
Supporting High-Level Grid Parallel Programming: the Design and

Implementation of Grid-GUM2

A. D. Al Zain∗, P. W. Trinder, G. J. Michaelson

School of Mathematical and Computer Sciences,

Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.

E-mail: {ceeatia,trinder,greg}@macs.hw.ac.uk

H-W. Loidl

Ludwig-Maximilians-Universität München,

Institut für Informatik, D 80538 München, Germany,

E-mail: hwloidl@informatik.uni-muenchen.de

Abstract

Computational Grids are much more complex than classical high-performance architectures: they have high,
and dynamically varying communication latencies, and comprise heterogeneous collections of processing elements.
We argue that such a complex and dynamic architecture is extremely challenging for the programmer to explicitly
manage, and advocate a high-level parallel programming language, like GpH, where the programmer controls only
a few key aspects of the parallel coordination. Such a high-level language requires a sophisticated implementation
to manage parallel execution.

This paper presents the design and implementation of Grid-GUM2, a Grid-specific runtime environment for GpH.
The core of the design are monitoring mechanisms that collect static and partial dynamic information, and new
load management mechanisms that use the information to better schedule tasks on computational Grids. These
mechanisms are built on top of a virtual shared memory (VSM)1, graph-reduction-based computation engine. A
systematic evaluation of the implementation, reported elsewhere, shows acceptable scaleup and good speedups on a
range of computational Grids.

1 Introduction

Computational Grids potentially offer low-cost, yet
large-scale high performance platform. Computational
Grids are most commonly used to execute large num-
bers of independent sequential programs, e.g. under
Condor [7] or LSF Platform [20]. In contrast we con-
sider the parallel execution of programs on computa-
tional Grids, where all of the computational resources
are available to a single large program. The challenge,
however, is that the components of the parallel pro-
gram must communicate and synchronise.

Computational Grids are much harder to utilise

effectively for parallelism than a classical high-
performance computer (HPC). A classical HPC typi-
cally comprises a large number of homogeneous pro-
cessing elements (PEs), communicating using an inter-
connect with uniform, and relatively low, latency. Typ-
ically PEs and interconnect are dedicated to the sole
use of the program for its entire execution. In contrast,
a computational Grid is typically heterogeneous in the
sense that it combines clusters of varying sizes and dif-
ferent clusters typically contain PEs with different per-
formance. Moreover the interconnects are highly vari-
able, with different latencies within, and between, each
cluster. Moreover the interconnect between clusters is

∗This work is supported by Symbolic Computation Infrastructure for Europe EU FP VI I3-026133.
1Virtual shared memory is a programming model, allows processors on a distributed-memory machine to be programmed as if they

had shared memory

1

typically both high-latency and shared, and as a conse-
quence communication latency may vary unpredictably
during program execution.

We argue that computational Grid architectures are
too complex and dynamic for programmers to readily
manage at a relatively low-level, e.g. using the common
SPMD idiom. We advocate specifing the parallelism
at a high-level of abstraction and relying on a sophisti-
cated language implementation to dynamically manage
the low-level parallel coordination aspects on the com-
putational Grid. The high-level language we propose is
Glasgow parallel Haskell (GpH) [17], and its GUM run-
time environment has been engineered to deliver good
performance on classical HPCs and clusters [15].

Noteworthy features of the original GUM design are
a virtual shared memory (VSM), that is implemented
on top of a portable message passing library. The un-
derlying (sequential) computation engine uses graph-
reduction, the favoured mechanism for implementing
functional languages. The combination of the single as-
signment semantics of the abstract machine language
and the high degree of optimisation that is provided
by the sequential computation engine (and compiler),
make an VSM approach, with automatic synchronisa-
tion of tasks and distribution of work viable. In partic-
ular, the coherence problem over several physical mem-
ories is much reduced. The parallel execution model
favours the generation of large amounts of parallelism
so as to hide high remote access time by switching to
other tasks in the meantime. Detailed measurements
in [3] give evidence to the efficiency of this mechanism
on Grid architectures.

This paper presents the design and implementa-
tion of Grid-GUM2, a Grid-specific runtime environ-
ment for GpH and further development of the above
design. Grid-GUM2 has been implemented using Globus
TK2 and MPICH-G2, and a systematic evaluation re-
ported elsewhere shows acceptable scaleup on medium-
scale Grids, e.g. a speedup of 28 on 41 PEs located
in 3 clusters in Scotland and Germany; and good
speedups on all combinations of high/low latency, and
homo/hetero-geneous computational Grids [3]. Sec-
tion 2.1 presents GpH and the GUM implementa-
tions. Section 3 presents the core design elements of
Grid-GUM2, namely monitoring mechanisms that col-
lect static and partial dynamic information, and new
load management mechanisms that use the informa-
tion to better schedule tasks on computational Grids.
Related work is discussed in Section 5, and Section 6
concludes.

2 Background

2.1 Glasgow Parallel Haskell (GpH)

GpH is a semi-explicit parallel functional language,
enabling the programmer to specify parallelism with
relatively little effort using high level parallel coordi-
nation constructs. It is a modest and conservative
extension of Haskell 98, a non-strict purely-functional
programming language [17]. GpH extends Haskell 98
with a parallel composition par, and an expression e1

`par` e2 (here we use Haskell’s infix operator nota-
tion) has the same value as e2. Its dynamic effect is to
indicate that e1 could be evaluated by a new parallel
thread, with the parent thread continuing evaluation
of e2. Results from e1’s evaluation are available in e2

which shares subgraphs evaluated in e1 e.g. through
common variables. GpH programs also sequence the
evaluation of expressions using the seq sequential com-
position. For example a parallel naive nfib function,
based on the fibonacci function, can be written as fol-
lows.

parfib 0 = 1

parfib 1 = 1

parfib n = nf2 ‘par‘ (nf1 ‘seq‘ (nf1+nf2+1))

where nf1 = parfib (n-1)

nf2 = parfib (n-2)

2.2 GUM - A Parallel Haskell Runtime Environment

GUM is a portable, parallel runtime environment
(RTE) for GpH. GUM implements a specific DSM model
of parallel execution, namely graph reduction on a
distributed, but virtually shared, graph. Graph seg-
ments are communicated in a message passing archi-
tecture designed to provide an architecture neutral and
portable runtime environment. Here we describe the
key components for a Grid context, namely program
initialisation and load distribution, for GUM 4.06 using
the PVM communications library [10]. Full descrip-
tions of GUM are available in [12] and [18].

2.3 GUM Thread Management

The unit of computation in GUM is a lightweight
thread, and each logical PE is an operating system pro-
cess that co-schedules multiple lightweight threads as
outlined below and detailed in [12] and [18]. Threads
are automatically synchronised using the graph struc-
ture, and each PE maintains a pool of runnable
threads. Parallelism is initiated by the par combina-
tor. Operationally, when the expression x ’par’ e is
evaluated, the heap object referred to by the variable

x is sparked, and then e is evaluated. By design spark-
ing a reducable expression, or thunk is relatively cheap
operation, and sparks may freely be discarded if they
become too numerous. If a PE is idle, a spark may
be converted to a thread and executed. Threads are
more heavyweight than sparks as they must record the
current execution state.

2.4 GUM Load Distribution

GUM uses dynamic, decentralised, and blind load
management. The load distribution mechanism is de-
signed for a flat architecture with uniform PE speed
and communication latency, and works as follow. If
(and only if) a PE has no runnable threads, it creates
a thread to execute from a spark in its spark pool, if
there is one.

If there are no local sparks, then the PE sends a
FISH message to a PE chosen at random. A FISH
message requests work and specifies the PE requesting
work. The random selection of a PE to seek work from
is termed blind load distribution, as no attempt is made
to seek work from a ’good’ source of work.

If a FISH recipient has an empty spark pool it for-
wards the FISH to another PE chosen at random. If a
FISH recipient has a spark it sends it to the source PE
as a SCHEDULE message. If the PE that receives a
FISH has a useful spark, it sends a SCHEDULE mes-
sage to the PE that originated the FISH, containing
the sparked thunk packaged with nearby graph. The
originating PE unpacks the graph, and adds the newly-
acquired thunk to its local spark pool. To maintain the
virtual graph, an ACK message is then sent to record
the new location of the thunk. A sequence of messages
initiated by a FISH is shown in Figure 1.

2.5 GUM Performance

The GUM implementation of GpH delivers good per-
formance for a range of parallel benchmark applications
on a variety of parallel architectures, including shared
and distributed-memory architectures [16]. GUM’s per-
formance is also comparable with other mature parallel
functional languages [15].

GUM can also deliver comparable performance to con-
ventional parallel paradigms. For example [15] com-
pares the performance of a GpH and a C with PVM
matrix multiplication programs. The program multi-
plies square matrices of arbitrary precision integers,
and the C program uses the Gnu Multi-Precision li-
brary and the GNU C compiler. The sequential C pro-

gram is 5 times faster, but the GpH program has better
speedups and on 16 PEs the C+PVM program is just
1.6 times faster than the GpH program. The sizes of
the GpH and C+PVM programs differ substantially,
though: the C+PVM program is 6 times longer than
the GpH program.

2.6 Grid-GUM1

Grid-GUM1 is a port of GUM to the Grid [2]. The key
part of the port is to utilise the MPICH-G2 commu-
nication library [14] in the GUM communication layer.
MPICH-G2 in turn uses the Globus Toolkit2 middle-
ware, as illustrated in Figure 2.

The heterogeneity and high communications in-
terconnect have a direct impact on Grid-GUM1
performance. On heterogeneous computational
Grids, or those with high communication latency,
Grid-GUM1 only delivers acceptable speedups for low-
communication degree programs like queens2, and
little speedup for high-communication degree pro-
grams like raytracer3. In contrast, on heterogeneous
and high communications interconnect environments,
Grid-GUM1 fails to deliver accpetable speedup. Exten-
sive experimental evaluation of Grid-GUM1 is available
in [2].

3 Grid-GUM2 Design

This section presents the design of Grid-GUM2, an
RTE designed to improve performance on the Grid us-
ing sophisticated load management. This load man-
agement is dynamic, decentralised and mostly passive
using complete static and partial dynamic information
about PEs, processes and network. The salient fea-
tures of Grid-GUM2 are monitoring and adaptive load
scheduling mechanisms.

3.1 Monitoring Information

The adaptive load sheduling implemented in
Grid-GUM2 requires knowledge about static and dy-
namic properties at runtime. Hence Grid-GUM2 is
designed to provide the necessary information using
monitoring mechanisms [1]. For location awareness,
Grid-GUM2 observes all PEs in the parallel system, and
its own PE using the communication library (MPICH-
G2). Acquiring the other data about the current sys-
tem state of one PE needs sophisticated runtime sup-
port. This information is continuously collected by

2queens program places queen chess pieces on the chess board so that they do not check each other.
3raytracer program calculates a 2D image of a scene of 3D objects by tracing all rays in a window.

PE 1

run

spark activate

run

spark

PE 2

FISH

activate

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

SCHEDULE

Figure 1. Fish/Schedule/Ack Sequence

Grid−GUMGpH
Parallel Program

Computational Grid

runs−on

runs−on

High Level Grid RTE

MPICH−G2

compiles−to

Figure 2. Grid-GUM1 System Architecture

PEStatic Table

PE CPU MHz IP Address Sync.Time
1 3343.6 xxx.xxx.149.456 12:04:05.11
2 3343.6 xxx.xxx.149.456 12:04:05.01

.

.

.
.
.
.

.

.

.
.
.
.

11 1800.9 xxx.xxx.566.149 13:04:15.50
12 1804.0 xxx.xxx.566.149 13:04:15.23

PEDynamic Table

PE Load Latency (msec.) Timestamp
1 0.89 1.59 12:05:05.11
2 1.44 1.02 12:05:03.78

.

.

.
.
.
.

.

.

.
.
.
.

11 1.23 10.07 12:04:35.50
12 0.21 12.12 12:04:35.23

Figure 3. Example of PEStatic and PEDynamic Table

the monitoring mechanism and held in local tables
PEStatic and PEDynamic, illustrated in Figure 3,

Static information about PEs participating in the
computation will remain constant during a program
execution and is collected only once at the beginning
of the execution, when all PEs synchronise in a startup
barrier. Synchronisation and the respective local time
are necessary for precise dynamic latency calculation.

While static information is fairly easy to retrieve, it
is more complex to acquire dynamic information about
the participating PEs. In short, each PE has only a
partial picture of the state on other PEs. These par-
tial pictures are exchanged by adding the dynamic in-
formation to the existing messages that need to be ex-
changed anyway. This lightweight approach avoids a
regular broadcast of load information to all other PEs,
which would be prohibitively expensive. To ensure con-
sistency, messages between PEs are timestamped. Ev-
ery time a PE receives a message, it will re-calculate
all dynamic inter-PE information (e.g. latency), and it
will update its table collecting dynamic intra-PE in-
formation (e.g. PE load). Even though this does not
guarantee that all highly loaded PEs will be identified
as such, based on the local information, it drastically
increases the probability that at least one such PE is
known, which is sufficient to perform adaptive load bal-
ancing.

3.2 Adaptive Load Distribution

GUM load management works well on closely con-
nected systems (as discussed in Section 2.4) but, as
measurements show, does not scale well on Grid ar-
chitectures [2]. To address shortcomings of this mech-
anism on wide-area networks, we make modifications
to the thread management component. The key con-
cept in these changes is adaptive load distribution: the
behaviour of the runtime should adjust to both the
static configuration of the computational Grid and to
dynamic aspects of the execution, such as the load of
the individual processors.

The adaptive load distribution deals with: startup,
work locating, and work request handling mechanisms.
The key new policies for adaptive load distribution are
that work is only sought from PEs which are known to
be relatively heavily loaded; to give preference to local
cluster resources; to send additional work to relatively
powerful cluster.

During startup synchronisation, a suitable PE for
the main computation is selected.Grid-GUM2 starts the
computation in the ’biggest’ cluster, i.e. the cluster
with the largest sum of CPU speeds over all PEs in the
cluster, a policy which is equally easy to implement.

The pseudo code in Figures 5 and 4 shows how an
idle processor lPE chooses the target processor for a

 sortBy(compMap,latency,ascending)

 END

 IF orgRatio > rRatio THEN
 rRatio= pe_ratio(rPE)
 WHILE (rPE=get_next_PE(comMap))

 return rPE

END
 return mainPE

FUNCTION choosePE(compMap, orgRatio) {

 FI

Figure 4. Choose PE

IF get_status(lPE)==idle THEN

 evaluate (next_thread(thread_pool(lPE)))
 ELSIF size(spark_pool(lPE)) > 0 THEN

 IF size(thread_pool(lPE)) > 0 THEN

 add_to_thread_pool(s,lPE)
 s = activate(new_spark(lPE));

 update(load, PEDynamic)
 localRatio = (get_speed(lPE)/get_load(lPE))

 FI
 IF size(spark_pool(lPE)) < watermark THEN

 send([FISH, PEDynamic], rPE)
 pe=choosePE(compMap, localRatio)

Figure 5. Work Locating

work locating FISH message, based on latency, load
and CPU speed information. The ratio between CPU
speed and load is computed for all PEs in the compMap
table, representing the Grid environment. Ratios are
checked against the local ratio, and preference is given
to nearby PEs by sorting compMap by latency in as-
cending order. The target PE will be a nearby PEs
that recently exposed a higher load than the sender.

This policy avoids computation hot spots in the sys-
tem, possibly at the expense of creating a short-lived
communication hot spots. But more importantly, the
load balance is improved and overall idle time of the
PEs is reduced. This policy also decreases the total
amount of communication through high-latency com-
munication, which improves overall performance.

The work request handling (Figure 6) introduces a
mechanism to minimise the (high-latency) communi-
cations between different clusters. It is based on in-
formation about the recipient’s (lPE) and the origina-
tor’s (orgPE) clusters, statically determined by their
IP addresses and leading to an accumulated “cluster
power”, the sum of all CPU speeds. If the work re-
quest has originated from a relatively powerful cluster
(orgClustRatio>lClustRatio), then multiple pieces of
work (“sparks”) will be sent in SCHEDULE messages.
Otherwise, the FISH message can be served as usual.
Figure 6 shows how this policy can be included in the
message handling. After updating the dynamic infor-
mation in the PEDynamic table, the power-load ratio
of the sender cluster is compared to that of the re-
ceiver cluster. If the sender is stronger one spark will
be sent. If the receiver is stronger, but the sender’s
cluster is stronger than the receiver’s cluster, then sev-
eral sparks (determined by a call to numSparks) will
be sent. The idea behind this policy is to send a bigger
amount of work to powerful clusters in one go. Al-
though the sender was weak, the local work requesting
mechanism in that cluster will assure a swift redistri-
bution of this batch of work. Note that in this latter

case the system effectively switches from a passive load
distribution policy (work is only sent if it has been re-
quested by another PE) to an active one (work is sent
speculatively). All these mechanisms together achieve
a better balance of the load on a low-latency cluster,
which is even more important than on a high-latency
cluster, where additional work can be retrieved rather
cheaply.

4 Measurements

This section summarises the performance of the
Grid-GUM2 load distribution mechanism on the most
challenging Grid configuration, namely a high-latency
heterogeneous computational Grid. The measurements
in this section are made on three heterogeneous Be-
owulf clusters: Edin1 and Edin2 connected over a low-
latency interconnect, and Muni connected with the
other two clusters over a high-latency interconnect, as
specified in Tables 1 and 2. Because of the relative
cluster sizes, many configurations have 6 Edin1 PEs
for every Muni PE.

The experiments have the limitation of the number
of PEs available at the cooperating sites: Edin1 (E) 30
PEs, Edin2 (E2) 5 PEs, and Muni (M) 6 PEs.

The Grid configurations measured in this section
have very similar mean CPU speeds and latencies,
namely 676Mhz and approximately 9.2ms. Likewise
the configurations have very similar variations in CPU
speed and communications latency, namely approxi-
mately 360MHz and 15.5ms respectively. Moreover,
the input size to the raytracer and parFib programs
is large, and hence it is not possible to obtain a sequen-
tial runtime. As a result the sequential runtime, and
hence both relative speedups and parallel efficiency, are
computed from the runtime on a 7 PE configuration.
That is the raytracer runtime from the 7E row of Ta-
ble 3, the parFib from the 6E1M Grid-GUM2 row of
Table 4.

rM = received_message(orgPE,lPE)

 update((orgPE |−> get_latency(rM)), PEDynamic)
 update((orgPE |−> get_load(rM)), comMap)

IF message_type(rM)==FISH THEN

 lRatio= pe_ratio(lPE); orgRatio = pe_ratio(orgPE)
 IF size(spark_pool(lPE))== 0 THEN
 send([FISH, PEDynamic], choosePE(compMap,orgRatio))
 ELSE /* local work available */

 ELSE
 lClusterRatio = cluster_ratio(clusterId(lPE))

 IF clusterId(orgPE) == clusterId(lPE) THEN
 s = get_next_sparks(1,spark_pool(lPE)))

 IF orgRatio > lRatio THEN

 send([SCHEDULE, s, PEDynamic], orgPE)

 orgClusterRatio = cluster_ratio(clusterId(orgPE))

 IF orgClusterRatio > lClusterRatio THEN

 spark_pool(lPE))
 s = get_next_sparks(numSparks(orgClusterRatio,lClusterRatio),

 send([SCHEDULE, s, PEDynamic], orgPE)

 FI /* forward FISH */

 ELSE
 send([FISH, PEDynamic], choosePE(compMap,orgRatio))

 IF message_age(rM) > age_limit() THEN
 ELSIF orgRatio <= lRatio THEN

 send([FISH, PEDynamic], pe)

 send([NULL, PEDynamic], orgPE)
 ELSE
 pe = choosePE(compMap, orgRatio)

 FI
 FI /* message==FISH */

Figure 6. Work Request Handling

CPU Cache Memory
PEs

MHz kB Total kB

Edin1 534 128 254856 32

Edin2 1395 256 191164 6

Muni 1529 256 515500 7

Table 1. Beowulf Cluster Architectures

Edin1 Edin2 Edin3 SBC Muni

Edin1 0.20 0.27 0.35 2.03 35.8

Edin2 0.27 0.15 0.20 2.03 35.8

Muni 35.8 35.8 35.8 32.8 0.13

Table 2. Inter-Cluster Latencies (ms)

4.1 raytracer

The raytracer is a realistic parallel program with
limited amounts of highly-irregular parallelism and
a relatively high communication degree. Table ??

compares the scalability of raytracer program un-
der GUM and Grid-GUM1. The table shows that GUM

and Grid-GUM1 deliver very similar performance up
to 28PEs, even although Grid-GUM1 is executing on a
high-latency heterogeneous computational Grid. More
significantly, the last two cases show that when the size
of the local cluster limits the GUM speedups, Grid-GUM1
can scale further using PEs in a remote cluster.

Table 3 compares the scalability and parallel effi-
ciency of the raytracer program under Grid-GUM1
and Grid-GUM2 on a high latency heterogeneous com-
putational Grid. The efficiency comparison of the two
cluster results relies on the similarity of the architec-
tures, i.e. 6 Edinburgh PEs for every Munich PE,
and obviates the requirement for a sophisticated cal-
culation of heterogenous efficiency. The table shows
that Grid-GUM2 always improves on Grid-GUM1 per-
formance. Moreover, although the speedup improve-
ment is modest on small Grids it increases with Grid
size. For example on the largest, 41-PE, configuration
Grid-GUM2 gives a 46% improvement: i.e. a runtime of
1133s compared with 1652s for Grid-GUM1.

Although Grid-GUM2 is always more efficient than
Grid-GUM1, the absolute efficiency of Grid-GUM2 falls
significantly to just 38% on a 35 PE cluster. While
some of the loss of efficiency is attributable to the high-

level DSM programming model, reader’s should recall
that raytracer is a challenging program, i.e. exhibit-
ing highly-irregular parallelism and high levels of com-
munication, executing on a challenging architecture: a
high latency heterogeneous Grid. Moreover Table 4
reports rather better efficiency for a less challenging
program.

4.2 parFib

In contrast to the realistic raytracer program,
parFib is an ideal parallel program with very large
potential parallelism and a low communication de-
gree. Table 4 compares the scalability and efficiency
of parFib under Grid-GUM1 and Grid-GUM2 on a high
latency heterogeneous computational Grid. It shows
that both Grid-GUM1 and Grid-GUM2 deliver good, and
very similar speedups. The speedups is excellent up to
21 PEs, but declines thereafter. Speedup is still in-
creasing even between 35 and 41 PEs, with a maxi-
mum speedup of at least 27 on 41 PEs. Grid-GUM2
is again always more efficient than Grid-GUM1. More-
over while the drop in absolute efficiency to 65% on 35
PEs is substantial it is far less than for the challeng-
ing raytracer. Section ?? suggests that even better
speedups and efficiency would be obtained on either an
homogeneous Grid, or a low latency Grid.

The good Grid-GUM1 performance reported in Ta-
ble 4 demonstrates that sophisticated load distribution
is not required for parFib. That the Grid-GUM2 per-
formance is so similar to the Grid-GUM1 performance

C
a
se No

Config.
Grid-GUM1 Grid-GUM2

PEs Rtime Spdup Eff. Rtime Spdup Eff.

1 7 6E1M 2530 7 97% 2470 7 100%

2 14 12E2M 2185 8 56% 1752 10 70%

3 21 18E3M 1824 10 45% 1527 12 53%

4 28 24E4M 1776 10 34% 1359 13 45%

5 35 30E5M 1666 11 29% 1278 14 38%

6 41 5E230E6M 1652 11 1133 16

Table 3. raytracer: Scalability

C
a
se No

Config.
Grid-GUM1 Grid-GUM2

Impr%
PEs Rtime Spdup Eff. Rtime Spdup Eff.

1 7 6E1M 3995 7 93% 3737 7 100% 0%

2 14 12E2M 1993 14 93% 2003 14 93% 0%

3 21 18E3M 1545 18 80% 1494 19 83% 5%

4 28 24E4M 1237 23 75% 1276 22 73% -4%

5 35 30E5M 1142 24 65% 1147 24 65% 0%

6 41 5E230E6M 1040 27 1004 28 4%

Table 4. parFib: Scalability

shows that even on medium-scale computational Grids,
the overheads of Grid-GUM2’s load distribution mecha-
nism remain minimal.

5 Related Work

Currently computational Grids are most commonly
used to execute large numbers of independent sequen-
tial programs, and a number of systems exist to support
this model including Condor [7], Maui [13], Legion [11].
In such systems the computational power available for
a single program is bounded by the speed of the fastest
PE in the Grid. In contrast the challenge we address is
to effectively execute components of a single program
in parallel on a computational Grid. Under parallel
evaluation the computational power available to a pro-
gram is bounded by the sum of all PEs in the Grid.

High-level coordination languages/frameworks are
being used to compose Grid applications from large
scale components, for example the ASSIST [4] and
GrADS [8] projects. The key idea is that the coordi-
nation language or framework automatically manages
the Grid complexities like resource heterogeneity, avail-
ability, network latency. The components, which may
be sequential or parallel, require minimal changes to
be deployed on the Grid. In contrast our approach de-
scribes the computation, as well as the coordination in
a single high level language, Glasgow parallel Haskell
(GpH) [17].

Algorithmic skeletons are being used to provide
high-level parallelism on computational Grids. The
essence of the idea is to provide a library of higher-
order functions that encapsulate common patterns of
parallel Grid computation. Parallel applications are
constructed by parameterising a suitable skeleton with
sequential functional units. Examples of this approach
include work groups lead by Danelutto [5], Cole [9] and
Gorlatch [6]. In contrast to the fixed set of skeletons,
it is possible to define new coordination constructs in
GpH, as outlined in section 2.1.

Perhaps the approach most closely related to ours is
to port a high level distributed programming language
to the Grid. Both Ibis [19] and Gorlatch’s group [6]

port Java to the Grid and use Remote Method Invo-
cation (RMI) as the programming abstraction. Coor-
dination in GpH is higher-level than RMI and more
extensible.

An early design of Grid-GUM2 has been published
in [1]. A systematic evaluation of the performance
of Grid-GUM2 and Grid-GUM1 in combinations of
high/low latency, and homo/hetero-geneous computa-
tional Grids appear in [3] and [2] respectively.

6 Conclusion

We have presented the design of Grid-GUM2, a so-
phisticated Grid-specific runtime system for the GpH
high-level parallel language. The key elements of the
design are monitoring mechanisms that collect static
and partial dynamic information, and new, adaptive
load management mechanisms. These provably im-
prove performance on Grid architectures, while main-
taining the original virtual shared memory program-
ming paradigm and using agressive optimisations on
the sequential code. Both monitoring and load man-
agement are bespoke lightweight mechanisms that do
not use generic Grid services. However communication
between, and authentication of, the PEs is provided
by Grid connective layer services, namely MPICH-G2,
Globus TK2, and RSL.

Measurements of Grid-GUM2 show that it delivers
greatest performance improvements on the most chal-
lenging architectures, e.g. a 60% improvement on a
heterogeneous high latency computational Grid [3].
On low latency homogeneous computational Grids,
Grid-GUM2 delivers an excellent relative speedup of
17.6 on 16 PEs for a simple program (parallel fac-
torial). On low latency heterogeneous computational
Grids Grid-GUM2 improves the performance most of our
benchmark programs On high latency homogeneous
and heterogenous computational Grids Grid-GUM2 im-
proves the performance of all our benchmark pro-
grams on all Grid configurations measured. In short,
Grid-GUM2’s dynamic adaptive load management tech-
niques are effective as they improve or maintain the

performance of all the benchmark programs on all Grid
configurations.

Grid-GUM2 has a number of limitations. It is de-
signed to work in a closed computational Grid, i.e. it is
not possible for other machines to join the computation
after it has started. Moreover it is tuned for a classical
high-performance setup, i.e. to be most effective on: a)
dedicated computational Grid where only one program
is executed at a time, and b) a non-preemptive envi-
ronment: each program executes to completion without
interruption.

There are several avenues to extend this research.
One avenue is to implement larger parallel programs,
and our current work entails parallelising large com-
puter algebra computations as part of the SCIEnce
project. A second research avenue is to investigate the
scalability of Grid-GUM2 on large computational Grids,
e.g. with 100s of PEs. Such a Grid is likely to be hetero-
geneous and high-latency, and we hope to make these
measurements in the SCIEnce project.

Acknowledgement

We would like to thank Kevin Hammond for the
constructive feedback.

References

[1] A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michael-
son. Managing Heterogeneity in a Grid Parallel Haskell
. In International Conference on Computational Sci-
ence (ICCS 2005), LNCS. Springer, 2005.

[2] A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michael-
son. Managing Heterogeneity in a Grid Parallel
Haskell. Journal of Scalable Computing: Practice and
Experience, 7(3):9–26, 2006.

[3] A. D. Al Zain, P. W. Trinder, G. J. Michaelson, and
H.-W. Loidl. Evaluating a High-Level Parallel Lan-
guage (GpH) for Computational Grids. IEEE Trans-
actions on Parallel and Distributed Systems, 2007. TO
APPEAR.

[4] M. Aldinucci and M. Danelutto. Advanced skeleton
programming systems. Parallel Computing, 2006. to
appear.

[5] M. Aldinucci, M. Danelutto, and Dünnweber. Opti-
mization Techniques for Implementing Parallel Sck-
eletons in Grid Environments. In CMPP’04 — Intl.
Workshop on Constructive Methods for Parallel Pro-
gramming, Stirling, Scotland, July 2004.

[6] M. Alt and S. Gorlatch. Adapting java rmi for grid
computing. Future Generation Computer Systems,
21(5):699–707, 2005.

[7] J. Basney and M. Livny. High Performance Clus-
ter Computing, volume 1, chapter Deploying a High
Throughput Computing Cluster. Prentice-Hall, 1999.

[8] F. Berman, A. Chien, J Cooper, K.and Dongarra,
I Foster, D. Gannon, L. Johnsson, K. Kennedy,
C. Kesselman, J. Mellor-Crummey, D. Reed, and
L.and WolskiMatteo R. Torczon. The GrADS Project:
Software Support for High-Level Grid Application De-
velopment. Int. Journal of High Performance Com-
puting Applications, 15(4):327–344, 2001.

[9] Murray Cole. Bringing skeletons out of the closet: a
pragmatic manifesto for skeletal parallel programming.
Parallel Comput., 30(3):389–406, 2004.

[10] Al Geist, Adam Beguelin, Jack Dongerra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam. PVM:
Parallel Virtual Machine. MIT, 1994.

[11] A.S. Grimshaw and W.A. Wulf. The Legion Vision of
a World-Wide Virtual Computer. Communications of
the ACM, 40(1):39–45, 1997.

[12] K. Hammond, J.S. Mattson Jr., A.S Partridge, S.L.
Peyton Jones, and P.W. Trinder. GUM: a Portable
Parallel Implementation of Haskell. In IFL’95 — Intl
Workshop on the Parallel Implementation of Func-
tional Languages, September 1995.

[13] D.B. Jackson. Advanced Scheduling of Linux Clusters
using Maui. In USENIX’99, 1999.

[14] N. Karonis, B. Toonen, and I. Foster. MPICH-G2:
a grid-enabled implementation of the message pass-
ing interface. Journal Parallel Distributed Computing,
63(5):551–563, 2003.

[15] H-W. Loidl, F. Rubio Diez, N.R. Scaife, K. Hammond,
U. Klusik, R. Loogen, G.J. Michaelson, S. Horiguchi,
R. Pena Mari, S.M. Priebe, A.J. Rebon Portillo, and
P.W. Trinder. Comparing Parallel Functional Lan-
guages: Programming and Performance. Higher-order
and Symbolic Computation, 16(3):203–251, 2003.

[16] H-W. Loidl, P. W. Trinder, K. Hammond, S. B. Ju-
naidu, R. G. Morgan, and S. L. Peyton Jones. Engi-
neering Parallel Symbolic Programs in GPH. Concur-
rency — Practice and Experience, 11:701–752, 1999.

[17] P.W. Trinder, K. Hammond, H-W. Loidl, and S.L.
Peyton Jones. Algorithm + Strategy = Parallelism. J.
of Functional Programming, 8(1):23–60, January 1998.

[18] P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S
Partridge, and S.L. Peyton Jones. GUM: a Portable
Parallel Implementation of Haskell. In PLDI’96 —
Programming Languages Design and Implementation,
pages 79–88, Philadelphia, PA, USA, May 1996.

[19] Rob V. van Nieuwpoort, Jason Maassen, Gosia
Wrzesinska, Rutger Hofman, Ceriel Jacobs, Thilo Kiel-
mann, and Henri E. Bal. Ibis: a flexible and effi-
cient Java based grid programming environment. Con-
currency and Computation: Practice and Experience,
17(7-8):1079–1107, June 2005.

[20] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia:
a Load Sharing Facility for Large, Heterogeneous Dis-
tributed Computer Systems. Software - Practise and
Experience, 23(12):1305–1336, 1993.

