

skeleton get speedup at about 8.84.

1.3 Dissertation Outline

Chapter 2 is a section of background which contains parallel programming,

parallel computer, parallel Programming Paradigm, skeleton parallelism,

parallel and distributed programming languages especially GdH and GpH.

Chapter 3 discusses how we implement “GdHParMap”, “GdHFarmMap” and

“Divide and Conquer” skeleton.

Chapter 4 contains the results of measurement. The result includes regular

 - 7 -

data results and irregular data results. Then we compare and analysis the

results.

In Chapter 5 we summary what we have done and what we can do in the future.

 - 8 -

2 Backgrounds

In this chapter we discuss some background acknowledgement. First we

introduce parallel programming and parallel computer in which we define what

parallelism is. And the following section we introduce two type of parallelism:

data parallelism and control parallelism. Then we define skeleton parallelism. At

the end we discuss some programming which includes Haskell, GpH, GdH ,etc

2.1 Parallel Programming

The processor become faster and faster. No matter how powerful the processor

is, one-processor computer can not meet the requirement we need. A good

idea is to use many processors concurrently. The computer, using a set of

processors to solve computational problem, is named parallel computer. To

take advantage of parallel computers we need to use parallel programming.

Parallel programming entails partitioning the problem into smaller problems,

and scheduling the execution of these smaller sub-programs (processes) onto

multiple processors in parallel to solve the problem. This section will introduce

some parallel programming languages, parallelism and design process of

parallel programming.

 - 9 -

2.1.1 Parallel Computer

A parallel computer is a set of processors that are able to work cooperatively to

solve a computational problem.[9] The model of parallel computer includes

multicomputer; a distributed-memory MIMD (multiple instruction multiple data)

computer with a mesh interconnect; a shared-memory multiprocessor, and a

local area network etc.[9] Here we will discuss “Beowulf” system which is a

multicomputer.

Figure 2-2-1 Multicomputer

 A multicomputer consists of a number of computers, or nodes, linked by an

interconnection network. Each computer executes its own program. This

program may access local memory and may send and receive messages over

the network. Messages are used to communicate with other computers or,

equivalently, to read and write remote memories. In the idealized network, the

cost of sending a message between two nodes is independent of both node

Interconnect

CPU

Memory

CPU

Memory

CPU

Memory
………………

Multicomputer

 - 10 -

location and other network traffic, but does depend on message length.[9]

A Beowulf cluster is a collection of personal computer (PCs) interconnected by

widely available networking technology running any one of several

open-source Unix-like operating systems.[28] In this project we have a

“Beowulf” system which contains 32 computers. Each computer has 533MHz

Celeron processor, 128kB cache, 128MB of DRAM and 5.7GB of IDE disk.

They are connected through a 100Mb/s fast Ethernet switch with a latency of

142 us. The operation system is Red Hat 8.0. But we can not guarantee all of

these computers can always work robustly at all time. So we measure our

program on up to 16 processors.

2.1.3 Parallelism

What is “Parallelism”? Here we list some definition below:

1. “An approach to performing large, complex and/or lengthy tasks that

involves concurrent operation on multiple processors” [6].

2. “Decomposition of a task into smaller tasks to be performed simultaneously,

i.e. in parallel” [7].

3. “Parallelism is the use of similar patterns of words (or grammatical forms) to

express similar or related ideas or ideas of equal importance” [8].

 - 11 -

From the definitions above, we found:

1. Parallelism is not an object. It is an abstracted methodology or pattern.

2. A large, complex and/or lengthy task should be decomposed to some

smaller related tasks.

3. These tasks could be performed simultaneously.

4. Parallelism is just the abstracted methodology or pattern to perform the

point 2 and 3 listed above.

We defined parallelism as “Parallel is the abstracted methodology or pattern

which decompose large, complex tasks to related smaller tasks and these

smaller tasks can be run simultaneously”.

There are two levels of parallelism: implicit parallelism and explicit parallelism

[19]. Implicit Parallelism means a parallel processing system decides

automatically which parts to run in parallel. In contrast explicit parallelism

requires programmers annotate his program to indicate which parts should be

executed as independent parallel tasks.

2.1.4 Design process of parallel programming

The design process of parallel programming includes four distinct stages:

Partitioning, Communication, Agglomeration and Mapping. There are three

 - 12 -

attribute we should think about: Concurrency, Scalability and Locality.

Concurrency refers to the ability to perform many actions simultaneously; this is

essential if a program is to execute on many processors. Scalability indicates

resilience to increasing processor counts and is equally important, as processor

counts appear likely to grow in most environments. Locality means a high ratio

of local memory accesses to remote memory accesses (communication); this is

the key to high performance on multicomputer architectures. [29]

Partitioning:

“The partitioning stage of a design is intended to expose opportunities for

parallel execution” [9]. This stage focus on “a fine-grained decomposition of a

problem” [9]. First, programmer find out the data associated with problem.

Second, programmer determines the right partition for the data. Finally,

programmer decides how to associate computation with data.

Communication:

As we have talked in parallelism, the tasks generated by partitioning stage are

related. This means data must be transferred between tasks. “This information

flow is specified in the communication phase of a design” [9]. There are two

phases in this stage: 1.We defines channels structure that links the sender and

 - 13 -

recipient. 2. We specify the message to be sent and received. In [9]

communication has been classify into four categorize: local/global,

structured/unstructured, static/dynamic, and synchronous/asynchronous. Local

communication means each task communicates with a small set of other tasks

(its “neighbours''); in contrast, global communication requires each task to

communicate with many tasks. Structured communication refers a task and its

neighbours form a regular structure, such as a tree or grid; in contrast,

unstructured communication networks may be arbitrary graphs. In static

communication, the identity of communication partners does not change over

time; in contrast, the identity of communication partners in dynamic

communication structures may be determined by data computed at runtime and

may be highly variable. Synchronous communication means producers and

consumers execute in a coordinated fashion, with producer/consumer pairs

cooperating in data transfer operations; in contrast, asynchronous

communication may require that a consumer obtain data without the

cooperation of the producer. [29]

Agglomeration

“In the third stage, agglomeration, we move from the abstract toward the

concrete. We revisit decisions made in the partitioning and communication

phase with a view to obtaining an algorithm that will execute efficiently on some

 - 14 -

class of parallel computer” [9]. The number of tasks will be reduced and the

single task may become greater than before. The goal of this stage is: reducing

communication cost, retaining flexibility, and reducing software engineering

costs.

Mapping

“In the fourth and final stage of the parallel algorithm design process, we specify

where each task is to execute” [9]. To get better performance tasks should be

able to execute in different processors and communicate frequently on the

same processor.

2.2 Parallel Programming Paradigm

There are many parallel programming paradigms. Data parallelism and control

parallelism will be introduced. And we will discuss skeleton parallelism later.

2.2.1 Data Parallelism

Data parallelism involves performing similar computation on many data objects

concurrently. It means some code segment runs concurrently on different data

elements. For example, an operation named “Double” doubles each element in

an array. One processor deals with the first element in that array. And other

processor deal with other elements in the array at the same time. The most

 - 15 -

popular data parallel languages are based on FORTRAN and C [17].

For instance, the GdHParMap (Chapter 3.1) is a typical example of data

parallelism. It splits input data list and send them to difference processor to

evaluate.

Figure 2-2-1 ParMap

2.2.2 Control Parallelism

Control parallelism means different operations can be performed

simultaneously on different processors. It involves: functional decomposition;

tasks with independent control flow; communication with each other.

Two well-known types of control parallelism are pipelining, in which different

processors, or groups of processors, operate simultaneously on consecutive

……………………………

…………………………….

S p l i t

Input Data

Processors

 - 16 -

stages of a program, and functional parallelism, in which different functions are

handled simultaneously by different parts of the computer. One part of the

system, for example, may execute an I/O instruction while another does

computation, or separate addition and multiplication units may operate

concurrently. [30]

2.3 Skeleton Parallelism

“Within the existing body of parallel algorithms a number of patterns recur

frequently. These patterns are composed of computations and the interactions

between them and can be conceptually abstracted from the detail of the

activities they control. Such abstractions have come to be known as algorithmic

skeletons or simply as skeletons” [10]. ----The definition of “Skeleton”.

“Skeleton Parallelism” is to use skeleton algorithms as a technique to

parallelism functional language and program parallel machines. It can be either

data or control parallelism. For example, “parMap” (Figure 2-3-1) is a simple

skeleton which uses data parallelism. And “Pipeline” [31] is a example of

control parallelism. (Figure 3-2-2)

parMap :: Strategy b -> (a -> b) -> [a] -> [b]

parMap strat f xs = map f xs `using` parList strat

Figure 2-3-1 ParMap Code

 - 17 -

pipe_naive :: transmissible a => [[a] -> [a] -> [a]

pipe_naive fs xs = (ppipe fs) # xs

ppipe :: transmissible a => [[a] -> [a]] -> process [a] [a]

ppipe [f] = process xs -> f xs

ppipe (f:fs) = process xs -> (ppipe fs) # (f xs)

Figure 2-3-2 Pipeline Code

2.4 Programming Languages

2.4.1 Parallel Programming Languages

There are many parallel programming languages. This is an introduction of

some typical parallel programming languages.

1. Eden

Eden is a declarative language for parallel and concurrent programming which

is defined as an extension of Haskell [1].

2. High Performance FORTRAN (HPF)

“High Performance Fortran is an informal standard for extensions to Fortran to

 - 18 -

assist its implementation on parallel architectures, particularly for data-parallel

computation “[2]. The first version of HPF is HPF 1.0 which developed between

March 1992 and May 1993 [3]. The latest version is HPF 2.0.

3. ZPL

“ZPL is an array programming language designed from first principles for fast

execution on both sequential and parallel computers” [5]. Foremost ZPL is an

array programming language. But it is better than traditional array programming

language for some distinguish characteristics. For example, ZPL has a

performance model that allows users to know roughly how well their programs

will run on parallel machines. This property has been pioneered by ZPL in the

parallel context. [5]

2.4.2 Functional Programming

“Functional Programming is based on the simplest of models, namely that of

finding the value of an expression” [11]. One of its distinguishing characteristic

is that it focus on the on the high-level "what" rather than the low-level "how". A

functional programming is consisted of defining functions and other values.

Given a function named “swap” which swaps two values. We can define it by

Haskell as below:

 - 19 -

--

swap :: (Int, Int) -> (Int, Int)

swap :: (a, b) = (b, a)

--

We found we don’t need to care how to swap the two values. We just tell system

what we want. The following code is the same function defined by C/C++. It

focuses on how we swap the two values.

//swap function by C/C++

void swap(int &a, int &b){

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

}

//end swap function

There are lots of functional programming languages. For example, Haskell,

Lisp, SML etc are functional programming language. We will discuss Haskell

later. Here we introduced Lisp and SML.

 - 20 -

Lisp:

“Lisp is a programmable programming language.” –John Foderaro [14]. Lisp is

the second oldest (high level programming) computer language. (FORTRAN is

the oldest one.) Lisp was designed by John McCarthy in the late 1950’s. It is a

strict, dynamically type language. Now lisp has evolved into a family of

languages. Today Common Lisp and Scheme are most widely used. “In 1994,

Common Lisp became the first ANSI standard to incorporate object oriented

programming” [14].

SML:

“Standard ML is a safe, modular, strict, functional, polymorphic programming

language with compile-time type checking and type inference, garbage

collection, exception handling, immutable data types and updatable references,

abstract data types, and parametric modules ”[13].

The first version of SML was defined in Definition of Standard ML (Milner, Tofte,

Harper, MIT Press, 1990). The latest version is SML ’97 which was defined in

The Definition of Standard ML (Revised) (Milner, Tofte, Harper, MacQueen, MIT

Press, 1997)

 - 21 -

2.4.2 Haskell

Haskell is a pure functional computer programming language. “In particular, it is

a polymorphic typed, non-strict, purely functional language, quite different from

most other programming languages ”[12]. The features of Haskell are: brevity,

ease of understanding, no core dumps, and code re-uses strong glue, powerful

abstractions, and built-in memory management. The latest version is Haskell

98.

2.5 Parallel and Distributed Functional Programming (GdH and GpH)

Without any doubt there are many parallel or distributed functional

programming languages which are being used. E.g. Curry[32], Goffin[33]. In

this chapter we focus on Glasgow Parallel Haskell (GpH) and Glasgow

distributed Haskell (GdH).

2.5.1 Glasgow Parallel Haskell (GpH)

“Glasgow Parallel Haskell (GpH) is a small extension to sequential Haskell that

executes on multiple processor elements (PEs)”[15]. GpH provides pure

threads which are non-side-effecting and so perform no I/O.

There are two composition operators in GpH. One is “par” which takes two

 - 22 -

parameters that are to be evaluated in parallel [21]. The expression a par b has

the same value as b. The other is “seq” which is a sequential composition

operator. “par” operator describes which operations should be evaluated in

parallel. It is not strict in its first argument. The first argument will be sparked. At

the same time the second will be evaluated by another parallel thread. This

operator can produce too many small tasks. Sometimes this will not give you

performance. Another problem is we can not control the order of evaluation. To

solve these problem “seq” was produced. “seq” defines the order of evaluation.

Given expression “a ‘seq’ b”, if “a” is not bottom, this expression has the value

of “b”. Otherwise it has the value of “a”. The corresponding dynamic behavior is

to evaluate “a” to weak head normal form (WHNF) before returning “b” [21].

2.5.2 Glasgow distributed Haskell (GdH)

“Glasgow distributed Haskell (GdH) is intended to provide a high-level

distributed programming model consisting of a hierarchy of threads – the

explicitly placed I/O threads of Concurrent Haskell and the Implicit pure threads

of GpH ”[15].

To provide a high-level distributed programming model it consist of two classes

of threads: pure threads and side-effecting I/O threads [22]. The implicit pure

threads are achieved by using shared variables. It also is introduced and

 - 23 -

synchronised using parallel and sequential composition. “Explicit

communication and synchronisation is provided using polymorphic

semaphores (MVars) within the I/O monad “[22]. Without doubt the MVars has

been extended for the distributed context to provide explicit synchronisation

and communication between remote I/O threads.

Four primitive mechanisms were implemented in GdH. They are listed as

follows: 1. a list of processor element (PE) identifiers. It provides the calls to

read the existing PE tables held in the runtime system (RTS). 2. A remote

co-routine operation (revalIO). The revalIO operation encapsulates both remote

thread creation and the communication of result [22]. 3. A mechanism for

retrieving the owning PE of an immobile object. 4. Distributed exception

handling.

2.5.3 Relationship among GpH, GdH and GHC

“Haskell is the de facto standard non-strict functional language and the

Glasgow Haskell Compiler (GHC) is arguably the best non-strict Haskell

implementation” [15]. Glasgow Haskell Compiler (GHC) not only implements

Haskell 98 but also supports concurrency and exceptions for Concurrent

Haskell. So the version, which base on GUM RTS, supports parallelism and a

 - 24 -

shared heap across multiple PEs for GpH. Meanwhile GdH is a minimal

superset of the GpH and Concurrent Haskell languages.

The relationship between GpH, Concurrent Haskell, and GdH is shown as

follow:

Figure 2-5-1 Relationship of GdH, GpH and GHC

Haskell

1 PE

1 I/O Thread

GpH

1+ PEs

1 I/O Thread

M advisory Threads

Concurrent Haskell

1 PE

N I/O Threads

GdH

1+ PEs

N I/O Threads

M Advisory Threads

 - 25 -

3 Designing and Implementing Skeletons

To investigate the use of explicit coordination in Glasgow distributed Haskell

(GdH) for constructing parallel skeletons, we implement two skeletons:

“ParMap” and “Divide and Conquer” using GdH. In theory, GdH should get

better performance than GpH which use implicit parallelism. We choose

corresponding GpH skeletons to measure and compare with GdH skeletons.

The GpH skeletons we chose are parMap, chunkMap and divConq which you

can find them in [34]. We also implement a GpH skeleton which tries to use

explicit parallelism. From this program we can know what performance we can

get if we use explicit parallelism over implicit parallelism. In the following section

we just explain GpH program briefly. For detail you can find in [34].

3.1 ParMap

The first skeleton we developed is “map”. In a map, each data item appearing

onto the input stream is split into its basic components, each one of the

components is processed using a function “f”, which performs computing over

the basic component, and finally the computed components are re-assembled

into a data structure to the original one.

The whole process of map skeleton is explained as follow:

Given the “map f xs” has the type: a vector stream -> b vector stream

 - 26 -

Assumes the function “f” has type: a -> b

Provided that the input stream is xn: …: x1: x0

GpH

GpH ParMap simply use “par” to evaluate first data on one PE and then

evaluate the rest data concurrently. The core code is listed below:

parMap f (x:xs) = fx `par` fxs `seq` (fx:fxs)

 where

 fx = f x

 fxs = parMap f xs

The simple GpH ParMap above produces too many communications when

number of processors is equal or more than 2. If we can force one processor to

evaluate more data we can reduce a lot of communication. “chunkMap” is just

the function that we can specify how many data to be evaluate once on a

processor. The usage is listed as follow:

chunkMap 6 rnf fib (replicate 100 30)

GdH

First the input stream is split into basic components: xn… x1, x0. Then each of

components is sent to a worker to be evaluated. At the end the computed

components are re-assembled into original data structure. The figure 3-1-1

 - 27 -

shows the behavior of map.

Figure 3-1-1 GdHParMap Behavior

The core GdH source code is explained as follow:

First we get all processors’ ID. If there is only one processor we will evaluate

input stream by sequence map function and return results. Otherwise we will

evaluate it in parallel as follow:

--we define how the data will be evaluated on remote processor and save result

into an MVar value:

let remote te mVar = do

 put mVar mVar te `demanding` rnf te

 return ()

--we build a list of PEId whose length is as same as the length of input stream.

Let ips = repeatPE (length ls) ps

--we also build a list of MVar whose length is as same as the length of input

stream. And the list of MVar will be stored in an MVar value. They store each

 - 28 -

result. So we can fetch them from the MVar value later.

createMVarList (length ls) mList

ms <- takeMVar mList

--combine all elements and create remote tasks on remote processors.

Let zs = zip3 ips ls ms

Let work (pe,ts,mVar) = do

 Let te = f ts

 rforkIO (remote te mVar) pe

mapMV work zs

--At the end we fetch each result and return.

Rs <- getResult ms

Return rs

In order to reduce the number of communication we develop another map

skeleton named “FarmMap”. As what we said, if there are n basic components

this skeleton needs n workers to evaluate input stream. In this project we use

Beowulf Systems to evaluate our skeletons. A Beowulf is a collection of

personal computers (PCs) interconnected by widely available networking

technology running any one of several open-source Unix-like operating

systems[28]. So the communication between two processors is network

communication. This type of communication is very expensive. It would be

better if we could reduce this communication. For this reason we developed a

 - 29 -

Farm Map skeleton. The whole process is explained as follow:

Given the “map f xs” has the type: a vector stream -> b vector stream

Assumes the function has type: a -> b

Provided that the input stream is xn: …: x1: x0

Assumes the number of processor(s) is m

First we divide input data into m chunks. If the number of components is less

than m there will be (n-m) empty chunk(s). When (mod n m) equals 0 each

chunk contains n/m components. Otherwise the last chunk contains n-n/(m-1)

components and other chunks contain n/(m-1) components. Each chunk is

treated as a task and is picked by a worker. Because the number of processor(s)

equals tasks’ number the communication’s scale in proportion to the amount of

processors. Normally there are m*2 communications (send and receive) in

Farm Map skeletons. If n>>m we can reduce a large number of

communications.

 - 30 -

Figure 3-1-2 GdHFarmMap Behavior

The core GdH source code is explained as follow:

--we get the number of available processors first. We assume there are n

processors. The input stream will be split into n chunks.

ps <- allPEId

let n = length ps

let ts = unshuffle n ls

--defines the remote te and prepare MVar values list

let remote te mVar = do

 putMVar mVar te `demanding` rnf te

 return ()

mList <- newEmptyMVar

createMVarList n mList

ms <- takeMVar mList

Task 1

Task m

Input Output

Worker 1

Worker m

 - 31 -

--combine elements and evaluate data in parallel

let zs = zip3 ps ts ms

let work (pe,ts,mVar) = do

 let te = map f ts

 rforkIO (remote te mVar) pe

mapMV work zs

--get result. Now the result is not the original data structure

rs <- getResult ms

--reassemble the result to original data structure and return it

return (shuffle rs)

3.2 Divide and Conquer

The second skeleton we developed is “Divide and Conquer” skeleton. This

skeleton is a data-parallel and nested skeleton. The simple divide and conquer

skeleton is to divide problem into two (or more than two) sub-problem if it can be

divided. And the sub-problem will be divided into other two (or more than two)

sub-problem if it can be divided again. This action will be processed until it can

not be divided. Then all the lowest level sub-problem will be evaluated in

parallel. The results will be transmitted to upper level and be combined by

“Conquer” which is defined by user. This action will be repeated until the all

problems have been computed. Figure 3-2-1 shows how the problem is to be

divided. Figure 3-2-2 shows how the results are to be return and be combined.

 - 32 -

In our project we use this skeleton to evaluate “Fib n”. As a result each data will

be spitted into two parts (“n-1”, “n-2”) if it can be spitted. In GdH one part will be

evaluated on original processor and another part will be evaluated on other

processor. Figure 3-2-3 shows one possible distribution. In GpH we can not

specify which processor we should use. The only thing we could do is to tell

system that we want these tasks to be evaluated in parallel. In order to avoid

extra network communication we add a condition over whether the data can be

Figure 3-2-1 DC Divide

Figure 3-2-2 DC Conquer

 - 33 -

further divided or not. If there is one or more than one free processors it means

the data can be divided. Otherwise the data can not be divided.

The core GdH source code is explained as follow:

--There are two important function in our divide and conquer skeleton. One is

“divConq”, the other is “divConqToIP”. “divConq” is the main function which

should be used by users. “divConqToIP” is the function to implement parallelism.

“divConq” creates some necessary values and sends them to “divConqToIP”

when it invokes “divConqToIP”. "divConqToIP” does nested actions to compute

data in parallel. It decides which processor can be used to evaluate

sub-problem from a PEId list. It will delete the PEId from that list if

“divConqToIP” decides to use this processor. Or it will evaluate data in

sequence if there is no more free processor or the data can not be divided.

--we define pFib which uses divide and conquer skeleton to evaluate “fib n”

function.

pFib :: Int -> IO Int

PE2

PE1

PE1

PE3 PE1

PE2

PE4

Figure 3-2-3 GdHDC Divide

 - 34 -

pFib n = divConq fib n threshold conq divide

 where

 --If n<=30 we evaluate it in sequence.

 threshold n = n <= 30

 --The way we divide the data.

 divide n = (n-1, n-2)

 --The definition of conquer

 conq l r = l + r + 1

--some source code in “divConqToIP” function

--Create two Mvar values to store the divided sub-problem’s result

mL <- newEmptyMVar

mR <- newEmptyMVar

--Here we run the two divided sub-problems

right mR (head nextPEl)

left mL

--Waits for the result

mrsR <- takeMVar mR

mrsL <- takeMVar mL

--Combines the two results

let te = conquer mrsL mrsR

putMVar mrs te `demanding` rnf te

return ()

 - 35 -

where

 (lt,rt) = divide arg

 left ml = do

 --evaluate one part on original processor

 divConqToIp f lt threshold conquer divide mPEs mAllPE ml

 --evaluate another part on other processor

 right mr nextPE = do

 rforkIO (divConqToIp f rt threshold conquer divide mPEs mAllPE mr)

nextPE

 - 36 -

4. Evaluating Skeletons

In this chapter we discuss how we evaluate our skeleton: we evaluate “Map”

skeleton with regular data and irregular data. And we use “fib 42” to evaluate

“divide and conquer” skeleton. We list all result and build speedup graph. At the

end we compare and analysis these results.

4.1 ParMap

To evaluate these skeletons we chose regular data and irregular data and the

function is the Fibonacci (fib) function. The reasons we chose this data and

function are below: The “fib” function is a well-known and very simple function.

The key reason we chose this function is it can consume a long CPU time in a

simple way. To evaluate parallelism, regular data can give us reliable result. On

the other hand irregular data always occurs in real world. So we chose both

regular data and irregular data to evaluate skeletons. As we said the

communication between two processors is very expensive. This

communication can not be avoided in parallel computing. So the smaller ratio

which the communications occupy in the whole process the better result we can

get. The work could not be too small. As a result we chose “fib 30” for regular

data and chose “fib x (25<x<32) “for irregular data. The scale of tasks can not

be too small. For this reason we chose 100 tasks.

 - 37 -

For each skeleton we evaluate it many times and record all results. We have

two steps to choose final result: First we abandon all extreme results. For

example, if we got 5 results: 50s, 10s, 48s, 120s and 51s, we will abandon two

bad results (10s and 120s). They occur by accident and are not common results.

Secondly we choose the median. In this case “50s” will be our final result.

4.1.1 Regular Data

As we said we evaluate the skeletons many times. And record all result. At the

end the final result is chosen after two steps. The “GdHWorkPool” designed by

Dr Robert. The “GpHShuMap” which is given in Appendix A5 is poorly designed

GpH skeleton. We also evaluate them as contrast.

The final results are below:

PEs

Skeletons

1 2 4 8 16

GpHParMap 176.76 227.63 128.73 36.30 20.69

GpHChunkMap 170.36 69.75 42.45 33.31 19.35

GdHParMap 140.75 140.57 65.67 32.61 16.08

GdHFarmMap 143.11 72.90 36.80 19.76 10.96

GdHWorkPool 107.92 57.69 28.63 14.53 8.64

GpHShuMap 168.45 113.86 56.32 33.18 40.2

Table 4-1-1 Regular Data Measurement

 - 38 -

0

50

100

150

200

250

1 PEs 2 Pes 4 Pes 8 Pes 16 Pes

GpHParMap
GpHChunkMap
GdHParMap
GdHFarmMap
GdHWorkPool
GpHShuMap

Figure 4-1-1 Regular Data Measurement

The following table and figure are speedup result. It bases on the runtime result.

If we assume the runtime results are R1, R2 … Rn. Then speedup result will be

Xn=R1/Rn.

Replicate 100 30

 - 39 -

The speedup:

PEs

Skeletons

1 2 4 8 16

Ideal 1 2 4 8 16

GpHParMap 1 0.78 1.37 4.87 8.54

GpHChunkMap 1 2.44 4.01 5.11 8.8

GdHParMap 1 1.00 2.14 4.32 8.75

GdHFarmMap 1 1.96 3.89 7.24 13.06

GdHWorkPool 1 1.87 3.77 7.43 12.50

GpHShuMap 1 1.48 3.00 5.08 4.19

Table 4-1-2 Regular Data Speedup

0
2
4
6
8

10
12
14
16

01 03 05 07 09 11 13 15

Ideal
GpHParMap
GpHChunkMap
GdHParMap
GdHFarmMap
GdHWorkPool
GpHShuMap

Figure 4-1-2 Regular Data measurement

 - 40 -

4.1.2 Irregular Data

The runtime result:

PEs

Skeletons

1 2 4 8 16

GpHParMap 132.31 165.88 97.41 27.65 22.92

GpHChunkMap 165.48 73.16 38.47 62.30 21.37

GdHParMap 86.05 76.47 42.96 18.97 8.89

GdHFarmMap 87.46 42.76 25.00 11.71 6.13

GdHWorkPool 108.01 57.63 28.63 14.53 8.64

Table 4-1-3 Irregular Data Measurement

0

20

40

60

80

100

120

140

160

180

1 PEs 2 Pes 4 Pes 8 Pes 16 Pes

GpHParMap
GpHChunkMap
GdHParMap
GdHFarmMap
GdHWorkPool

Figure 4-1-3 Irregular Data Measurement

 - 41 -

The speedup results:

PEs

Skeletons

1 2 4 8 16

Ideal 1 2 4 8 16

GpHParMap 1 0.80 1.36 4.79 5.77

GpHChunkMap 1 2.26 4.30 2.67 7.74

GdHParMap 1 1.13 2.00 4.54 9.68

GdHFarmMap 1 2.05 3.50 7.47 14.34

GdhWorkPool 1 1.88 3.78 7.44 12.51

Table 4-1-4 Irregular Data Speedup

0
2
4
6
8

10
12
14
16

01 03 05 07 09 11 13 15

Ideal
GpHParMap
GpHChunkMap
GdHParMap
GdHFarmMap
GdHWorkPool

Figure 4-1-4 Irregular Data Speedup

 - 42 -

4.1.3 Discussion

Gdh VS GpH

From figure 4-1-1 we can find that some GdH skeletons run slower than GpH on

1 PE. But they always run faster than GpH at 16 PEs. GdH scales much better

than GpH and the figure 4-1-2 confirms this. As GpH use implicit parallelism, it

needs extra communications to indicate which processor can be used. In

contrast GdH uses explicit it does not need that communication. In theory GdH

should get better performance than GpH. So this result is what we expected. In

GdH we can specify the processor to evaluate problem. On the other hand, we

don’t need to worry about which processor we should choose to evaluate our

problem in GpH. GpH evaluates the problem by implicit parallelism. As a result

we must do more jobs to select processor for the tasks in GdH. At the same

time GpH need some time to inquire which processor can be used. But on 1

processor this communication is lightweight. When the number of processor

grows to 16, the communication changes to cross processor communication.

This kind of communication is very expensive. That is why GpH runs faster on 1

processor and slower on 16 processors.

In the irregular data runtime (Figure 4-1-3) and speedup graphs (Figure 4-2-4)

we fund that the above conclusion is not always the valid. The reason is the

different parallelism and the strategy we used. The source data we evaluated is

chosen from 25 to 33 randomly. To evaluate fib 33 takes much more time than

 - 43 -

to evaluate fib 25. In GdH, except gdhWorkPool, we only consider the number

of tasks, not matter how long each task need we evaluate them on the some

way. The worst situation is: Some heavy tasks are sent to the same processor

and all other processors have to wait this processor. In GpH system inquires

which processor can be used. The worst situation above can not happen if each

task is small enough. The exception is gdhWorkPool. It sends task to processor

when the processor is free. So the worst situation is avoided.

GpHShuMap (Appendix A5 or A11):

This function is a poorly designed GpH function. As we said GpH uses implicit

parallelism. “GpHShuMap” try to use explicit parallelism in GpH. It divides the

list into some chunks and tries to dump each to one processor. But GpH will

relocate the task to processors. This behaviour force GpH to do some extra

communication. This is the reason why GpHShuMap has longer runtime on 16

processors than on 8 processors.

Figure 4-1-5 GpHShuMap

Total
tasks

Chunk

Chunk

Ideal PE

Ideal PE

Real PE

Real PE

 - 44 -

GdHParMap (Appendix A1 or A7)

We fund that the time ParMap run on 2 processors is so close to the time on 1

processor. As we said GdH need some expensive communication when

processors are more than 1. We define Te as the time to evaluate. Np is

number of processor. C is cross-processors communication. Ta is total time.

The time on 1 processor is: Ta = Te. The time on more than 1 processor is: Ta =

Te/Np + C. If C is close to Te, there is not speedup from 1 processor to 2

processors. But it has speedup from 2 to N (N>2) processors. As a result

GdHParMap didn’t get good speedup from 1 to 2 processors. But it runs faster

and faster when processor is increased. From table 4-1-5 we can see the

excellent speedup from 2 to 16 processors. (Results base on regular data.)

GdHParMap 2PEs 4PEs 8PEs 16PEs

Runtime 140.57 65.67 32.61 16.08

Ideal 1 2 4 8

Speedup 1 2.14 4.31 8.74

Table 4-1-5 GdHParMap Speedup

GpHParMap (Appendix A3 or A9)

GpHParMap is a simple GpH skeleton given in Appendix A3 or A9. When the

processors increased from 1 to 2 it can have no speedup because of the

expensive communication. The reason is similar to the same situation of

GdHParMap. From table 4-1-2 we can see the GpHParMap and GdHParMap

 - 45 -

get very similar speedup at the end. It does not mean they have similar

performance. GdHParMap is optimized for 1 processor. GdHParMap does not

do extra job on 1 processor. It just evaluates the task in sequence. That is why

it runs fastest on 1 processor. Compared with GpHParMap, GdHParMap is

always better on 1 processor all the way to 16 processors.

GpHChunkMap (Appendix A4 or A10)

For a GpH program it achives good speedup from 1 processor to 2 processors.

It is benefited from its strategy of evaluation. It divides all tasks into chunks. If

we define “Nc” as the number of chunks, the total time of evaluation is: Ta =

Te/Np + C/Nc. So it got good speedup from 1 processor to 2 processors even if

cross-processors communication is so expensive. At the same time each chunk

contains some tasks. If the tasks in one chunk are very heavy the other

processors should wait the processor which evaluates the heavy chunk. This is

the reason why it can not get good performance when measure irregular data.

GdHFarmMap (Appendix A2 or A8)

The parallelism of this skeleton is very similar to GpHChunkMap. The

difference is implicit and explicit controls of work definition. In GdHFarmMap it

can know how many processors it got. So it can divide all tasks into chunks

whose number equals the number of processors. It reduces the communication

as little as notably. As a result it gets the best speedup in regular data.

 - 46 -

Fortunately it gets the best speedup in irregular data as well. The reason is

there is no too heavy tasks to be evaluated in one chunk. If one chunk contains

some heavy tasks GdHFarmMap could not get good speedup.

4.2 Divide and Conquer

To evaluate this skeleton we also choose “fib” function. After some testing we

choose “fib 42” to evaluate. The reason is it has a runtime of about 400 seconds.

The result is listed below:

Runtime result:

 1PE 2PEs 4PEs 8PEs 16PEs

GpHDC 361.56 797.70 400* 191.93 40.91

GdHDC 454.21 282.73 108.61 68.78 27.47

Table 4-2-1 Divide and Conquer Measurement

 - 47 -

0

100

200

300

400

500

600

700

800

900

1 PEs 2 Pes 4 Pes 8 Pes 16 Pes

GpHDC
GdHDC

Figure 4-2-1 Divide and Conquer Measurement

The speedup results:

 1PE 2PEs 4PEs 8PEs 16PEs

GpHDC 1 0.45 0.9 1.88 8.84

GdHDC 1 1.61 4.18 6.60 16.54

Table 4-2-2 Divide and Conquer Speedup

 - 48 -

0
2
4
6
8

10
12
14
16

01 03 05 07 09 11 13 15

Ideal
GpHDC
GdHDC

Figure 4-2-2 Divide and Conquer Speedup

GpHDC

In our project we evaluate “fib 42”. And we define it divide until “fib 30”. There

will be at most)3042(2 − sub-tasks. If there are two processors there would be at

most)3042(2 − /2 communications. That is why it can not have good speedup on

two and four processors. From two processors the communications time has

been reduced as the processors increased. In this case it gets speedup from 8

processors.

GdHDC

GdH uses explicit parallelism. So it stops dividing when it meets the

requirement or there are no more processors. As a result there are very few

 - 49 -

communications for each processor. We can see the speedup is so close to

ideal speedup.

 - 50 -

5 Conclusion

In this chapter we summary what we have done and draw conclusion. And then

we discuss how we can extend our project in the future.

5.1 Summary

In chapter 2 we introduce parallel computing, parallelism, skeletons, parallel

programming languages, Haskell, GpH, and GdH etc. In this chapter we

defined what parallelism is. We also listed other similar languages. We pointed

out the relationship of the GdH, GpH and Haskell. Chapter 3 introduced how we

design and implement the skeletons. In this section we explain how some core

code works. We listed some core code and add comment with the code.

Chapter 4 contains the results of measurement. The result includes regular

data results and irregular data results. Then we compare and analysis the

results. The skeletons which is implemented in GdH is better than the skeletons

implemented in GpH.

In Chapter 3 we develop two GdH skeletons which are “map” and “divide and

conquer”, evaluate them and compare them with the corresponding GpH

skeletons. As GdH have more concept than GpH, we find GdH is a little more

difficult than GpH to implement. But it gives us more flexible controls. In GdH

 - 51 -

we can specify which tasks should be evaluated on which processor. To be a

good parallel algorithm one of the keys is to reduce communications. For

example, the “GdHParMap” and the “GpHParMap” produces too many

communications. As a result, both of them can not get good speedup when

processors increase from 1 to 2. (See Table 4-1-2 or Table 4-1-4)

5.2 Future work

To deal with real world problem these two skeletons are not enough. More GdH

skeletons should be developed. For example, the “Fold” and the “pipeline” are

well-know and useful.

In “GdHFarmMap” there should be a mechanism to predicate the runtime of

task. It is dangerous if some heavy tasks are divided into one chunk. In “divide

and Conquer” it should have a load-balancing algorithm. Otherwise one

process may be heavily loaded while other are idle.

We can compare them with other parallel functional language skeletons. For

example Eden.

 - 52 -

Reference

[1] Eden, “http://www.mathematik.uni-marburg.de/inf/eden/”, retrieved by June

2003.

[2] High Performance FORTRAN, “http://www.math.fu-berlin.de/user/kranz/

pp.html”, retrieved by June 2003.

[3] J Merlin and B Chapman, “High Performance FORTRAN 2.0”, Online tutorial,

1997

[4] High Performance Fortran Forum. “High Performance Fortran Language

Specification version 1.0”. Sci.Prog, special issue, 1993. Available at

http://www.crpc.rice.edu/HPFF or

http://www.vcpc.univie.ac.at/information/mirror/HPFF/hpf1/

[5] ZPL, “http://www.cs.washington.edu/research/zpl”, University of

Washington, retrieved by June 2003.

[6] Parallelism,

“http://www.ncsc.org/training/materials/mpicourse/mpi_mppmintro/tsld008.htm

”, North Carolina Supercomputing Centre, retrieved by June 2003.

[7] “What is Parallelism”,

“http://mrccs.man.ac.uk/hpctec/courses/HPC/hpc_11.html”, A Grant, S

Ramsden, retrieved by June 2003.

[8] Parallelism, “http://www.unlv.edu/Writing_Center/Parallelism.htm”, Scott

Nesbitt, retrieved by June 2003.

http://www.mathematik.uni-marburg.de/inf/eden/
http://www.math.fu-berlin.de/user/kranz/
http://www.crpc.rice.edu/HPFF
http://www.vcpc.univie.ac.at/information/mirror/HPFF/hpf1/
http://www.cs.washington.edu/research/zpl
http://www.ncsc.org/training/materials/mpicourse/mpi_mppmintro/tsld008.htm
http://mrccs.man.ac.uk/hpctec/courses/HPC/hpc_11.html
http://www.unlv.edu/Writing_Center/Parallelism.htm

 - 53 -

[9] http://www-unix.mcs.anl.gov/dbapp/text/book.html, “Designing and Building

Parallel Programs, L Foster, retrieved by June 2003.

[10] K Hammond and G Michaelson, “Research Directions in Parallel

Functional Programming”, Springer, 1999

[11] S Thompson, “Haskell The Craft of Functional Programming”,

Addison-wesley, 1996

[12] The Haskell Home Page, “http://www.haskell.org”, retrieved by May 2003

[13] “Standard ML of New Jersey”, “http://www. smlnj.org”, retrieved by June

2003

[14] Association of Lisp Users, “http://www.lisp.org”, retrieved by June 2003

[15] PTL, The Design and Implementation of Glasgow distributed Haskell

[16] L Foster, “7.1 Data Parallelism”,

http://www-unix.mcs.anl.gov/dbpp/text/node83.html, retrieved by June 2003

[17] K Hammond and G Michaelson, “Research Directions in Parallel

Functional Programming”, Page 191, Springer, 1999

[18] K Hammond and G Michaelson, “Research Directions in Parallel

Functional Programming”, Page 76, Springer, 1999

[19] K Hammond and G Michaelson, “Research Directions in Parallel

Functional Programming”, Chapter 3, Springer, 1999

[20] Control Parallelism,

“http://www.cs.umass.edu/~weems/CmpSci635/Lecture13/L13.10.html”, Chip

Weems, retrieved by June 2003.

http://www-unix.mcs.anl.gov/dbapp/text/book.html
http://www.haskell.org
http://www.lisp.org
http://www-unix.mcs.anl.gov/dbpp/text/node83.html
http://www.cs.umass.edu/~weems/CmpSci635/Lecture13/L13.10.html

 - 54 -

[21] P W Trinder, “GpH - A Parallel Functional Language”,

http://www.macs.hw.ac.uk/~dsg/gph/docs/Gentle-GPH/sec-gph.html

[22] R.F. Pointon, P.W. Trinder, and H-W. Loidl, “The Design and

Implementation of Glasgow distributed Haskell”, 2000

[28] T L. Sterling, J Salmon, D J. Becher and D F. Savarese, “How to Build a

Beowulf, A Guide to the Implementation and Application of PC Clusters”, The

MIT Press, Second Printing, 1999, Page 9

[29] Ian Foster, “Designing and Building Parallel Programs”,

“http://www-unix.mcs.anl.gov/dbpp/text/node11.html”, retrieved by June 2003.

[30] Thinking Machines Corporation, “Super Computing and Parallelism”,

“www.cs.berkeley.edu/~demmel/cs267-1995/cm5docs/tech-summary/1-Parall

el.ps.gz”, retrieved by September 2003.

[31] R Pena and F Rubio, “Parallel Functional Programming at Two Levels of

Abstraction”, Paper

[32] Michael Hanus, “A Truly Integrated Functional Logic Language”,

“http://www.informatik.uni-kiel.de/~mh/curry/”, retrieved by September 2003.

[33] MANUEL M. T. CHAKRAVARTY, “Distributed Haskell aka Goffin”,

“http://www.cse.unsw.edu.au/~chak/goffin/”, retrieved by September 2003.

[34] P.W Trinder, K Hammond, H.W Loidl and S.L Peyton Jones, “Algorithm +

Strategy = Parallelism”, 1993

http://www.macs.hw.ac.uk/~dsg/gph/docs/Gentle-GPH/sec-gph.html
http://www-unix.mcs.anl.gov/dbpp/text/node11.html
http://www.cs.berkeley.edu/~demmel/cs267-1995/cm5docs/tech-summary/1-Parall
http://www.informatik.uni-kiel.de/~mh/curry/
http://www.cse.unsw.edu.au/~chak/goffin/

 - 55 -

Appendix

A Map Skeletons

A.1: GdHParMap (Regular Data)

module Main(main) where

import Distributed

import Strategies

mapMV :: (a->IO b) -> [a] -> IO ()

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result

--

createMVarList :: Int -> MVar [MVar a] -> IO ()

createMVarList 0 ms = return ()

createMVarList n ms = do

 b <- isEmptyMVar ms

 if (b)

 then

 do

 - 56 -

 mVar <- newEmptyMVar

 putMVar ms ([mVar])

 createMVarList (n-1) ms

 else

 do

 mVar <- newEmptyMVar

 mVars <- takeMVar ms

 putMVar ms (mVar:mVars)

 createMVarList (n-1) ms

--

getResult :: [MVar a] -> IO [a]

getResult [] = return []

getResult (x:xs) = do

 rs <- takeMVar x

 rss <- getResult xs

 return (rs:rss)

--

repeatPE :: Int -> [a] -> [a]

repeatPE 0 _ = []

repeatPE _ [] = []

repeatPE n pes

 - 57 -

 | n < 0 = pes

 | (length pes) >= n =pes

 | otherwise = pes ++ (repeatPE (n - (length pes)) pes)

--parMap

gdhParMap :: NFData b => (a->b) -> [a] -> IO [b]

gdhParMap f ls =do

 ps <- allPEId -- get all the PEs

 let n = length ps

 if n < 2 -- only 1 pe

 then

 do

 let rs = map f ls

 return rs `demanding` rnf rs

 else

 do

 let ips = repeatPE (length ls) ps

 let remote te mVar = do

 putMVar mVar te `demanding` rnf te

 return ()

 mList <- newEmptyMVar

 - 58 -

 createMVarList (length ls) mList

 ms <- takeMVar mList

 let zs = zip3 ips ls ms

 let work (pe,ts,mVar) = do

 let te = f ts

 rforkIO (remote te mVar) pe

 mapMV work zs

 rs <- getResult ms

 return rs

-- --

fib :: Int -> Int

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2) + 1

main = do

 rs <- gdhParMap fib (replicate 100 30)

 print rs

 - 59 -

A.2: GdHFarmMap (Regular Data)

module Main(main) where

import Distributed

import Strategies

mapMV :: (a->IO b) -> [a] -> IO ()

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result

--------unshuffle function---------------------

unshuffle :: Int -> [a] -> [[a]]

unshuffle n [] = replicate n []

unshuffle n xs

 | len < n = map (:[]) xs ++ replicate (n-len) []

 | otherwise = zipWith (:) (take n xs) xss

 where xss = unshuffle n (drop n xs)

 len = length xs

--------shuffle function-----------------------

shuffle :: [[b]] -> [b]

shuffle [] = []

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss)

 - 60 -

 where nonEmptyxss = filter (not.null) xss

--

createMVarList :: Int -> MVar [MVar a] -> IO ()

createMVarList 0 ms = return ()

createMVarList n ms = do

 b <- isEmptyMVar ms

 if (b)

 then

 do

 mVar <- newEmptyMVar

 putMVar ms ([mVar])

 createMVarList (n-1) ms

 else

 do

 mVar <- newEmptyMVar

 mVars <- takeMVar ms

 putMVar ms (mVar:mVars)

 createMVarList (n-1) ms

--

getResult :: [MVar a] -> IO [a]

 - 61 -

getResult [] = return []

getResult (x:xs) = do

 rs <- takeMVar x

 rss <- getResult xs

 return (rs:rss)

--farm

gdhFarmMap :: NFData b => (a->b) -> [a] -> IO [b]

gdhFarmMap f ls =do

 ps <- allPEId -- get all the PEs

 let n = length ps

 let ts = unshuffle n ls -- build up a list of task lists

 let remote te mVar = do

 putMVar mVar te `demanding` rnf te

 return ()

 mList <- newEmptyMVar

 createMVarList n mList

 ms <- takeMVar mList

 let zs = zip3 ps ts ms

 let work (pe,ts,mVar) = do

 let te = map f ts

 - 62 -

 rforkIO (remote te mVar) pe

 mapMV work zs

 rs <- getResult ms

 return (shuffle rs)

-- --

fib :: Int -> Int

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2) + 1

main = do

 rs <- gdhFarmMap fib (replicate 100 30)

 print rs

A.3: GpHParMap (Regular Data)

module Main(main) where

import Parallel

 - 63 -

import Strategies

--fib

fib :: Int->Int

fib 0 = 1

fib 1 = 1

fib n = f (n-1) + f (n-2) + 1

--main

main = print (parMap rnf f (replicate 100 30))

A.4: GpHChunkMap (Regular Data)

module Main(main) where

import Strategies

--

--chunkMap

chunkMap :: Int -> Strategy b -> (a->b) -> [a] -> [b]

chunkMap n strat f xs = map f xs `using` parListChunk n strat

 - 64 -

--

--fib

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib n = fib(n-1) + fib(n-2) + 1

main = print (chunkMap 6 rnf fib (replicate 100 30))

A.5: GpHShuMap (Regular Data)

module Main(main) where

import Parallel

import System

import Strategies

--unshuffle function

unshuffle :: Int -> [a] -> [[a]]

unshuffle n [] = replicate n []

unshuffle n xs

 - 65 -

 | len < n = map (:[]) xs ++ replicate (n-len) []

 | otherwise = zipWith (:) (take n xs) xss

 where xss = unshuffle n (drop n xs)

 len = length xs

--shuffle function

shuffle :: [[b]] -> [b]

shuffle [] = []

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss)

 where nonEmptyxss = filter (not.null) xss

-------- ----------------------------

--fibonacci function

f :: Int -> Int

f 0 = 1

f 1 = 1

f n = f (n-1) + f (n-2)+ 1

--map function

shuMap :: (Strategy b) -> Int -> (a->b) -> [a] -> [b]

 - 66 -

shuMap s _ f [] = []

shuMap s 0 f xs = map f xs

shuMap s 1 f xs = map f xs

shuMap s n f xs = shuffle (parMap (seqList s) (map f) xn)

 where

 xn = unshuffle n xs

--main function

main = print (shuMap rnf 6 f (replicate 100 30))

A.6: GdHWorkPool (Regular Data)

module Main(main) where

import Distributed

import MutSig

import Bounded

import PrelIOBase (unsafePerformIO)

import Strategies

import IO

debug :: String -> IO ()

 - 67 -

debug s = return ()

-- --

--wrapper

data NFData a => Task a = Task (MVar a) a

parBody :: NFData b => ([Task b] -> IO ()) -> (a->b) -> [a] -> [b]

parBody way f ls = unsafePerformIO (

 do

 debug "parBody"

 let ms = map f ls -- the map

 ts <- mapM newTask ms -- allocate task for each list item

 forkIO (way ts) -- start evaluating all tasks

 let rs = map waitTask ts -- method to access each tasks result

 return rs)

newTask :: NFData a => a -> IO (Task a)

newTask l = do

 m <- newEmptyMVar

 return (Task m l)

 - 68 -

doTask :: NFData a => Task a -> IO ()

doTask (Task m v) = do

 debug "doTask"

 putMVar m v `demanding` rnf v

waitTask :: NFData a => Task a -> a

waitTask (Task m _) = unsafePerformIO (

 do

 r <- takeMVar m

 putMVar m r -- in case we fetch it again

 return r)

mapMV :: (a->IO b) -> [a] -> IO ()

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result

-- --

--workpool

workPool :: NFData b => (a->b) -> [a] -> [b]

workPool f ls = parBody way f ls

 where way ts = do

 ps <- allPEId -- get all the PEs

 - 69 -

 c <- newMutex ts -- protect the list of tasks

 let getTaskRmt = lock c safe

 where

 safe [] = return ([],Nothing)

 safe (t:ts) = return (ts,(Just t))

 let pre = 2

 let worker = do

 b <- newBound pre

 let driver = do

 jt <- getTaskRmt

 writeBound b jt

 case jt of

 (Just t) -> driver

 (Nothing) -> return ()

 let slave = do

 jt <- readBound b

 case jt of

 - 70 -

 (Just t) -> do

 doTask t

 slave

 (Nothing) -> return ()

 forkIO driver

 slave

 mapMV (\p -> rforkIO worker p) ps -- create the workers

-- --

fib :: Int -> Int

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2)+ 1

main = print (workPool fib (replicate 100 30))

 - 71 -

A.7: GdHParMap (Irregular Data)

module Main(main) where

import Distributed

import Strategies

mapMV :: (a->IO b) -> [a] -> IO ()

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result

--

createMVarList :: Int -> MVar [MVar a] -> IO ()

createMVarList 0 ms = return ()

createMVarList n ms = do

 b <- isEmptyMVar ms

 if (b)

 then

 do

 mVar <- newEmptyMVar

 putMVar ms ([mVar])

 createMVarList (n-1) ms

 else

 - 72 -

 do

 mVar <- newEmptyMVar

 mVars <- takeMVar ms

 putMVar ms (mVar:mVars)

 createMVarList (n-1) ms

--

getResult :: [MVar a] -> IO [a]

getResult [] = return []

getResult (x:xs) = do

 rs <- takeMVar x

 rss <- getResult xs

 return (rs:rss)

--

repeatPE :: Int -> [a] -> [a]

repeatPE 0 _ = []

repeatPE _ [] = []

repeatPE n pes

 | n < 0 = pes

 | (length pes) >= n =pes

 | otherwise = pes ++ (repeatPE (n - (length pes)) pes)

 - 73 -

--farm

gdhParMap :: NFData b => (a->b) -> [a] -> IO [b]

gdhParMap f ls =do

 ps <- allPEId -- get all the PEs

 let n = length ps

 if n < 2 -- only 1 pe

 then

 do

 let rs = map f ls

 return rs `demanding` rnf rs

 else

 do

 let ips = repeatPE (length ls) ps

 let remote te mVar = do

 putMVar mVar te `demanding` rnf te

 return ()

 mList <- newEmptyMVar

 createMVarList (length ls) mList

 ms <- takeMVar mList

 let zs = zip3 ips ls ms

 let work (pe,ts,mVar) = do

 - 74 -

 let te = f ts

 rforkIO (remote te mVar) pe

 mapMV work zs

 rs <- getResult ms

 return rs

-- --

fib :: Int -> Int

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2) + 1

main = do

 rs <- gdhParMap fib dataL

 print rs

 where

 dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29,

31,

 25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29,

 29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25,

 - 75 -

 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21,

 26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31,

 26, 26, 27, 31, 29, 25, 28]

A.8: GdHFarmMap (Irregular Data)

module Main(main) where

import Distributed

import Strategies

mapMV :: (a->IO b) -> [a] -> IO ()

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result

--------unshuffle function---------------------

unshuffle :: Int -> [a] -> [[a]]

unshuffle n [] = replicate n []

unshuffle n xs

 | len < n = map (:[]) xs ++ replicate (n-len) []

 | otherwise = zipWith (:) (take n xs) xss

 where xss = unshuffle n (drop n xs)

 len = length xs

 - 76 -

--------shuffle function-----------------------

shuffle :: [[b]] -> [b]

shuffle [] = []

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss)

 where nonEmptyxss = filter (not.null) xss

--

createMVarList :: Int -> MVar [MVar a] -> IO ()

createMVarList 0 ms = return ()

createMVarList n ms = do

 b <- isEmptyMVar ms

 if (b)

 then

 do

 mVar <- newEmptyMVar

 putMVar ms ([mVar])

 createMVarList (n-1) ms

 else

 do

 mVar <- newEmptyMVar

 mVars <- takeMVar ms

 - 77 -

 putMVar ms (mVar:mVars)

 createMVarList (n-1) ms

--

getResult :: [MVar a] -> IO [a]

getResult [] = return []

getResult (x:xs) = do

 rs <- takeMVar x

 rss <- getResult xs

 return (rs:rss)

--farm

gdhFarmMap :: NFData b => (a->b) -> [a] -> IO [b]

gdhFarmMap f ls =do

 ps <- allPEId -- get all the PEs

 let n = length ps

 let ts = unshuffle n ls -- build up a list of task lists

 let remote te mVar = do

 putMVar mVar te `demanding` rnf te

 return ()

 mList <- newEmptyMVar

 createMVarList n mList

 - 78 -

 ms <- takeMVar mList

 let zs = zip3 ps ts ms

 let work (pe,ts,mVar) = do

 let te = map f ts

 rforkIO (remote te mVar) pe

 mapMV work zs

 rs <- getResult ms

 return (shuffle rs)

-- --

fib :: Int -> Int

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2) + 1

main = do

 rs <- gdhFarmMap fib dataL

 print rs

 where

 dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29,

 - 79 -

31,

 25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29,

 29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25,

 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21,

 26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31,

 26, 26, 27, 31, 29, 25, 28]

A.9: GpHParMap (Irregular Data)

module Main(main) where

import Parallel

--

--fib

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib n = fib(n-1) +fib(n-2) +1

--

-- map function

 - 80 -

parMap :: (a->b) -> [a] -> [b]

parMap f [] = []

parMap f (x:xs) = fx `par` fxs `seq` (fx:fxs)

 where

 fx = f x

 fxs = parMap f xs

--

-- main function

main = print (parMap f dataL)

 where

 dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 31,

 25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29,

 29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25,

 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21,

 26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 26, 26, 27, 31, 29, 25, 28]

A.10: GpHChunkMap (Irregular Data)

module Main(main) where

import Strategies

 - 81 -

chunkMap :: Int -> Strategy b -> (a->b) -> [a] -> [b]

chunkMap n strat f xs = map f xs `using` parListChunk n strat

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib n = fib(n-1) + fib(n-2) + 1

main = do

 let tmp = chunkMap 6 rnf fib dataL

 print tmp

 where

 dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 31,

 25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29,

 29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25,

 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21,

 26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 26, 26, 27, 31, 29, 25, 28]

A.11: GpHShuMap (Irregular Data)

module Main(main) where

import Parallel

 - 82 -

import System

import Strategies

--unshuffle function

unshuffle :: Int -> [a] -> [[a]]

unshuffle n [] = replicate n []

unshuffle n xs

 | len < n = map (:[]) xs ++ replicate (n-len) []

 | otherwise = zipWith (:) (take n xs) xss

 where xss = unshuffle n (drop n xs)

 len = length xs

--shuffle function

shuffle :: [[b]] -> [b]

shuffle [] = []

shuffle xss = (map head nonEmptyxss) ++ shuffle (map tail nonEmptyxss)

 where nonEmptyxss = filter (not.null) xss

--fibonacci function

 - 83 -

fib :: Int -> Int

fib 0 = 1

fib 1 = 1

fib n = f (n-1) + f (n-2)

--map function

shuMap :: (Strategy b) -> Int -> (a->b) -> [a] -> [b]

shuMap s _ f [] = []

shuMap s 0 f xs = map f xs

shuMap s 1 f xs = map f xs

shuMap s n f xs = shuffle (parMap (seqList s) (map f) xn)

 where

 xn = unshuffle n xs

--main function

main = print shuMap rnf 6 f dataL

 where

 dataL = [28, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 27, 25, 29, 25, 27, 29, 26, 29, 31,

 25, 28, 29, 27, 30, 32, 28, 29, 30, 25, 28, 31, 26, 26, 27, 25, 29, 25, 27, 29,

 29, 30, 25, 28, 31, 26, 26, 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 30, 25,

 - 84 -

 27, 29, 30, 25, 28, 31, 26, 27, 26, 27, 29, 27, 30, 32, 28, 29, 30, 25, 32, 21,

 26, 27, 26, 27, 29, 27, 30, 32, 29, 30, 25, 28, 31, 26, 26, 27, 31, 29, 25, 28]

A.12: GdHWorkPool (Irregular Data)

module Main(main) where

import Distributed

import MutSig

import Bounded

import PrelIOBase (unsafePerformIO)

import Strategies

import IO

debug :: String -> IO ()

debug s = return ()

-- --

--wrapper

data NFData a => Task a = Task (MVar a) a

parBody :: NFData b => ([Task b] -> IO ()) -> (a->b) -> [a] -> [b]

 - 85 -

parBody way f ls = unsafePerformIO (

 do

 debug "parBody"

 let ms = map f ls -- the map

 ts <- mapM newTask ms -- allocate task for each list item

 forkIO (way ts) -- start evaluating all tasks

 let rs = map waitTask ts -- method to access each tasks result

 return rs)

newTask :: NFData a => a -> IO (Task a)

newTask l = do

 m <- newEmptyMVar

 return (Task m l)

doTask :: NFData a => Task a -> IO ()

doTask (Task m v) = do

 debug "doTask"

 putMVar m v `demanding` rnf v

waitTask :: NFData a => Task a -> a

waitTask (Task m _) = unsafePerformIO (

 do

 - 86 -

 r <- takeMVar m

 putMVar m r -- in case we fetch it again

 return r)

mapMV :: (a->IO b) -> [a] -> IO ()

mapMV f ls = do;mapM f ls;return () -- a mapM which throws away its result

-- --

--workpool

workPool :: NFData b => (a->b) -> [a] -> [b]

workPool f ls = parBody way f ls

 where way ts = do

 ps <- allPEId -- get all the PEs

 c <- newMutex ts -- protect the list of tasks

 let getTaskRmt = lock c safe

 where

 safe [] = return ([],Nothing)

 safe (t:ts) = return (ts,(Just t))

 let pre = 2

 - 87 -

 let worker = do

 b <- newBound pre

 let driver = do

 jt <- getTaskRmt

 writeBound b jt

 case jt of

 (Just t) -> driver

 (Nothing) -> return ()

 let slave = do

 jt <- readBound b

 case jt of

 (Just t) -> do

 doTask t

 slave

 (Nothing) -> return ()

 forkIO driver

 slave

 - 88 -

 mapMV (\p -> rforkIO worker p) ps -- create the workers

-- --

fib :: a -> b

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2)

main = print (workPool fib (replicate 100 30))

B Divide and Conquer Skeletons

B.1 GpHDC

module Main(main) where

import Strategies

--GpHDC

 - 89 -

divConq :: (a->b) -> a -> (a->Bool) -> (b->b->b) -> (a->Bool) -> (a->(a,a)) ->b

divConq f arg threshold conquer divisible divide

 | not (divisible arg) = f arg

 | otherwise = conquer left right `using` strategy

 where

 (lt,rt) = divide arg

 left = divConq f lt threshold conquer divisible divide

 right = divConq f rt threshold conquer divisible divide

 strategy= _ -> if threshold arg

 then (seqPair rwhnf rwhnf) $ (left,right)

 else (parPair rwhnf rwhnf) $ (left,right)

--

--fib

fib :: Int -> Int

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2)

--

--pfib

pfib :: Int -> Int

 - 90 -

pfib n = divConq fib n threshold conq divisible divide

 where

 threshold n = n <= 30

 divide n = (n-1, n-2)

 divisible n = n > 30

 conq m n = m + n + 1

main = print (pfib 42)

B.2 GdHDC

module Main(main) where

import Distributed

import Strategies

--

--fib

fib :: Int -> Int

fib 1 = 1

fib 2 = 1

fib n = fib (n-1) + fib (n-2) + 1

--

--getNextPE

 - 91 -

getNextPE :: MVar [PEId]-> IO [PEId]

getNextPE mv = do

 ms <- takeMVar mv

 if length ms < 1

 then

 do

 putMVar mv []

 return []

 else

 do

 let headPE = head ms

 let ms1 = drop 1 ms

 putMVar mv ms1

 return (headPE:[])

--

--divConqToIp

divConqToIp :: NFData b => (a->b) -> a -> (a->Bool) -> (b->b->b) -> (a->(a,a))

-> MVar [PEId] -> MVar [PEId] -> MVar b ->IO ()

divConqToIp f arg threshold conquer divide mPEs mAllPE mrs

 | threshold arg =do

 let rs = f arg

 - 92 -

 putMVar mrs rs `demanding` rnf rs

 return ()

 | otherwise = do

 nextPEl <- getNextPE mPEs

 if length nextPEl < 1

 then

 do

 let rs = f arg

 putMVar mrs rs `demanding` rnf rs

 return ()

 else

 do

 mL <- newEmptyMVar

 mR <- newEmptyMVar

 right mR (head nextPEl)

 left mL

 mrsR <- takeMVar mR

 mrsL <- takeMVar mL

 let te = conquer mrsL mrsR

 putMVar mrs te `demanding` rnf te

 return ()

 where

 - 93 -

 (lt,rt) = divide arg

 left ml = do

 sfPE <- myPEId

 divConqToIp f lt threshold conquer divide mPEs mAllPE ml

 right mr nextPE = do

 rforkIO (divConqToIp f rt threshold conquer divide mPEs

mAllPE mr) nextPE

--

--deleOwn

delOwn :: Eq a => a -> [a] -> [a]

delOwn own items

 | length items < 1 = []

 | otherwise =

 if((head items) == own)

 then

 drop 1 items

 else

 delOwn own ((tail items) ++ (take 1 items))

--

--divConq

 - 94 -

divConq :: NFData b => (a->b) -> a -> (a->Bool) -> (b-> b-> b) -> (a->(a,a)) ->IO

b

divConq f arg threshold conquer divide

 | threshold arg = do

 return (f arg)

 | otherwise = do

 ps <- allPEId

 myPE <- myPEId

 let psb = delOwn myPE ps

 mPEs <- newEmptyMVar

 mAllPE <- newEmptyMVar

 mrs <- newEmptyMVar

 putMVar mPEs psb

 putMVar mAllPE ps

 rforkIO (divConqToIp f arg threshold conquer divide mPEs mAllPE

mrs) myPE

 rs <- takeMVar mrs

 return rs

--pFib

pFib :: Int -> IO Int

 - 95 -

pFib n = divConq fib n threshold conq divide

 where

 threshold n = n <= 30

 divide n = (n-1, n-2)

 conq l r = l + r + 1

--

main = do

 rs <- pFib 42

 print rs

