Robustness of Collaborative Recommendation
Based On Association Rule Mining

J.J. Sandvig, Bamshad Mobasher, and Robin Burke
DePaul University
School of Computer Science, Telecommunications
and Information Systems
Chicago, lllinois
jsandvig@cs.depaul.edu, mobasher@cs.depaul.edu, rburke@cs.depaul.edu

ABSTRACT

Standard memory-based collaborative filtering algorithms,
such as k-nearest neighbor, are quite vulnerable to profile in-
jection attacks. Previous work has shown that some model-
based techniques are more robust than k-nn. Model abstrac-
tion can inhibit certain aspects of an attack, providing an
algorithmic approach to minimizing attack effectiveness. In
this paper, we examine the robustness of a recommendation
algorithm based on the data mining technique of association
rule mining. Our results show that the Apriori algorithm of-
fers large improvement in stability and robustness compared
to k-nearest neighbor and other model-based techniques we
have studied. Furthermore, our results show that Apriori
can achieve comparable recommendation accuracy to k-nn.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
data mining; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms

Algorithms, Human Factors, Security

Keywords

Recommender systems, collaborative filtering, association
rule mining, data mining, security

1. INTRODUCTION

Model-based algorithms are widely accepted as a way to
alleviate the scaling problem presented by memory-based
algorithms in data-intensive commercial recommender sys-
tems. Building a model of the dataset allows off-line process-
ing for the most rigorous similarity calculations. However,

*This work was supported in part by the National Science
Foundation Cyber Trust program under Grant I1IS-0430303.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RecSys’07, October 19-20, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-730-8/07/0010 ...$5.00.

105

in some cases, this is at the cost of lower recommendation
accuracy [13].

A positive side effect of a model-based approach is that
it may provide improved robustness against profile injection
attacks. A model-based approach is an abstraction of de-
tailed user profiles. We hypothesize that this abstraction
minimizes the influence of an attack, because attack profiles
are not directly used in recommendation.

Previous work has shown the vulnerability of the basic
k-nearest neighbor algorithm to attack [10]. Model-based
algorithms that cluster similar users have shown different
degrees of improvement with respect to robustness. Two
successful approaches include k-means clustering and, par-
ticularly, probabilistic latent semantic analysis (PLSA) [11].

In this paper we explore the robustness of a recommenda-
tion algorithm based on association rule mining. Association
rule mining is a technique common in data mining that at-
tempts to discover patterns of products that are purchased
together. These relationships can be used for myriad pur-
poses, including marketing, inventory management, etc. We
have adapted the Apriori algorithm [1] to collaborative fil-
tering in an attempt to discover patterns of items that have
common ratings.

The primary contribution of this paper is to demonstrate
that an association rule based recommender provides an al-
gorithmic approach to robust recommendation. Our imple-
mentation shows significant improvement in stability com-
pared to the standard memory-based k-nearest neighbor,
and achieves comparable accuracy.

Furthermore, experimental results suggest that the asso-
ciation rule based recommender is more robust than other
model-based techniques we have studied, particularly against
non-focused attacks and attack profiles with large numbers
of ratings. This provides further evidence that model-based
algorithms are more robust than k-nn.

2. PROFILE INJECTION ATTACKS

We assume that an attacker intends to bias a recom-
mender system for some economic advantage. This may be
in the form of an increased number of recommendations for
the attacker’s product, or fewer recommendations for a com-
petitor’s product.

A collaborative recommender database consists of many
user profiles, each with assigned ratings to a number of prod-
ucts that represent the user’s preferences. A malicious user
may insert multiple profiles under false identities designed
to promote or demote the recommendation of a particular

Item1 Item2 Item3 Itemd4 ItemS Item6 Co.rrelat.ion
with Alice

Alice 5 2 3 3 ?
Userl 2 4 4 1 -1.00
User2 3 1 3 1 2 0.76
User3 4 2 3 1 1 0.72
User4 3 3 2 1 3 1 0.21
User5 3 1 2 -1.00
User6 4 3 3 3 2 0.94
User7 5 1 5 1 -1.00
Attackl 5 3 2 5 1.00
Attack2 5 1 4 2 5 0.89
Attack3 5 2 2 2 5 0.93
Correlation
with Itemé 0.85 -0.55 0.00 048 -0.59

Figure 1: an example attack on Item6

item. We call such attacks profile injection attacks (also
known as shilling [9]).

2.1 An Example

Consider an example recommender system that identifies
interesting books for a user. The representation of a user
profile is a set of product / rating pairs. A rating for a par-
ticular book can be in the range 1-5, where 5 is the highest
possible rating. Alice, having built a profile from previous
visits, returns to the system for new recommendations. Fig-
ure 1 shows Alice’s profile along with that of seven genuine
users.

An attacker, Eve, has inserted three profiles (Attackl-3)
into the system to mount an attack promoting the target
item, Item6. Each attack profile gives high ratings to Eve’s
book, labeled Item6. If the attack profiles are constructed
such that they are similar to Alice’s profile, then Alice will be
recommended Eve’s book. Even without direct knowledge
of Alice’s profile, similar attack profiles may be constructed
from average or expected ratings across all users.

Disregarding Eve’s attack profiles for a moment, we can
compute Alice’s predicted preference for Item6. Assuming 1-
nearest neighbor, Alice will not be recommended Item6. The
most highly correlated user to Alice is User6, who clearly
does not like Item6. Therefore, Alice is expected to dislike
Ttem6.

After Eve’s attack, however, Alice receives a very differ-
ent recommendation. As a result of including the attack
profiles, Alice is most highly correlated to Attackl. In this
case, the system predicts Alice will like Item6 because it is
rated highly by Attackl. She is given a recommendation for
Item6, although it is not the ideal suggestion. Clearly, this
can have a profound effect on the effectiveness of a recom-
mender system. Alice may find the suggestion inappropri-
ate, or worse; she may take the system’s advice, buy the
book, and then be disappointed by the delivered product.

2.2 Attack Types

An attack type is an approach to constructing attack pro-
files, based on knowledge about the recommender system, its
rating database, its products, and/or its users. In a push at-
tack, the target item is generally given the maximum allowed
rating. The set of filler items represents a group of selected
items in the database that are assigned ratings within the
attack profile. Attack types can be characterized according
to the manner in which they choose filler items, and the way
that specific ratings are assigned.

106

A variety of attack types have been studied for their ef-
fectiveness against different recommendation algorithms [10,
11]. In this paper, we focus on three attack types that have
been shown to be very effective against standard user-based
collaborative filtering recommenders.

The random attack is a basic attack type that assigns
random ratings to filler items, distributed around the global
rating mean [9, 10]. The attack is very simple to implement,
but has limited effectiveness.

The average attack attempts to mimic general user pref-
erences in the system by drawing its ratings from the rating
distribution associated with each filler item [9, 10]. An av-
erage attack is much more effective than a random attack;
however, it requires greater knowledge about the system’s
rating distribution. In practice, the additional knowledge
cost is minimal. An average attack can be quite successful
with a small filler item set, whereas a random attack usually
must have a rating for every item in the database in order
to be effective.

An attacker may be interested primarily in a particular
set of users — likely buyers of a product. A segment attack
attempts to target a specific group of users who may already
be predisposed toward the target item [10]. For example, an
attacker that wishes to push a fantasy book might want the
product recommended to users expressing interest in Harry
Potter and Lord of the Rings. A typical segment attack
profile consists of a number of selected items that are likely
to be favored by the targeted user segment, in addition to the
random filler items. Selected items are expected to be highly
rated within the targeted user segment and are assigned the
maximum rating value along with the target item.

3. RECOMMENDATION ALGORITHMS

We first present a collaborative recommendation algorithm
based on association rule mining. We next provide back-
ground information on several user-based recommenders in-
cluded as baseline algorithms. This includes the standard
memory-based k-nn and two model-based algorithms that
cluster user profiles.

3.1 Association Rule Mining

Association rule mining is a common technique for per-
forming market basket analysis. The intent is to gain insight
into customers’ buying habits and discover groups of prod-
ucts that are commonly purchased together. As an example,
an association rule may show that 98% of all customers that
purchase frozen pizza also purchase soda.

Association rules capture relationships among items based
on patterns of co-occurrence across transactions. In [12], as-
sociation rules were applied to personalization based on web
usage data. We have adapted this approach to the context
of collaborative filtering. Considering each user profile as a
transaction, it is possible to use the Apriori algorithm [1]
and generate association rules for groups of commonly liked
items.

Given a set of user profiles U and a set of item sets I =
{lL,Is,...,1}, the support of an item set I; € I is defined
as o(l;) = {u €U : I; Cu}|/|U|. Item sets that satisfy a
minimum support threshold are used to generate association
rules. These groups of items are referred to as frequent item
sets. An association rule r is an expression of the form
X = Y(or,ar), where X and Y are item sets, o, is the
support of X UY, and a, is the confidence for the rule r

given by o(X UY)/o(X). In addition, association rules that
do not satisfy a minimum [ift threshold are pruned, where
lift is defined as a, /o (Y).

If there is not enough support for a particular item, that
item will never appear in any frequent item set. The im-
plication is that such an item will never be recommended.
The issue of coverage is a tradeoff. Lowering the support
threshold will ensure that more items can be recommended,
but at the risk of recommending an item without sufficient
evidence of a pattern.

Before performing association rule mining on a collabora-
tive filtering dataset, it is necessary to discretize the rating
values of each user profile. We first subtract each user’s
average rating from the ratings in their profile to obtain a
zero-mean profile. Next, we give a discrete category of “like”
or “dislike” to each rated item in the profile if it’s rating
value is > or < zero, respectively.

Discretizing the dataset effectively doubles the total num-
ber of features used in analysis, but is necessary for inferring
recommendable items. In classic market basket analysis, it
is assumed that a customer will not purchase an item they
do not like. Hence, a transaction always contains implicit
positive ratings. However, when dealing with explicit rat-
ing data, certain items may be disliked. It is clear that a
collaborative recommender must take such preference into
account or risk recommending an item that is rated often,
but disliked by consensus.

To make a recommendation for a target user profile u, we
create a set of candidate items C' such that an association
rule r exists of the form X C v — ¢ € C where 7 is an
unrated item in the profile u. In practice, it is not neces-
sary to search every possible association rule given u. It is
sufficient to find all frequent item sets X C u and base rec-
ommendations on the next larger frequent itemsets Y D X
where Y contains some item ¢ that is unrated in u.

A caveat to this approach is the possibility of conflicting
recommendations in the candidate set C'. For example, one
association rule may add item ¢ to the candidate set with a
confidence of 90% whereas another rule may add the same
item with a confidence of 5%. In this case, we simply use
the rule with the highest confidence.

Another possibility is that one association rule may add
item ¢ to the candidate set with a “like” label, whereas an-
other rule may add the same item with a “dislike” label.
There is not an ideal solution in this case, but we have cho-
sen to assume that there are opposing forces for the recom-
mendation of the item. In our implementation, we subtract
the confidence value of the “dislike” label from the confidence
value of the “like” label.

To facilitate the search for item sets, we store the frequent
item sets in a directed acyclic graph, called a Frequent Item-
set Graph [12]. The graph is organized into levels from 0
to k, where k is the maximum size among all frequent item
sets. Each node at depth d in the graph corresponds to an
item set I of size d and is linked to item sets of size d + 1
that contain I. The root node at level 0 corresponds to the
empty item set. Each node also stores the support value of
the corresponding frequent item set.

Given a target user profile u, we perform a depth-first
search of the Frequent Itemset Graph. When we reach a
node whose frequent item set I, is not contained in u, the
item 7 € I, not found in u is added to the candidate set C'
and search at the current branch is ceased.

107

Note that the item set of the parent node I, to I, must be
contained in u by definition, and because I,, is of size d + 1
where I, is size d, there can be only one item ¢ € I,, that is
not contained in u. It follows that I,, = I, U{i} and the two
nodes correspond to the rule I, = {i}. We calculate the
confidence of the rule as o(I,)/o(Ip). The candidate i € C
is stored in a hashtable along with it’s confidence value. If it
already exists in the hashtable, the highest confidence value
takes precedent.

After completion of the depth-first search, all possible can-
didates for the target user u are contained in C, including
items labeled “dislike”. In order to properly represent an
estimated negative connotation, items labeled “dislike” are
given a recommendation score that is the negation of the
confidence value. If there is a corresponding “like” label for
the item in C, it’s recommendation score is decreased by the
confidence of the “dislike” label. As a final step, the candi-
date set C' is sorted according to the recommendation scores
and the top NN items are returned as a recommendation.

3.2 Baseline Algorithms

User-based collaborative filtering algorithms attempt to
discover a neighborhood of user profiles that are similar to a
target user. A rating value is predicted for all missing items
in the target user’s profile, based on ratings given to the
item within the neighborhood. A ranked list is produced,
and typically the top 20 or 50 predictions are returned as a
recommendation.

3.2.1 k-Nearest Neighbor

The standard k-nearest neighbor algorithm is widely used
and reasonably accurate [3]. Similarity is computed us-
ing Pearson’s correlation coefficient, and the k£ most simi-
lar users that have rated the target item are selected as the
neighborhood. This implies a target user may have a differ-
ent neighborhood for each target item. It is also common
to filter neighbors with similarity below a specified thresh-
old. This prevents predictions being based on very distant
or negative correlations. After identifying a neighborhood,
we use Resnick’s algorithm to compute the prediction for a
target item ¢ and target user wu:

> simuw (T, — To)

veV
> Isimu
ve

=Tu+

DPu,i

where V is the set of k similar neighbors that have rated
i; Ty, is the rating of ¢ for neighbor v; 7, and 7, are the
average ratings over all rated items for u and v, respectively;
and simy,, is the Pearson correlation between v and v.

3.2.2 k-Means Clustering

A standard model-based collaborative filtering algorithm
uses k-means to cluster similar users. Given a set of user
profiles, the space can be partitioned into k£ groups of users
that are close to each other based on a measure of similarity.
The discovered user clusters are then applied to the user-
based neighborhood formation task, rather than individual
profiles.

To make a recommendation for a target user v and target
item i, we select a neighborhood of user clusters that have
a rating for ¢ and whose aggregate profile vy, is most similar
to u. This neighborhood represents the set of user segments

that the target user is most likely to be a member, based
on a measure of similarity. For this task, we use Pearson’s
correlation coefficient. We can now make a prediction for
item ¢ as described in the previous section, where the neigh-
borhood V is the set of user cluster aggregate profiles most
similar to the target user.

3.2.3 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA) models [4]
provide a probabilistic approach for characterizing latent or
hidden semantic associations among co-occurring objects.
In [8, 7] PLSA was applied to the creation of user clusters
based on web usage data. We have adapted this approach
to the context of collaborative filtering [11].

Given a set of n users, U = {u1,u2, -+ ,un}, and a set of
m items, I = {i1,i2, - ,im} the PLSA model associates an
unobserved factor variable Z = {z1, 22, -, 21} with obser-
vations in the rating data. For a target user v and a target
item ¢, the following joint probability can be defined:

1
z Pr(zy) @ Pr(u|z;) e Pr(i|zx)

k=1

P(u,1)

In order to explain a set of ratings (U, I), we need to estimate
the parameters Pr(zy), Pr(u|zx), and Pr(i|zx), while max-
imizing the following likelihood L(U, I) of the rating data:

LUI) =YY ru elog Pr(u,i)

ueU iel

where 7, ; is the rating of user w for item i.

The Expectation-Maximization (EM) algorithm [2] is used
to perform maximum likelihood parameter estimation. Based
on initial values of Pr(zx), Pr(u|zk), and Pr(i|z), the algo-
rithm alternates between an expectation step and maximiza-
tion step. In the expectation step, posterior probabilities are
computed for latent variables based on current estimates:

Pr(zi) Pr(u|zi) Pr(i|zk)
ZL/:1 Pr(z;,) e Pr(ulz;) e Pr(i|z;,)

Pr(zk|u7 Z) =

In the maximization step, Lagrange multipliers [5] are used
to obtain the following equations for re-estimated parame-
ters:

ZuEU Zie] Tu ® Pr(zi|u, i)

Pr(zg) =
ZuEU Zig] Tu,i
Pr(ulz) Sicsrui @ Prizilu,i)
riulz = ‘
k Zu/EU Zie[ru/,i.PT(zk|u’7z)
Pr(i|z,) = > ey Tui ® Pr(zi|u, i)

Zueu Zi’el Tu,i ® Pr(zi|u,i’)

Iterating the expectation and maximization steps monoton-
ically increases the total likelihood of the observed data
L(U, I), until a local optimum is reached.

We now identify clusters of users that have similar under-
lying interests. For each latent variable zx, we create a user
cluster Cj and select all users having probability Pr(u|zx)
exceeding a certain threshold p. If a user does not exceed
the threshold for any latent variable, it is associated with the
user cluster of highest probability. Thus, every user profile
will be associated with at least one user cluster, but may be
associated with multiple clusters. This allows authoritative

108

users to have broader influence over predictions, without ad-
versely affecting coverage in sparse rating data.

To make a recommendation for a target user v and target
item i, we select a neighborhood of user clusters that have
a rating for ¢ and whose aggregate profile vy, is most similar
to u. This neighborhood represents the set of user segments
that the target user is most likely to be a member, based on
a measure of similarity. For this task, we use Pearson’s cor-
relation coefficient. We can now make a prediction for item
i as described in previous sections, where the neighborhood
V' is the set of user cluster aggregate profiles most similar
to the target user.

4. EXPERIMENTAL EVALUATION

To evaluate the robustness of our recommendation algo-
rithm based on association rule mining, we compare the re-
sults of push attacks using different parameters. In each
case, we report the relative improvement over the k-nearest
neighbor, k-means, and PLSA approaches.

4.1 Dataset

In our experiments, we have used the publicly-available
Movie-Lens 100K dataset'. This dataset consists of 100,000
ratings on 1682 movies by 943 users. All ratings are integer
values between one and five, where one is the lowest (dis-
liked) and five is the highest (liked). Our data includes all
users who have rated at least 20 movies.

To conduct attack experiments, the full dataset is split
into training and test sets. Generally, the test set contains
a sample of 50 user profiles that mirror the overall distribu-
tion of users in terms of number of movies seen and ratings
provided. The remaining user profiles are designated as the
training set. All attack profiles are built from the training
set, in isolation from the test set.

The set of attacked items consists of 50 movies whose
ratings distribution matches the overall ratings distribution
of all movies. Each movie is attacked as a separate test, and
the results are aggregated. In each case, a number of attack
profiles are generated and inserted into the training set, and
any existing rating for the attacked movie in the test set is
temporarily removed.

For every profile injection attack, we track attack size and
filler size. Attack size is the number of injected attack pro-
files, and is measured as a percentage of the pre-attack train-
ing set. There are approximately 1000 users in the database,
so an attack size of 1% corresponds to about 10 attack pro-
files added to the system. Filler size is the number of filler
ratings given to a specific attack profile, and is measured
as a percentage of the total number of movies. There are
approximately 1700 movies in the database, so a filler size
of 10% corresponds to about 170 filler ratings in each attack
profile. The results reported below represent averages over
all combinations of test users and attacked movies.

4.2 Evaluation Metrics

There has been considerable research on the accuracy and
performance of recommender systems [6]. Our overall goal
is to measure the effectiveness of an attack; the “win” for the
attacker. In the experiments reported below, we measure hit
ratio - the average likelihood that a top IV recommender will
recommend a pushed item, compared to all other items [14].

"http://www.cs.umn.edu/research/GroupLens/data/

Table 1: Normalized Mean Absolute Error
run 1 run 2 run 3 mean stdev

apriori | 0.3293 | 0.3292 | 0.3287 | 0.3291 | 0.0003
k-nn | 0.3332 | 0.3337 | 0.3339 | 0.3336 | 0.0003

Table 2: Coverage

run 1 run 2 run 3 mean stdev

apriori | 0.4701 | 0.4716 | 0.4718 | 0.4712 | 0.0009
k-nn | 0.9942 | 0.9941 | 0.9942 | 0.9942 | 0.0002

Hit ratio measures the effectiveness of an attack on a
pushed item compared to other items. Let R, be the set
of top N recommendations for user u. For each push attack
on item 4, the value of a recommendation hit for user u de-
noted by H,i, can be evaluated as 1 if i € R,; otherwise
H,; is evaluated to 0. We define hit ratio as the number of
hits across all users in the test set divided by the number of
users in the test set. The hit ratio for a pushed item i over
all users in a set can be computed as Y Hy;/ |U|. Average
hit ratio is calculated as the sum of the hit ratio for each
push attack on item ¢ across all pushed items divided by the
number of pushed items:

> Hui/|U].

uelU

HitRatio;

Hit ratio is useful for evaluating the pragmatic effect of a
push attack on recommendation. Typically, a user is only
interested in the top 20 to 50 recommendations. An attack
on an item that significantly raises the hit ratio, regardless
of prediction shift, can be considered effective. Indeed, an
attack that causes a pushed item to be recommended 80% of
the time has achieved the desired outcome for the attacker.

4.3 Accuracy Analysis

We first analyze the accuracy of our association rule rec-
ommender compared to k-nearest neighbor. To evaluate the
recommendations, we performed 10-fold cross-validation on
the entire dataset and no attack profiles were injected.

Determining a suitable evaluation metric was challenging
because the two algorithms are based on fundamentally dif-
ferent approaches. The k-nn algorithm predicts a rating
value for each target item and ranks all items based on this
score. However, the association rule algorithm produces a
ranked list, such that the recommendation score is the con-
fidence that a target user will like the recommended item.

It is not obvious how to directly compare the recommen-
dation scores of the two algorithms, because k-nn uses a pre-
dicted value and association rules use a confidence measure.
It is also not possible to make a prediction of the rating value
from the association rule recommendation list. However, the
association rule recommender does make a more general pre-
diction; it predicts a binary “like” or “dislike” classification
for a recommended item if the confidence value is positive
or negative, respectively.

In order to compare the accuracy of our association rule
recommender and k-nn, we transform both recommendation
lists into binary “like” and “dislike” categories for each item.
For the association rule recommender, it is simply a matter
of using the sign of the confidence value, as discussed in
the previous paragraph. For k-nn, we categorize an item as

109

Top 10 Recommendations
average attack w/ 5% filler

\ —o—k-nn —&—k-means —%—plsa —+— apriori

g %8 /
206 —
= / /
S 04
8 /' /
® 02
- ——
04 — :
0 5 10 15

attack size %

Figure 2: Average attack hit ratio at 5% filler size

“like” if the predicted rating is greater than the user’s mean
rating, and “dislike” otherwise.

It is now possible to compare the accuracy of the two
algorithms. We use the normalized mean absolute error
(NMAE) metric. For the Apriori algorithm, we use a min-
imum support of 0.1 and a maximum of 6000 rules with
the greatest lift. In neighborhood formation for k-nn, we
achieved optimal results using & = 20 users.

As shown in Table 1, the difference in accuracy between
the association rule recommender and k-nn is statistically
insignificant. This is a very promising result, as the scala-
bility of model-based algorithms often come at the cost of
lower recommendation accuracy [13].

Because Apriori selects recommendations from only among
those item sets that have met the support threshold, it will
by necessity have lower coverage than our baseline algo-
rithms. There will be some items that do not appear in
the Frequent Itemset Graph, and about which the algorithm
cannot make any predictions. This problem may occur in
a k-nn algorithm as well, since there may be no peer users
who have rated a given item. However, this is a relatively
rare occurrence as Table 2 shows. We see that the coverage
of the k-nn algorithm is near 100%, while Apriori is consis-
tently around 47%.

The Apriori algorithm would therefore lend itself best to
scenarios in which a list of top recommended items is sought,
rather than a rating prediction scenario in which the rec-
ommender must be able to estimate a rating for any given
item. The selectivity of the algorithm may be one reason
to expect it will be relatively robust - it will not make rec-
ommendations without evidence that meets the minimum
support threshold.

4.4 Robustness Analysis

To evaluate the robustness of our association rule recom-
mender, we compare the results of push attacks on k-nearest
neighbor, k-means clustering, and PLSA.

4.4.1 Average Attack

Figure 2 presents hit ratio results for top 10 recommenda-
tions at different attack sizes, using a 5% filler. All model-
based techniques show notable improvement in stability over
k-nn. However, the performance of Apriori and PLSA are
superior to k-means at large attack sizes. Under a 15% at-

Top 10 Recommendations
average attack w/ 2% attack

‘+ k-nn —&—k-means —%—plsa —+— apriori

0.5
004 \\\
£os ——
$ 02
©

0-1 W

o T :

0 20 40 60 80 100
filler size %

Figure 3: Average attack hit ratio at 2% attack size

tack, an attacked movie is almost guaranteed to be in a
user’s top 10 recommended list for k-nn and will be in the
top 10 list over 60% of the time for k-means. However, the
attacked movie only shows up in a user’s top 10 recommen-
dations slightly greater than 5% of the time for Apriori or
PLSA.

Robustness of the Apriori algorithm may be partially due
to lower coverage. However, this does not account for the flat
trend of hit ratio with respect to attack size. At a 5% attack,
we observed only 26% coverage of the attacked item. But at
a 10% attack, we observed 50% coverage, and at 15% attack,
we observed a full 100% coverage of the attacked item.

It is precisely the manner in which an average attack
chooses filler item ratings that causes the combination of
multiple attack profiles to short-circuit the attack. Recall
that filler item ratings in an average attack are distributed
around their mean rating. When an average attack profile
is discretized, there is equal probability that a filler item
will be categorized as “like” or “dislike”. Therefore, multiple
attack profiles will show little more than chance probability
of having common itemsets. The lack of mutual reinforce-
ment between filler items prevents the support of itemsets
containing the attacked item from surpassing the threshold.

To evaluate the sensitivity of filler size, we have tested a
full range of filler items. The 100% filler is included as a
benchmark for the potential influence of an attack. How-
ever, it is not likely to be practical from an attacker’s point
of view. Collaborative filtering rating databases are often
extremely sparse, so attack profiles that have rated every
product are quite conspicuous [15]. Of particular interest
are smaller filler sizes. An attack that performs well with
few filler items is less likely to be detected. Thus, an attacker
will have a better chance of actually impacting a system’s
recommendation, even if the performance of the attack is
not optimal.

Figure 3 depicts hit ratio for top 10 recommendations at
the full range of filler sizes with a 2% attack size. Surpris-
ingly, as filler size is increased, hit ratio for standard k-nn
goes down. This is because an attack profile with many filler
items has greater probability of being dissimilar to the ac-
tive user. On the contrary, hit ratio for k-means and PLSA
tend to rise with larger filler sizes. Eventually, both algo-
rithms are surpassed by k-nn and actually perform worse
with respect to robustness.

110

Top 10 Recommendations
segment attack (in segment) w/ 5% filler size

|[—e—k-nn —a—k-means —»—plsa —+— apriori \

-

o
=4

[=
)

attack hit ratio
o
»
—

o
N
]

/ \)
o = o —
0 5 10 15

attack size %

Figure 4: Segment attack hit ratio at 5% filler size

Only the Apriori algorithm holds steady at large filler sizes
and is essentially unaffected. As with attack size, the rea-
son that filler size does not affect the robustness of the algo-
rithm is because adding more filler items does not change the
probability that multiple attack profiles will have common
itemsets. The fact that a profile’s ratings are discretized to
categories of “like” and “dislike” means that an attack pro-
file with 100% filler size will cover exactly half of the total
features used in generating frequent itemsets. Therefore, it
is very unlikely that multiple attack profiles will result in
mutual reinforcement.

We have shown results for average attack because it is
more effective than random or bandwagon attacks; however,
Apriori has also exhibited improved robustness compared to
the other algorithms against these attacks. We next present
results for segment attack.

4.4.2 Segment Attack

The segment attack is designed to have particular impact
on likely buyers, or “in-segment” users. These users have
shown a disposition towards items with particular charac-
teristics, such as movies within a particular genre. For our
experiments, we selected popular horror movies (Alien, Psy-
cho, The Shining, Jaws, and The Birds) and identified users
who had rated all of them as 4 or 5. This is an ideal target
market to promote other horror movies, and so we measure
the impact of the attack on recommendations made to the
in-segment users.

Figure 4 depicts hit ratio for top 10 recommendations at
different attack sizes, using a 5% filler. Clearly, the attack
is extremely effective against the k-nn algorithm. A meager
1% attack shows a hit ratio of nearly 80%. By contrast, a
segment attack has little effect on k-means and PLSA.

The Apriori algorithm appears to have the same robust-
ness as the other model-based algorithms at small attack
sizes. However, beyond a 5% attack, Apriori performs quite
poorly with respect to robustness. Hit ratio reaches 100%
at a 15% attack. The cause of such dramatic effect is precise
targeting of selected items by the attacker. This is the op-
posing force to the phenomena witnessed against an average
attack. A segment attack profile consists of multiple selected
items, in addition to the target item, where the maximum
rating is assigned. Clearly, all such items will always be
categorized as “like”. Therefore, the mutual reinforcement

of common item sets is a given, and a user that likes any
permutation of the selected items receives the attacked item
as a recommendation with high confidence.

Although the performance of Apriori is not ideal against
a segment attack, certain scenarios may minimize the per-
formance degradation in practice. In particular, a recom-
mender system with a very large number of users is some-
what buffered from attack. The algorithm is quite robust
through a 5% attack, and is comparable to both k-means
and PLSA. The robustness of Apriori is not drastically re-
duced until attack size is 10% or greater. Certainly it is
feasible for an attacker to inject the necessary number of
profiles into a recommender with a small number of users,
but it may not be economical for a commercial recommender
such as Amazon.com, with millions of users.

S. CONCLUSION

The standard user-based collaborative filtering algorithm
has been shown quite vulnerable to profile injection attacks.
An attacker is able to bias recommendation by building a
number of profiles associated with fictitious identities. In
this paper, we have demonstrated the relative robustness
and stability of model-based algorithms over the memory-
based approach. In particular, we have introduced a robust
recommendation algorithm based on association rule mining
that attempts to capture relationships among items based
on patterns of co-occurrence across user profiles.

Frequent item sets are generated for the association rules
by first discretizing all user profiles such that an item rating
is classified as “like” or “dislike”. This level of abstraction
from the original user profiles acts to short-circuit the mu-
tual reinforcement property found in average and random
attacks. It allows the algorithm to make recommendations
that are relatively accurate, while removing much of the in-
fluence of biased attack profiles.

Overall, the association rule recommender far outperforms
the standard k-nearest neighbor algorithm with respect to
robustness. However, it is not robust against a segment at-
tack compared to other model-based algorithms. This issue
is slightly offset because a segment attack must be relatively
large before having an effect on the algorithm. It is un-
likely that a malicious user could mount a successful segment
attack against a commercial recommender with millions of
users.

Future work will study in greater detail the mutual re-
inforcement of common item sets. We will attempt to dis-
cover the ideal attack size threshold necessary for mounting
a successful segment attack against the association rule rec-
ommender. In addition, we will design an extension to the
algorithm that is suitable for recommender systems with a
small number of users. We will also compare the accuracy
of Apriori with k-nn at lower coverage levels. This might
be accomplished by filtering out weak recommendations or
weak neighbors in the k-nn algorithm, for example.

6. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of the 20th
International Conference on Very Large Data Bases
(VLDB’94), Santiago, Chile, September 1994.

[2] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algorithm.
Journal of Royal Statistical Society, B(39):1-38, 1977.

[3] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl.
An algorithmic framework for performing collaborative
filtering. In Proceedings of the 22nd ACM Conference
on Research and Development in Information
Retrieval (SIGIR’99), Berkeley, CA, August 1999.

[4] T. Hofmann. Probabilistic latent semantic analysis. In
Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, Stockholm,
Sweden, July 1999.

[5] T. Hofmann. Unsupervised learning by probabilistic
latent semantic analysis. Machine Learning Journal,
42(1):177-196, 2001.

[6] J.Herlocker, J. Konstan, L. G. Tervin, and J. Riedl.
Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
22(1):5-53, 2004.

[7] X. Jin, Y. Zhou, and B. Mobasher. A unified approach
to personalization based on probabilistic latent
semantic models of web usage and content. In
Proceedings of the AAAI 2004 Workshop on Semantic
Web Personalization (SWP’04), San Jose, California,
July 2004.

[8] X. Jin, Y. Zhou, and B. Mobasher. Web usage mining
based on probabilistic latent semantic analysis. In
Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD’04),
Seattle, Washington, August 2004.

[9] S. Lam and J. Riedl. Shilling recommender systems for
fun and profit. In Proceedings of the 13th International
WWW Conference, New York, May 2004.

[10] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams.
Towards trustworthy recommender systems: An
analysis of attack models and algorithm robustness.
ACM Transactions on Internet Technology, 7(4), 2007.

[11] B. Mobasher, R. Burke, and J. Sandvig. Model-based
collaborative filtering as a defense against profile
injection attacks. In Proceedings of the 21st National
Conference on Artificial Intelligence, pages 1388—-1393.
AAAI, July 2006.

[12] M. Nakagawa and B. Mobasher. A hybrid web
personalization model based on site connectivity. In
WebKDD Workshop at the ACM SIGKKDD
International Conference on Knowledge Discovery and
Data Mining, Washington, DC, August 2003.

[13] M. O’Conner and J. Herlocker. Clustering items for
collaborative filtering. In Proceedings of the ACM
SIGIR Workshop on Recommender Systems, Berkeley,
CA, August 1999.

[14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th International
World Wide Web Conference, Hong Kong, May 2001.

[15] C. Williams, R. Bhaumik, R. Burke, and
B. Mobasher. The impact of attack profile
classification on the robustness of collaborative
recommendation. In Proceedings of the 2006 WebKDD
Workshop, held at ACM SIGKDD Conference on Data
Mining and Knowledge Discovery (KDD’06),
Philadelphia, August 2006.

