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Abstract
This paper presents a number of flexible parallelism control mech-
anisms in the form of evaluation strategies for tree-like data struc-
tures implemented in Glasgow parallel Haskell. We achieve addi-
tional flexibility by using laziness and circular programs in the co-
ordination code. Heuristics-based parameter selection is employed
to auto-tune these strategies for improved performance on a shared-
memory machine without programmer-specified parameters. In
particular for unbalanced trees we demonstrate improved perfor-
mance on a state-of-the-art multi-core server: giving a speedup of
up to 37.5 on 48 cores for a constructed test program, and up to
15 for two other non-trivial applications using these strategies, a
Barnes-Hut implementation of the n-body problem and a sparse
matrix multiplication implementation.

Categories and Subject Descriptors D.3.2 [Programming lan-
guages]: Concurrent, distributed, and parallel languages; D.3.2
[Programming languages]: Applicative (functional) languages;
E.1 [Data structures]: Trees; C.1.4 [Processor architectures]: Dis-
tributed architectures

Keywords Parallel Haskell, Dynamic parallelism control, Quad-
trees.

1. Introduction
Evaluation strategies [17, 28] make it easy to specify parallel op-
erations on flat data structures, for example, lists in Haskell. In-
deed the existing library has a number of strategies for lists in-
cluding parList for element-wise parallelism and parListChunk
for grouping computations and thus improving the granularity of
the parallelism. Parallel sub-components are usually homogeneous
and work well with a basic implementation. The existing library
also specifies generic strategies for traversable types. However,
these achieve significantly worse performance on irregular input
data, which is notoriously difficult to parallelise. In the Data Par-
allel Haskell (DPH) extension [23], for example, flattening trans-
formation techniques are used for nested arrays and other irregu-
lar structures to enable even partitioning and hence even distribu-
tion of work across processors. A similar transformation is used
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in the Manticore implementation of Parallel ML [5]. While this is
efficient, it necessitates change to the compiler and base libraries,
heavy use of arrays and intermediate data structures, and often em-
ploys mutable operations to achieve the best results. Our design
goal is to achieve improved performance through more flexible
management of the available parallelism, without having to modify
the structure of the program or relying on compiler-driven source
code transformations.

In our approach to parallelism we take a data-centric view
and provide strategies as traversals over tree-like data structures.
This offers the perspective of good re-use of such strategies for
different applications, and a clean separation of computation from
coordination, which was one of the main design goals for the
existing evaluation strategies module.

In this paper we develop novel parallelism control mechanisms,
using circular programs, and embed them into evaluation strategies
for tree-like data structures based on the version described in [17].
Most notably, we use the following core, functional programming
techniques to achieve flexible parallelism in our implementation:

• We provide traditional parallelism control mechanisms, such as
thresholding, to limit the amount of parallelism.

• We provide advanced fuel splitting mechanisms, which prove to
be more flexible in throttling parallelism.

• For the administration of the parallel execution we add annota-
tions to the data structure and perform lazy size computation.

• We use circular programs to pass fuel down and up a tree [6].
• We use heuristics-based parameter selection for advanced

strategies to select their specific control parameters.
• We demonstrate our strategies on a quad-tree representation and

implement a Barnes-Hut algorithm and sparse matrix multipli-
cation using quad-trees.

More widely, the main contributions of this paper are:

• The development of advanced parallelism control mechanisms,
using lazy evaluation techniques, and their integration into the
evaluation strategies framework.

• Implementations of such strategies in Glasgow parallel Haskell,
using a generic, k-ary tree representation.

• The comparative study of the performance of these strategies
and heuristics, using a Barnes-Hut and a sparse matrix multi-
plication algorithm.

• The development of a data-centric approach to parallelisation
that preserves existing data structures and controls parallelism
dynamically.



2. Background
Glasgow parallel Haskell (GpH) provides a single primitive to
specify pure parallelism:

1 par::a->b->b

The par combinator simply sparks the computation of a to be
potentially evaluated in parallel with b. A spark is only a pointer
to potential work and there is no guarantee that a is computed
in parallel. It is up to the system to decide if this annotation is
converted to a thread. In addition to par, a coordination combinator
pseq (having the same type definition as par) imposes a left-to-
right order of evaluation, which is intentionally left unspecified in
Haskell but required to arrange computations for parallel execution.

Evaluation strategies [17, 28] were introduced as a layer of ab-
straction on top of the basic primitives for parallel computation in
Haskell. Strategies allow the separation of coordination from com-
putation aspects, resulting in more structured parallel programs. A
strategy is simply a function that takes an argument and lifts it to
a context, Eval in this case. Eval encapsulates the parallel coor-
dination of the argument in a monad. By using runEval, we can
extract its value, which also launches any order of evaluation spec-
ified in the context. It is important that the extracted value is an
identity of what was initially passed as argument. Basic strategies
available include r0 (no evaluation), rseq (evaluation to WHNF),
rdeepseq (full evaluation). While these specify evaluation-degree
and -order, the rpar strategy specifies parallelism, i.e. defining that
an expression can be evaluated in parallel.

Listing 1: Evaluation Strategies
1 data Eval a = Done a
2

3 runEval ::Eval a->a
4 runEval (Done x) = x
5

6 type Strategy a = a->Eval a
7

8 rseq , rpar:: Strategy a
9 rseq x = x ‘pseq ‘ Done x

10 rpar x = x ‘par ‘ Done x
11

12 using::a->Strategy a->a
13 x ‘using ‘ strat = runEval (strat x)
14

15 -- e.g. 1 evaluate x in parallel with y
16 compute x y = (x+y) ‘using ‘ strat
17 where
18 -- custom strategy definition
19 strat res = do
20 rpar x
21 rseq y
22 return res
23

24 -- e.g. 2 parallel map
25 parMap strat f xs =
26 map f xs ‘using ‘ parList strat

There are a number of existing strategies defined in the library
for basic types, and list data structure. The preferred way of ap-
plying a strategy to a value is through the using combinator. For
instance, in the parallel map definition in Listing 1, parList spec-
ifies data-oriented parallelism over a list. It also demonstrates the
use of higher-order functions to parameterise strategies. Strategies
can be composed using the dot combinator (e.g. strat2 ‘dot‘
strat1). This is an important aspect in achieving clear separation
of parallel specification in an algorithm.

3. Related Work
Our work follows the direction of high-level abstractions for effi-
cient, flexible parallel execution, as spear-headed by algorithmic
skeletons [11] and parallel patterns [18]. This direction has be-
come more prominent in the search of an easy-to-use technique
that can be applied to moderately parallel desktop machines. Suc-
cessful parallel pattern libraries and packages are Microsoft’s Task
Parallel Library [8], Intel’s Threading Building Blocks [24], and the
Cilk language for light-weight parallelism [10], now also included
in Intel’s compiler distributions. These techniques are increasingly
used by practitioners and promoted in textbooks such as in [19]. In
comparison, the specific flavour of our abstractions is a data-centric
one, aiming to provide parallel implementations of common opera-
tions over data structures, that can be re-used in a range of different
applications.

Our approach shares the design goals of high-level data-parallel
languages, such as the aforementioned DPH [23], the purely func-
tional array programming languages SAC [14] and the earlier, influ-
ential NESL [7] language for nested data parallelism. However, we
focus on structures with irregular data distribution, for which static
decisions for managing parallelism are far more difficult. There-
fore, our control mechanisms are mainly dynamic and low-level
orchestration is entirely delegated to the runtime-system.

Okasaki [22] gives the most comprehensive treatment of purely
functional data structures available. High sequential efficiency, as
provided by these implementations, is the basis for efficient paral-
lel implementations. Other work on data structures in a functional
context, especially graphs, builds on a model of deterministic par-
allelism and the concept of LVars for explicit synchronisation [20].
This work uses a monadic programming style in Parallel Haskell,
whereas our style of parallel programming focuses on pure func-
tions and the clear separation of coordination from computation
concerns.

Various modern parallel programming language designs em-
phasise the importance of inherently parallel data structures. One
such language is X10 [9], which is an instance of the class of
Partitioned Global Address Space (PGAS) languages. These lan-
guages provide a shared address space, mainly for storing large,
flat data structures such as arrays, with language constructs for dis-
tributing the data structure over the available machines in a dis-
tributed memory setting. Predefined distribution policies are typi-
cally block-distribution or cyclic distribution. The algorithms tend
to be data-centric, structured around this distribution, with trans-
parent, system-controlled access to remote partitions, and implicit
synchronisation and communication among the available threads.
More main-stream instances of this programming model are Uni-
fied Parallel C (UPC) [13] and Co-Array Fortran [21].

Systems for implicit parallelism, such as [16], emphasise dy-
namic and automatic tuning of parallelism to achieve scalable per-
formance. Heuristics to determine optimal program parameters for
execution utilise information available at run-time and thus en-
able dynamic auto-tuning of parallel strategies. As an implicitly-
threaded system, the Manticore implementation of parallel ML uses
lazy tree splitting [4] to automatically manage size and number of
the parallel threads in the system.

In our approach to control parallelism in a more flexible way,
we use a fuel splitting technique to distribute resources to sub-
computations. This technique is related to the use of engines in
Scheme 84 as a notion of timed preemption for processes [15].
An engine is given a quantity of fuel and computation lasts until
fuel runs out. In our context, parallelism generation, rather than
evaluation, is based on fuel being available for a particular sub-tree.

In the age of multi-cores as standard CPU hardware, the need
for concurrent data structures, that allow cheap, explicit multi-
threading, or inherently parallel data structures, that provide im-



plicitly parallel operations over them, is widely recognised, and
summarised in [25]. When using such data structures on system-
level, for example, providing a stack, it is important that key prop-
erties are relaxed in order to minimise the need for explicit locking,
to reduce overhead of basic operations and thus enable scalable
parallelism.

4. Data structures
One of our main design goals is to develop data-centric parallelism
control mechanisms that can be applied across a range of com-
monly used data structures and that are not tied to a particular ap-
plication. We therefore focus on several variants of tree data struc-
tures, as widely used data structures with potentially irregular dis-
tribution of its contents. We note, however, that techniques such as
fuel-based control, should apply to graph-structures as well.

Two important decisions in defining the tree data structure are
the arity of the nodes and the value attribution (to nodes or leaves).
In order to remain flexible, we parameterise our definition over both
aspects, and arrive at the following generic definition of a k-ary
tree [12]:

Definition 1 (k-ary Tree). A tree of the form

1 data Tree k tl tn = E | L tl
2 | N tn (k (Tree k tl tn))
3 type QTree tl tn = Tree Quad tl tn

with data elements of type tl in leaf nodes and data elements of
type tn in the inner nodes is called a k-ary tree.

Note that in this definition the number of sub-trees is param-
eterised by introducing a type variable k to specify the sub-tree
container. Using a 4-tuple, defined as Quad, gives the well-known
quad-tree data structure, which we will use in the Barnes-Hut sim-
ulation [3] in Section 6. Other common choices for the container
argument are: a 2-tuple, defined as Bin, for a binary tree; an 8-
tuple, defined as Oct, for oct-tree (use in 3D nbody simulation);
and [] for a rose tree with potentially varying arities in different
nodes.

From now on we focus on defining strategies on this k-ary tree
data structure in order to enable parallelism over the data structure,
without fixing the amount of parallelism or tying the evaluation to
one class of architectures.

4.1 Basic strategies
The basic strategy parTree creates a spark for every element in
the tree. Depending on whether the tree is node- or leaf-valued,
the variants parTreeL and parTreeN will spark just leaf or node
elements, respectively. In our discussion we focus on the most
generic version, parTree.

Note that the implementation of parTree in Listing 2, uses the
Traversable class to arrange the traversal in a way that is not
restricted to a tree data structure. Furthermore, the definition of
parTree demonstrates that we can easily compose more complex
strategies from simpler ones: we pass (rpar ‘dot‘ strat) as
argument to the sequential evalTree strategy, specifying that each
element should be evaluated in parallel, using the parameter strat
to specify evaluation degree. This compositionality is inherited
from the design of evaluation strategies as described in [17].

Listing 2: Data element sparking
1 evalTree :: (Traversable k) =>
2 Strategy a -> Strategy (Tree k a a)
3 evalTree = traverse
4

5 -- parallel evaluation of inner node and leaf
values

6 parTree :: (Traversable k) =>
7 Strategy a -> Strategy (Tree k a a)
8 parTree strat = evalTree (rpar ‘dot ‘ strat)

Note that parTree does not attempt to control, or throttle, spark
creation. Thus, if the tree is large this results in an abundance of
parallelism, which can be detrimental to its performance due to
the excessive overhead. Additionally, the current definition applies
the same strategy to both inner and leaf nodes. This can be easily
changed by adding a new parameter to the definition specifying dif-
ferent strategies for the two types of node, for example, Strategy
a -> Strategy b -> Strategy (Tree k a b), and tweak-
ing the traversal function definition.

Node-level sparking In order to control granularity, we want to
spark branches or sub-trees of appropriate size instead of each indi-
vidual element in the tree. This is particularly useful for very large
tree data structures where the overhead of element-wise sparking
over-shadows the performance gain expected from parallelisation.
The concept is analogous to chunking to ensure sufficient amount of
work for each thread in the context of list data structures, but iden-
tifying which branches are of adequate size is tricky. We cover this
discussion in the next section where we use a number of dynamic
techniques to throttle the amount of parallelism that is generated.

Listing 3: Node-level or branch sparking
1

2 parTreeBranch :: Strategy (Tree Quad tl tn)
3 -> Strategy (Tree Quad tl tn)
4 parTreeBranch strat (N n (Q nw ne sw se)) =
5 (N n <$> (Q <$> parTreeBranch strat nw
6 <*> parTreeBranch strat ne
7 <*> parTreeBranch strat sw
8 <*> parTreeBranch strat se))
9 >>= (rpar ‘dot ‘ strat)

10 parTreeBranch _ (L x) = pure $ L x
11 parTreeBranch _ E = pure E

In Listing 3, sparks are created to evaluate branches in parallel.
In this version, no restriction is placed yet, so all branches (i.e.
inner nodes) are sparked. Therefore, for quad-trees, a branch will
compute between 1 and 4 elements in parallel. Note the strategy
type is changed as the first argument is applied to a branch, i.e.,
of a Tree type. Note also that for this implementation we need to
specify k is a Quad so pattern matching can be done, unlike the
more generic implementation of parTree and variants.

5. Lazy Strategies
Uncontrolled parallelism creates overheads through generation of
excessive sparks in GpH – many of which, if converted, will carry
the usual thread management cost, and many will be overflown and
never taken to execution. This negatively affects parallel perfor-
mance. In this section, we present several mechanisms to throttle
the amount of parallelism.

Table 1 gives an informal overview of the strategies that we de-
velop, classifying them by some basic properties of their dynamic
behaviour. The information flow column indicates whether admin-
istrative information for controlling parallelism is passed down or
up. For example, depth-based thresholding passes a depth counter
down the tree. Fuel-based version can also pass information up,
if resources have been unused. The context column indicates how
much of context information is required in a node to implement this
strategy. For example, depth-based thresholding requires only in-
formation about the length of the path to the current node, whereas
a lookahead strategy examines a fixed number of nodes in the sub-
trees to make its decision. In the extreme, a perfect-split strategy re-
quires complete (global) size information about the tree, and there-
fore incurs the highest amount of overhead. The final two columns



Strategy Type Info flow Context Parameter Heuristics
parTree element-wise sparks - - - -
parTreeDepth depth threshold down path length d yes
parTreeSizeAnn annotation up global - -
parTreeLazySize lazy size check down (lazy) local s yes
parTreeFuelAnn fuel with annotation f yes
- pure equal fuel distr down local
- lookahead check next n nodes down/limited N N
- giveback circular fuel distr up/down (lazy) local
- perfectsplit perfect fuel distr down global

Table 1: Strategies overview and classification

specify the parameters that are used in the various strategies to
control their behaviour and whether the parameter can be auto-
specified by heuristics in our implementation. We will elaborate
on these aspects in the following sections.

5.1 Mechanisms
Thresholding: A common technique is depth-based thresholding
in order to throttle parallelism. This involves specifying an addi-
tional parameter d used to limit sparks creation to the top d levels
of a tree. This is most effective for a regular tree layout and small
d as the number of sparks increases exponentially at each level.

Alternatively, size-based thresholding checks sub-nodes for a
minimum size s before sparking. For this, the size information
needs to be readily encoded in the inner nodes of the tree, which
might be done by the application anyway. Otherwise, a first pass to
annotate the tree is required.

Fuel Splitting: Depth-based thresholding works well under the
assumption that the major source of parallelism occurs within depth
d in the tree. Spark creation is controlled, but still statically de-
termined. The mechanism to control the amount of parallelism is
fairly crude, since the number of sparks is exponential in the depth
of the tree.

Fuel splitting is based on the notion of fuel – a limited, explicit
resource that is used to throttle parallelism more flexibly. Fuel split-
ting offers the flexibility of defining custom functions specifying
how fuel is distributed among sub-nodes, thus influencing which
path in the tree will benefit most of the parallel evaluation.

Bi-directional fuel transfer: In order to enhance flexibility in
splitting and transferring fuel, a bi-directional mechanism of trans-
fer is advantageous. This way, fuel that is unused in one sub-tree,
can be used in another sub-tree. To achieve this behaviour, we need
lazier representation of numbers, for example, implementing Peano
number sequence through the use of list of unit type for fuel instead
of integer type. This enables us to check sub-node bounds, for ex-
ample, if it has at least n elements. This does not force the entire
sub-node to normal form to return true or false.

One instance of strategy definition relies on circular program
definition [2] enabled only in a lazy language. Specifically, we
use it in a fuel distribution function with a giveback technique,
i.e. unused fuel by sub-nodes is pushed back up in the tree to
be re-distributed elsewhere. We discuss this technique in detail in
Section 5.5.

Abstraction: By defining splitting functions separate from the
strategy definition, we can parameterise strategy to custom-defined
split functions. Similar concept as used for clustering strategies in
the original library.

Annotations: Size (if not readily encoded) and fuel information
need to be attached to the tree in an annotation run. Therefore, some
strategies are defined over an annotated tree type (AnnTree), which

is the same as Tree, except with an added type constructor on the
node of a tree, as opposed to adding another field in its definition.
Size annotations are synthesised from bottom-up, making sure that
the tree is annotated in a single pass. Fuel annotations depend on
the distribution function. For this reason, the context for the fuel-
based strategies differ. Some require size information, for example,
perfect split, and others require only local lookup. Depending on
how the splitting works, the annotation function will assign an
amount of fuel at each node, until fuel runs out. At present, we settle
for a simple annotation function, with parameterised split function
for fuel distribution. More generic annotation implementations, for
example, as used for the AST for Hume space analysis, or attribute-
grammar [26] style have been investigated.

Heuristics: The advanced strategies are parameterised by addi-
tional variables to specify the depth d, size s, and fuel f thresh-
olds. These can be programmer-specified or determined through a
heuristics-based parameter selection based on a number of other
parameters, for instance, input size, number of PEs, etc. The latter
ensures that available information are used to tune the strategies.

5.2 Depth-thresholding (parTreeDepth)
The simple parTreeDepth strategy, shown in Listing 4, introduces
some degree of control of spark creation by using depth as a
threshold for parallelism generation. This technique is frequently
used for throttling parallelism on regular trees. The depth threshold
limits sparking of sub-nodes to evaluate in parallel at the top d
levels in the tree.

Listing 4: Depth-based thresholding
1 parTreeDepth ::Int ->Strategy (QTree tl)
2 ->Strategy (QTree tl)
3 parTreeDepth 0 _ t = return t
4 parTreeDepth d strat (N (Q nw ne sw se)) =
5 (N <$> (Q <$> parTreeDepth (d-1) strat nw
6 <*> parTreeDepth (d-1) strat ne
7 <*> parTreeDepth (d-1) strat sw
8 <*> parTreeDepth (d-1) strat se))
9 >>= rparWith strat

10 parTreeDepth _ _ t = return t

The strategy is a recursively-defined function which stops gen-
erating sparks when depth 0 is reached. It is useful to have sparks
as early as possible, that is why sparks are created from the root
node to the specified level d.

The main advantage of this strategy is the simplicity of its im-
plementation, low overhead, and predictable parallelism. However,
it lacks flexibility in particular for unbalanced trees, where poten-
tially useful parallelism may reside outside the given depth thresh-
old. Though we gain improved control over parallelism as opposed
to element-wise sparking, the amount of sparks usually remains flat
as an upper bound for d is specified to avoid excessive sparks. For



instance, for a regular tree, dmax can be set at 6 to generate a max-
imum of 46 sparks.

In the following sections we look at other techniques to auto-
matically select the depth threshold d to improve performance.

5.3 Synthesised size info (parTreeSizeAnn)
Thresholding can be based on sub-tree sizes. The thresholding
mechanism checks if the size of the sub-tree is more than s, then
it creates a spark. This ensures that for smaller sub-trees in the
tree, sparks are not created. If size information is not encoded in
the inner-nodes, an initial traversal is needed to annotate the tree.
In this particular implementation, size information is synthesised
from bottom up. In the lazy size strategy (parTreeLazySize) we
remove the need for an initial traversal, by lazily checking the size
of sub-trees using Peano numbers.

5.4 Lazy size check (parTreeLazySize)
Using size threshold, as in parTreeSizeAnn, sparks are created
for sub-trees that have at least s nodes. The idea is similar for this
lazier variant except that the size check is performed by using lazy
size computation for a given sub-tree, thus, not forcing complete
evaluation of it. The default size function makes a full traversal,
deconstructing the entire tree structure when size is demanded at
the top-level. The lazy size function allows to test bounds without
a full deconstruction. For instance, a function isBoundedSize s
can return true when it has established that the sub-tree contains at
least s nodes, without traversing the rest of the tree.

5.5 Fuel-based control (parTreeFuel)
parTreeFuel is an annotation-based strategy. The strategy func-
tion itself is similar to parTreeDepth — where instead of a depth
threshold, the strategy stops creating sparks once fuel runs out (as
seen in the pattern match for fuel check).

1 parTreeFuel :: Strategy (AnnQTree Fuel tl)
2 -> Strategy (AnnQTree Fuel tl)
3 parTreeFuel strat t@(N (AQ (A f) nw ne sw se))
4 | f>minfuel = (N <$> ( AQ (A f)
5 <$> parTreeFuel strat nw
6 <*> parTreeFuel strat ne
7 <*> parTreeFuel strat sw
8 <*> parTreeFuel strat se))
9 >>= rparWith strat

10 | otherwise = return t
11 parTreeFuel _ t = return t

A variant of this definition (which we append with marked)
sparks only when the condition f>minfuel is met. With this vari-
ant the total number of sparks generated is not cumulative from the
root, but only at specified (or marked) node within the tree. Thus,
the number closely corresponds to the amount of fuel distributed,
assuming we allocate one unit of fuel per node. This allows to have
a better estimate on spark creation for a given amount of fuel. How-
ever, spark creation is delayed, which may not be desirable in cer-
tain cases, but results show that this variant (fuelpuremarked)
performs well compared to other fuel-based strategies in our test
applications.

5.5.1 Fuel splitting methods
The general usage of the fuel-based function is as follows, with
the specification of the amount of fuel and distribution function
(SplitFunc):

1 t’ = (unann
2 . withStrategy strat
3 . fmap f
4 . ann) t
5

Figure 1: Annotation-based strategies, such as parTreeFuel, re-
quire annotating the tree in a first pass before performing the main
traversal of the tree. The strategy may use heuristics to determine
the amount of fuel under different parameters.

6 -- pure fuel annotation example
7 ann = annFuel (annFuel_pure fuel)

A split function can be generalised with the type SplitFunc,
then the actual implementation is parameterisable, to easily switch
between different distribution modes.

1 type SplitFunc = Fuel ->[Fuel]
2

3 annFuel ::SplitFunc ->Fuel ->QTree tl
4 ->AnnQTree Fuel tl
5 annFuel splitfunc _ E = E
6 annFuel splitfunc _ (L x) = (L x)
7 annFuel splitfunc fuel (N (Q a b c d)) =
8 let (f1:f2:f3:f4:_) = splitfunc fuel
9 in N $ AQ (A fuel) (annFuel splitfunc f1 a)

10 (annFuel splitfunc f2 b)
11 (annFuel splitfunc f3 c)
12 (annFuel splitfunc f4 d)
13

14 annFuel_pure ::Fuel ->QTree tl->AnnQTree Fuel tl
15 annFuel_pure = annFuel (fuelsplit_pure

_numSubnodes)

The following gives implementation details of each distribution.

Pure splits fuel evenly among the sub-nodes, ignoring the node
type. Fuel is lost on hitting outer nodes (empty and leaf nodes),
and on division. A version that avoids any such loss has been
implemented, but does not perform significantly better and is
therefore not discussed any further.

1 type Fuel=Int -- fuel as int
2

3 fuelsplit_pure ::Int ->Fuel ->[Fuel]
4 fuelsplit_pure numnodes fuel =
5 replicate numnodes (fuel ‘div ‘ numnodes)

Lookahead/LookaheadN As the name suggests, this fuel distribu-
tion method looks ahead one level down the tree before distribut-
ing unneeded fuel to outer nodes. In the second variant, looka-
headN, we can specify how far down the tree we can look.

1 fuelsplit_lookaheadN ::Int ->QTree tl
2 ->Fuel ->[Fuel]
3 fuelsplit_lookaheadN n (N (Q a b c d)) fuel =
4 [f1 ,f2,f3,f4]
5 where
6 Q na nb nc nd = fmap (numInnerNodesUntil n)
7 (Q a b c d)
8 numsubnodes = na + nb + nc + nd
9 (f1:f2:f3:f4:_) = fuelsplit_perfect fuel

10 numsubnodes [na,nb,nc ,nd]
11 fuelsplit_lookaheadN _ _ _ = [0,0,0,0]



Giveback is the same idea as lookahead where we avoid losing
fuel on meeting outer nodes. But instead of looking ahead down
n level the tree, giveback employs a circular programming tech-
nique to allow passing fuel up in the tree, if it has not been used in
a sub-tree. Thus, information flow is bi-directional in this imple-
mentation. This technique depends on laziness to enable circular
reference, as discussed below.

Figure 2: Fuel giveback mechanism where fuel is represented using
list of units to work with the circular nature of its definition.

We note that unused fuel is passed to the next node on the right,
and, if it is still unused, is passed up in the tree to be re-used in
another, typically deeper, sub-tree, as depicted in Figure 2. We
achieve this behaviour by using a circular definition [6]. The input
to the annotation function (ann) takes an initial “share” of the
fuel and any fuel that is returned from the left. In the code of
Listing 5, the definition f1 out (Line 14) depends on f4 out,
which, in three steps, depends again on f1 out (Line 15). In order
to guarantee that this definition is productive, fuel must not be
represented as an (atomic) integer, but needs to be a list of values,
which is expanded by this circular definition and requires lazy
evaluation.

Listing 5: Fuel with giveback annotation
1 -- | Fuel with giveback annotation
2 annFuel_giveback ::Fuel ->QTree tl
3 ->AnnQTree Fuel tl
4 annFuel_giveback f t = fst $ ann (fuelL f) t
5 where
6 ann::FuelL ->QTree tl ->(AnnQTree Fuel tl ,

FuelL)
7 ann f_in E = (E,f_in)
8 ann f_in (L x) = (L x,f_in)
9 ann f_in (N (Q a b c d)) =

10 (N (AQ (A (length f_in)) a’ b’ c’ d’),
emptyFuelL)

11 where
12 (f1_in:f2_in:f3_in:f4_in:_) =
13 fuelsplit_unitlist _numSubnodes f_in

14 (a’, f1 out ) = ann (f1_in ++ f4 out ) a

15 (b’, f2 out ) = ann (f2_in ++ f1 out ) b

16 (c’, f3 out ) = ann (f3_in ++ f2 out ) c

17 (d’, f4 out ) = ann (f4_in ++ f3 out ) d

Auxiliary functions used in this strategy are defined below:

1 type FuelL =[()] -- fuel as unit list
2

3 emptyFuelL =[] -- empty fuel list
4

5 fuelL::Fuel ->FuelL
6 fuelL x = replicate x ()
7

8 fuelsplit_unitlist ::Int ->FuelL ->[FuelL]
9 fuelsplit_unitlist numnodes fuel =

10 split 0 fuel [emptyFuelL ,emptyFuelL ,
11 emptyFuelL ,emptyFuelL]

12 where
13 split _ [] xs = xs
14 split x (_:fs) xs =
15 split (x+1) fs (addfuelat (x ‘mod ‘

numnodes) xs)
16

17 addfuelat 0 [a,b,c,d] = [():a,b,c,d]
18 addfuelat 1 [a,b,c,d] = [a,():b,c,d]
19 addfuelat 2 [a,b,c,d] = [a,b,():c,d]
20 addfuelat 3 [a,b,c,d] = [a,b,c,():d]
21 addfuelat _ xs = xs

Perfect fuel splitting distributes fuel based on sub-node sizes. It
depends on the size information being available, otherwise an
annotation run, requiring a full traversal of the tree, is needed
before any parallel sub-computation (spark) is generated.

1 fuelsplit_perfect ::Fuel ->Size ->[Size]->[Fuel]
2 fuelsplit_perfect fuel s ss =
3 fmap (\x -> (x*fuel) ‘div ‘ s) ss

(a) pure (b) lookahead (c) giveback (d) perfect

Figure 3: Example of fuel distribution methods on a binary tree

5.6 Heuristics
Using the strategies with the right parameters is crucial for optimal
performance. While this can be programmer-specified, it is difficult
to deduce the right values for best performance given the number
of variables involved. Table 2 lists a number of variables that are
used in determining an optimum parameter for the strategies during
execution.

Variable name Description
Tin number of inner nodes in tree T
Tout number of outer nodes
Tl number of non-empty (leaf) outer nodes
Te number of empty outer nodes i.e. Tout − Tl

Hmin shortest path from root to any outer node
Hmax longest path from root to any outer node
S number of sparks
Smax max num of sparks
P Number of processing elements

Table 2: Heuristic parameters

S is the number of sparks generated which roughly corresponds
to the “amount” of parallelism desired. The granularity of these
parallel computations will vary.

Smax refers to an upper bound that we may set in order not to
have excessive sparks created by a strategy, which would otherwise
cause a higher overhead. In practice, we set this to about 8000
sparks which is the maximum number of sparks that can be fitted



in the spark pool at one time. However, Smax can be set higher,
given that sparks are created and converted during execution, and
the total number of sparks that may have been created at the end
of execution could be greater than 8000, but the spark pool was
never overflowed. This depends on the sequence in which parallel
computations happen and are specified in the algorithm.

The programmer-specified parameters are d, s and f , for the
depth-threshold, lazy size and fuel-based strategies, respectively.
For good performance it is important that these parameters fulfill
basic properties on the tree structure. For instance, the selected
value of a parameter may be out of range for a given tree. In
the following sub-sections, we lay down these properties — what
we expect from each strategy — and elaborate how the heuristics
preserve them.

The heuristics work based on the assumption of how much
information about the tree is available. In some cases, a traversal
to extract this information is justifiable if the computation involved
in the nodes is substantial enough. For instance, one version of the
depth heuristics (D2) works well if the number of nodes at each
level is known.

5.6.1 Determining d

The heuristics should guarantee and satisfy the following proper-
ties:

Invariant for d

1. d should be within the range

0 < d < Hmax ∧ d ≤ dmax

d cannot be outside the depth bounds of a tree. dmax is a
maximum set by the programmer (hard-coded) or estimated in
the more advanced heuristic functions.

2. For any selected d, S < Tin

3. For any selected d, S < Smax

The number of sparks generated for a given d should not exceed
the maximum spark limit. Smax is the sparks cutoff point.

We now define some of the heuristics used to determine d.

D0 d = Hmax/2
This assumes that half-way down the tree, we have sufficient
parallelism to create. This version does not take P into account
and generates a fixed number of sparks for any P .

D1 d = min (P − 1) dmax

where dmax in this version is hard-coded. It selects the depth
parameter, based on the maximal depth of the input tree.
The heuristic is implemented through a counter that starts with
d = 0 on 1 PE and increases d by one from 2 PEs onward until
dmax is met. This leads to

∑P−1
x=0 4x sparks on P PEs. There is

no maximum sparks control (Property 3) in the version.

D2 d = min (P − 1) dmax, where cumulative nodes at d is less
than Smax

In this version, dmax is computed (not specified) to enforce the
“where” condition. dmax is dependent on the input size and is
determined by building a table consisting of number of nodes
and cumulative number of nodes at each level. dmax is the level
at which the cumulative number of nodes is just before Smax.
Note that dmax < Hmax.

D2 is based on information obtained from an initial traversal of
the tree. However, where not possible, we work on an estimate. For
any tree, there is at most (upper bound) 4i nodes at level i, and the
cumulative nodes at this level is

∑i
x=0 4

x. For instance, the upper

bound for number of nodes at level 5 is 1024, and cumulative nodes
is 1365. The cumulative nodes corresponds to the upper bound of
sparks that is to be created at level. We work within these bounds
to determine a maximum d. Any d greater than this will generate
sparks in excess. For instance, at level 6, at most 5461 sparks are
created, and at level 7, 21845 sparks.

5.6.2 Determining s

At present we use the same heuristics to determine s for both
parTreeSizeAnn and parTreeLazySize. The choice of an s can
limit or create more parallelism. Small s will create more sparks,
while big s will create less. When P increases, we want to be able
to have more sparks, thus smaller s.

Invariant for s

1. s should be within the range 0 < s < Tin

The number of sparks created for the size annotation and lazy
size strategies is directly related to s. If s is big, fewer sparks are
likely to be created. s is seen as the minimum size threshold for
parTreeSizeAnn. Sparks are created until a sub-tree size is less
than s, which translates to the amount of computation in that node
is small given its size.

Used in a slightly different “context” with the parTreeLazySize
strategy, s refers to the minimum number of nodes check, per-
formed lazily by the strategy in order to decide whether to create a
spark or not.

S0

s =

{
Tl

(P×X)
if P > 1

0 otherwise

where X is an approximate number of sparks per PE.

We use an estimate function to classify computation in nodes as S
(small), M (medium), and L (large), and based on this “weight” we
determine X . For instance, for a small amount of computation, it is
fine to have many sparks per core (for example, 100–200), but for
a large amount of computation, sparks are restricted to ca 5–10.

5.6.3 Determining f

As the number of cores (P ) increases, we want to provide more
fuel such that more sparks can be created. fmin is the minimum
amount of fuel that is needed for a spark.

Properties for f In principle, f should be within the range 0 <
f < Tin (same as s), to effectively control the potential paral-
lelism. If f > Tin, all nodes have at least 1 fuel. Thus, the de-
fault fuel check of at least 1 (f > 0) changes, for example, to
f > 5 in order to ensure the mechanism works. Otherwise sparks
are created at each inner node in the tree, defaulting to the naive
parTreeBranch strategy. Thus, we require these properties:

1. if f < Tin, then fmin < 0
This means that fuel will run out during distribution, and thus
nodes with 0 fuel (or negative) will not be sparked.

2. if f > Tin, then fmin > 0
This means that potentially all nodes will have some fuel, and
we need to determine fmin, that is, the new minimum fuel
threshold a node needs to have to be eligible for a spark.

3. f should be less than sparks upper bound (f < Smax)

We explored the following heuristic formulae for computing the
fuel:

F0 The initial heuristics is designed to be simple:

f =

{
Tl
X
× P if P > 1

0 otherwise



(a) normal (b) left-skewed (c) right-skewed

Figure 5: Depth distribution for testprog input

F1 The final heuristics is defined as follows: f = ah(P ) where h
is a function over the number of processors and the constant a
is the arity of the tree, i.e. 4 for quad-trees. We use h in the
exponent of this formula to reflect the exponential number of
potential parallelism in the tree structure.

6. Evaluation
6.1 Experiment environment
Machines: Initial test runs were carried on a desktop-class 8-
core machine — arranged in 2 sockets x Intel Xeon CPU E5410
(4 cores) @ 2.33GHz — with 7870MB memory and 2 levels of
cache hierarchy.

We also use a server-class many-core machine consisting of 48
cores — arranged in 4 sockets each with 2 NUMA nodes and each
node with 6 AMD Opteron 6348 CPU cores (1400 MHz). Two
cores share a 64kB L1 and a 2MB L2 cache, and the 6MB L3 cache
is shared by all cores in one NUMA region. Each region has 64GB
memory, amounting to a total of 512GB RAM. Both machines run
CentOS 6.5 64-bit Linux with kernel version 2.6.32.

Being a NUMA architecture, memory latencies vary depending
on the region. Using the numactl tool shows that access to a remote
region is by a factor of 2.2 more expensive than access to a local
region.

Compiler and libraries The Haskell compiler used is ghc-7.6.1
with the parallel-3.2.0.3 package and our initial pardata-0.1
package consisting of the new strategies. All programs are com-
piled with optimisation flag -O2 on.

Tools We identified useful visualisation tools to help in the im-
plementation of the strategies and verify the actual with expected
behaviour which is important in a non-strict language:

GHood allows to observe intermediate states in the data structure
as evaluation proceeds. Different colour scheme is used to high-
light unevaluated thunks and evaluated structures.

ghc-vis is a tool to visualise live Haskell data structures in GHCi.
Evaluation is not forced and you can interact with the visualised
data structures. This allows seeing Haskell’s lazy evaluation and
sharing in action.

6.2 Test Program
The strategies are first tested on a constructed program taking
algorithmic complexity out of the picture and focusing on the
strategies’ behaviour. The test program performs a parallel map
on irregular trees with different depth distribution — normal, left-
skewed and right-skewed — and fixed (homogeneous) or variable
(heterogeneous) computations in the element.

Initial results on a desktop machine with a small input size show
good speedups on up to 8 cores with all the strategies. However,
the advanced strategies do not outperform the naive element-wise
parTree, as expected. The 8-core machine run was mainly in-
tended as a check for initial performance for the advanced strate-
gies.

Figure 4 shows the absolute speedup graphs of the different
strategies against the sequential runtime of the test program on the

(a) D1 (b) D2

Figure 6: Depth heuristics performance comparison: D1 vs D2

server machine. For this many-core machine, we use a larger input
size of 100k tree elements. The depth-based thresholding strategy
works well with a speedup close to 32 on 48 cores. However,
the main problem with this basic thresholding method is that the
number of sparks generated remains flat after 8 cores. This is due
to the maximum depth we encode in our heuristics as an upper
bound in order to avoid excessive parallelism. Additionally, we
see an improvement from using heuristics D2 over D1 as seen in
Figure 6. This demonstrates that for irregular trees, we can have a
high depth threshold determined dynamically to go deeper down
the tree in order to generate sufficient parallelism, while avoiding a
hard-coded maximum d.

The lazy size strategy performs well up to 32 cores with a
speedup of 28 compared to 26 on the same core count for the depth
strategy. This is explained by the fact that spark creation grows with
increasing number of cores. The speedups range from 28 to 30 on
36 to 48 cores, which may be attributed to many more sparks being
created on higher core numbers, which introduces some overhead
and motivates the need for throttling parallelism.

The pure fuel strategy also gives good results compared to
depth-based thresholding. This result is further improved by ex-
tending the fuel strategy with a lookahead mechanism — in this
case, the amount of sparks generated is the same as the pure ver-
sion, however, the performance gain comes from the improved ef-
ficiency in fuel distribution, marking the most eligible nodes to be
sparked based on additional information from the lookahead mech-
anism.

The giveback fuel strategy has performance close to the depth-
based thresholding strategy, even though we note that the giveback
technique generates far more sparks than the remaining strategies
with the same amount of fuel. In analysing the giveback mecha-
nism, we measure how often fuel was given back to a parent node.
With f = 50, the fuel hit-rate (the number of times an outer node
is hit, thus fuel is passed back upward) is 247. For f = 100, 500
and 1000, the hit-rates are 478, 2357 and 4417, respectively. These
numbers demonstrate that the giveback mechanism is effective in
enabling additional parallelism for irregular trees. Due to the cir-
cular distribution of fuel, we expect more fuel to be available for
nodes inside the tree — that is, distribution carries on deeper inside
the tree, explaining why higher numbers of sparks are generated.

6.3 Barnes-Hut Algorithm
The Barnes-Hut algorithm for the n-body problem is used as a more
realistic application to assess the performance of our new strategies.
The algorithm simulates the movement of objects in space and uses
a quad-tree representation for 2D space. Its implementation is in
two phases:

Tree construction: a tree containing all the bodies in the given
space is constructed.
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Figure 7: Barnes-Hut speedups on 1–48 cores. 2 million bodies, 1 iteration.

Force calculation: iteration-wise force calculation for each body
with respect to the rest, followed by positions change.

The main source of parallelism is in the force calculation step,
where the force for each body can be computed independently from
the other bodies. We adapt the list-based algorithm used in [27]
by performing the main map operation in the second phase over a

quad-tree data structure. This enables us to use our more advanced
strategies defined here, while comparing the performance with an
already well-tuned implementation. Most notably, no restructuring
of the sequential code was necessary to enable parallelism. We
also extend our experiments to include a number of different body
distributions — single uniform cluster, single normally distributed
cluster, and multiple clusters of bodies, as depicted in Figure 8. This



is aimed to study the performance of our strategies with irregular
data distributions.

(a) uniform cluster (b) normal cluster (c) multiple clusters

Figure 8: Bodies distribution

Performance Results: We focus our discussion on a particular set
of results obtained for a single cluster input of normally distributed
bodies across the space and compare these with results from a
multiple clusters input. The latter is an example of irregularly
distributed data.

The speedup results in Figure 7 show that across the range of
core numbers, the fuel-based strategies are consistently more ef-
ficient than parTreeDepth or parTreeSizeAnn, for depth-based
and size-based thresholding, respectively. In particular, a pure fuel
version, using just simplistic but cheap fuel splitting, performs best
on 48 cores, exhibiting a speedup of 15, and the marked variant of
the fuel strategy performs best for core numbers up to 36. These re-
sults indicate that a fuel-based approach to controlling parallelism
is more flexible than a thresholding approach. The latter performs
very poorly from 16 cores onwards and drops in performance on the
high end of the spectrum. One inherent problem with depth-based
thresholding is that it provides only a very crude mechanism for
controlling the amount of parallelism that is generated, because the
number of sparks is exponential in the depth that is used as thresh-
old. Furthermore, it misses out on opportunities of re-using poten-
tial parallelism late in the computation, where parallelism typically
diminishes, due to having hit the depth threshold at this point in the
computation. This shows up as a step function in the profile plotting
sparks over cores (similar to the graph in Figure 6). In contrast, the
same profile for the fuel-based strategy shows a continuous func-
tion, where parallelism steadily increases over the number of cores.

Among the fuel-based strategies, the pure variant performs best,
but other variants remain fairly close to it. In particular, the give-
back variant is within 20% and the lookahead variant is within 6%
of the best result.

These versions invest more work into orchestrating the paral-
lelism, by passing fuel through the tree: measuring this overhead,
as discussed in Section 5, shows that for an input of 2 million bod-
ies, annotating the tree takes about 11% and unannotating the tree
takes about 4% of the time needed to build the tree. The overall per-
formance is therefore a balance between this overhead and the more
flexible distribution of fuel. For example, using a give-back mech-
anism to distribute the fuel both down-wards and up-wards, shows
that for a tree with 100 thousand elements, and a fuel of 2000, there
are 7682 instances of give-back, due to the irregular distribution of
the data in the input.

We also observe that a perfect split strategy performs poorly in
Figure 7. Again we believe that this is due to the additional over-
head incurred by this strategy. Notably, the three worst performing
strategies in this figure, are the ones that need a global context in
order to decide how to arrange the parallelism (this can be seen in
Column 4 of Table 1).

The limited scalability beyond 28 cores can be attributed to
specifics of the algorithm, the runtime system and the hardware.
The algorithm itself is a standard Barnes-Hut algorithm without
further optimisations to minimise data exchange and facilitate scal-
ability. Using an increasing number of cores will naturally generate

a higher number of threads in our programming model, which in-
creases the amount of live data and thus the garbage collection over-
head. Additionally, global synchronisation across all cores is neces-
sary to perform major collections. The underlying physical shared-
memory hardware is a NUMA architecture with higher memory
latencies across remote NUMA regions, of 6 cores. Thus, involv-
ing several regions in the computation will result in a significant
percentage of expensive memory accesses. This effect is even more
pronounced in Haskell programs, since the underlying graph reduc-
tion machinery typically requires frequent memory accesses across
a large, dynamic heap. For a more detailed study of the parallel
memory management performance see [1].

6.4 Sparse Matrix Multiplication
Wainwright et al [29] report good sequential performance and re-
duced space overhead for sparse input data, using a quad-tree repre-
sentation for sparse matrix multiplication. We adapt the implemen-
tation in Haskell and aim for further performance gains through
parallelisation using our new strategies. This is achieved by de-
manding the result matrix in parallel. Again, we do not have to
change the sequential algorithm to obtain a parallel version.

Listing 6: Sparse matrix multiplication
1 qmul ::(Eq a,Num a)=>QTree a->QTree a->QTree a
2 ...
3 let res = qmul ma mb
4 in res ‘using ‘ strat

Early results for 4096x4096 input matrices with 5% of all el-
ements containing non-zero values (sparsity), in Figure 9, show
fairly good performance on core numbers up to ca. 12 or 20, i.e.
typical sizes for current desktop machines. However, there is a sig-
nificant drop in performance thereafter and therefore poor scala-
bility for now. One specific characteristic for this application is its
fairly high memory allocation throughout the execution: total al-
location is 4 times and memory residency is 3 times that of the
Barnes-Hut algorithm. As a result, garbage collection (GC) over-
head is high and steadily increasing for higher core numbers. We
note that at the point where speedups drop, around 16 to 18 core,
the GC% in the execution surpasses the MUT%, i.e. the mutation
time spent doing actual graph reduction. This is an indication that
all versions suffer from high GC overhead. Thus, it would be prof-
itable to throttle the parallelism more aggressively, and this is the
direction we want to explore in the future.

Comparing the performance of the different strategies reveals
that again the marked variant of a fuel strategy performs best for
core ranges between 12 and 20. The depth-based thresholding vari-
ant performs significantly better in this application, probably be-
cause the result of matrix multiplication is much denser than its
input. Since our lazy strategies typically generate parallelism by
traversing, and thus forcing evaluation of the result data structures,
this means that the data is more regularly distributed compared
to the Barnes-Hut program. Because we are not performing any
operation on the elements of the result matrix, it is expected that
sizeann and fuelperfectsplit do not give good performance
as both require a first pass over the result matrix to attach adminis-
trative information.

7. Conclusion
We have presented new parallelism control mechanisms, building
on laziness to achieve additional flexibility. We have encoded these
as evaluation strategies over tree-like data structures and demon-
strated improved parallel performance over established methods
for throttling parallelism on a 48-core shared-memory server us-
ing three benchmark programs. Our new strategies are more flexi-
ble in controlling the available parallelism, by re-using previously
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Figure 9: spmatmult speedups on 1-20 cores; 4096x4096 input
matrices, sparsity 5%.

unused potential parallelism and thus obtaining better performance
on structures with irregular data distribution. Our performance re-
sults show that they out-perform classic techniques that are often
used, such as depth based thresholding. Core techniques that we
use in the implementation to gain this added flexibility are circular
programs, requiring lazy evaluation, and annotating the tree struc-
ture with administrative information. The best-performing strategy
is based on the notion of fuel that is passed down the tree and con-
trols whether parallelism should be generated or not. While our
implementation and performance results have been obtained from
an quad-tree data structure, the techniques, such as bi-directional
flow of fuel, are not restricted to trees nor to specific applications.

As future work we plan to apply these techniques to graph
data structures, which are increasingly used in symbolic high-
performance computing to model huge dependency sets, often la-
beled as “big data” computing. The emergence of the Graph500
benchmarks as an alternative to the established numerical high-
performance benchmarks, shows a movement of the community in
this direction. More specifically to the results in this paper, we plan
to enhance the heuristics for parameter selection and to explore
the prospect of using a attribute-grammar style of specifying the
propagation of synthesised and inherited parameters through the
data structure. This style could provide a more user-friendly and
familiar framework for fine-tuning parallelism, while still defin-
ing behaviour and desired properties on a high level. Finally, we
want to further improve the compositionality of the mechanisms
discussed in this paper. It would be desirable to provide high-level
constructors, to freely combine a general fuel mechanism, for driv-
ing the parallelism, with a lookahead mechanism, for controlling
the precision of contextual information, and a giveback mechanism,
for adding flexibility in managing the parallelism.

An online version of this paper, together with the source code
for the pardata package and applications, is available at: http://
www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/fhpc14.
html
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