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Abstract— The Learnable Evolution Model (LEM) was intro-
duced by Michalski in 2000, and involves interleaved bouts of
evolution and learning. Here we investigate LEM in (we think)
its simplest form, using k-nearest neighbour as the ‘learning’
mechanism. The essence of the hybridisation is that candidate
children are filtered, before evaluation, based on predictions
from the learning mechanism (which learns based on previous
populations). We test the resulting ‘KNNGA’ on the same set
of problems that were used in the original LEM paper. We
find that KNNGA provides very significant advantages in both
solution speed and quality over the unadorned GA. This is
in keeping with the original LEM paper’s results, in which
the learning mechanism was AQ and the evolution/learning
interface was more sophisticated. It is surprising and interesting
to see such beneficial improvement in the GA after such a
simple learning-based intervention. Since the only application-
specific demand of KNN is a suitable distance measure (in
that way it is more generally applicable than many other
learning mechanisms), LEM methods using KNN are clearly
recommended to explore for large-scale optimization tasks in
which savings in evaluation time are necessary.

I. INTRODUCTION

M ICHALSKI introduced the Learnable Evolution
Model (LEM) [10] in 2000. LEM is a highly gener-

alised hybrid approach to optimisation, in which the overall
idea is to run repeated stretches of evolution and learning
in series, where the next ‘evolution’ stretch is informed by
the previous ‘learning’ stretch, which in turn learned about
the mapping between genotype and fitness from previous
populations. For example, we may start by running an
evolutionary algorithm for 10 generations; then we halt the
evolutionary algorithm and run a learning method. This
learning method might be a neural network, for example,
which will try to learn to predict fitness from vectors of
gene values. Or, it may be a decision tree learner which tries
to classify chromosomes into five categories of ‘goodness’
and so forth. The result of the learning phase is then fed into
the next stretch of evolution. The way the learning influences
the evolution is not restricted by the LEM framework. For
example (and as done in this paper), the learned model
could be used to predict the fitness (or fitness category) of
children before they are evaluated, and the evolution phase
discards, without evaluation, children that are predicted to
be particularly unfit. Alternatively, the learned model may
be used to constrain the genetic operators in such a way that
children are more likely to be fit. Or, the learned model may
be used to ‘repair’ children that are generated in the normal
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way. And so on. Evolution then continues for another few
generations, then more learning, and so it continues.

In [10], the learning method employed was an AQ learner,
specifically AQ15 [6], [13], and the results of this were
highly compelling, with very significant improvement over
the underlying GA on a suite of five test problems. In
particular LEM led to dramatic speedup. LEM-based work
subsequent to this includes a multiobjective form (using C4.5
as the learner), found to significantly speed up and improve
solution quality for large-scale problems in water distribution
networks [5], while the team that developed LEM have
updated the framework [14] and continued to gain impressive
results [15].

Meanwhile, of course, while LEM was initially published
only in the machine learning community, at around the same
time Estimation of Distribution Algorithms (EDAs) started to
shoot to prominence in the evolutionary computation com-
munity [7]. EDAs can also be viewed as learning/evolution
hybrids, with the emphasis on building and maintaining
models of fit chromosomes. Both techniques (LEM and
EDA) now have several published variants (particularly EDA
variants), and it is interesting to consider what are the (if
any) definitive differences. It seems correct to suggest that
while EDAs focus on modelling as the key force behind
search activity (i.e. search is guided closely by the modelling,
with new sample points in the space generated directly
from the model), in LEM the evolutionary component is
most responsible for the search (i.e. new points are sampled
mainly in the familiar way by using genetic operators on a
population of chromosomes), with guidance from learning
processes. Most interestingly, recent results from the LEM
team compare EDAs and LEM3 directly [15]. They report
using various EDA implementations from [1], with best
results (of these) on the Rosenbrook and Griewank functions
found by EMNA global [8]. Comparison of LEM3 (with
AQ) and EMNA global on these functions showed LEM3
between 15 and 230 times faster in achieving its best value,
which in turn was always better than that achieved by
EMNA global.

Finally it must be pointed out that hybrids of EDA and
GAs, or of EDAs and other search methods, have started to
appear since (at least) 2003 [17], [11], [18]. When contrasting
the LEM framework with the EDA framework, it is perhaps
clearest to say that LEM is similar in style to a hybrid
EDA/GA, and this seems to be reflected in the relative
success that has so far been shown for EDA/GA hybrids.

The design and application of LEM is clearly worth
considerably more research. Our own interest was sparked
by the promise shown in [10] for considerable speedup,
leading to our investigation of a LEM variant on large scale



water distribution network problems [5]. In such, and many,
many other problems in which fitness function evaluation
takes considerable time, time savings are precious, and
can easily make the difference between the problem being
solvable at all or not. Following the success of that work,
we decided to investigate the design of LEM more closely.
The current paper is the result of starting this expedition,
in which we evaluate the performance of what we argue is
the simplest possible version of LEM; that is, the original
LEM framework, using k-nearest-neighbour (the simplest
possible learning scheme) as the learning mechanism, and
employing learning in the evolution mode only by using the
current KNN model to predict whether a new child should
be evaluated.

In the remainder we continue as follows. Section II pro-
vides more detail on the original LEM and on our ‘KNNGA’,
which we also sometimes denote as LEM(KNN). Section ??
provides a pictorial view of how LEM(KNN) works, which
may be useful. Section IV covers experiments and results on
the test problems that were employed in the original LEM
paper. We conclude and discuss in section 6.

II. LEM(AQ) AND LEM(KNN)

A. A brief exposition of the original LEM algorithm

We start by explaining how LEM(AQ) works, as de-
scribed in [10]. First, the initial population is generated
and evaluated. It is then divided into high-performance (H-
group) and low-performance (L-group) groups according to
the initial individuals’ fitness values. These two groups are
then used as the positive and negative training examples for
the AQ learning algorithm. The outcome of the AQ learning
algorithm is a set of rules expressing inductive hypotheses
(in terms of intervals of gene values) for the positive and
negative examples. LEM(AQ) then proceeds with an other-
wise normal evolutionary algorithm, except that the operators
are designed so that new individuals are generated only
with gene values within the ranges of values sanctioned by
the recently learned inductive hypotheses. LEM(AQ) then
continues for a specified amount of generations, and then
pauses for more learning based on the current population.
This in turn feeds into the next stage of evolution, and so
on. There are additional complications and sophistication in
LEM(AQ) that mediate the transitions between learning and
evolution, and we refer readers to [10] for fuller details.

B. LEM(KNN) – KNNGA

There is a big difference between LEM(AQ) and our
LEM(KNN) in how the learning influences the evolution,
which is quite simplified in LEM(KNN). In LEM(AQ), the
generation of new individuals are instantiating of the de-
scription (set of rules) of the H-group or L-group. However,
in LEM(KNN), new individuals are still generated by the
common GA mutation and crossover operators, KNN is
applied as a particular form of survival selection operator
which judges an individual according to the fitness values of

its neighbours. A detailed description of our LEM(KNN) al-
gorithm is given below, in which we assume a maximization
problem is being considered.

As with LEM(AQ), LEM(KNN) divides the population
into high-performance (H-group) and low-performance (L-
group) groups according to their fitness values and a given
threshold (here, 30% – that is, the fittest 30% form the
H-group and the worst 30% form the L-group). This is
then saved as the learning population. Individuals of the
H-group and L-group in the learning population form the
training examples used by the KNN algorithm. Effectively,
the ‘learning’ here corresponds entirely to the process of
classification into these groups based entirely on fitness, and
hence is one of the simplest learning schemes conceivable.
However, this goes hand in hand with the use of the learning
population in predicting the quality of newly generated
individuals, which goes as follows.

The common mutation and crossover operators are used
to generate new individuals in the normal way. Once a
new individual is generated, KNN is used to predict if this
individual is ‘good’ or ‘bad’. First, we find the k nearest
neighbors for this new individual; if the majority of these are
in the H-group, then this individual is predicted as ‘good’,
otherwise this individual is predicted as ‘bad’. The ‘good’
individuals are retained to form the new population for the
next generation. The ‘bad’ individuals are discarded. This
continues until sufficient new individuals are generated in (or,
predicted to be in) the H-group to form a new population.
When a fixed number of generations, we indicate this as
learning gap (LG), are generated, the learning population
is updated by the current generation. Again, the learning
population is classified into the H-group and L-group. This
is repeated until a termination condition is reached.

Now we try to ensure a replicable explication with pseudo-
code. ‘Overview’ pseudo-code for LEM(KNN) is as follows:

1) Parameters: Set values for population size, parameters
for mutation (mutation value, mutation rate), param-
eters for crossover (parents number, children number)
and set elite-preserve operator option. Set k (indicating
the number of neighbours in KNN algorithm), learning
gap (indicating the interval before one learning popu-
lation is updated by another) and the threshold.

2) Generate initial Population: Choose a method to create
the initial population with population size and evaluate
this population.

3) Derive extrema: Copy the current population as the
learning population from which create the high fitness
group (H-group) and low fitness group (L-group),
according to fitness values and threshold. These two
groups could have a joint set, or their union could be
a subset of the whole population set or even equals to
the whole population set. These two groups are stored
for KNN algorithm.

4) Generate new generations: After reproducing the cur-
rent population, apply the mutation, crossover opera-
tors to generate new individuals. Once a new offspring



is generated, (it is not evaluated and is not placed
in the mating pool immediately) KNN is applied to
find its k nearest neighbors w.r.t H-group and L-
group (not the whole learning population). For these
k nearest neighbors of this offspring, KNNGA judges
the majority according to their fitness values, there will
be two cases:

i) if the majority is high (that is, most of this
offspring’s k neighbours are members of H-
group), then it is evaluated and retained into
the newly created population.
ii) if the majority is low (that is, most of this
offspring’s k neighbours are members of L-
group), then it is aborted.

The generating procedure continues until this new pop-
ulation is filled with such newly generated individuals
nearer to H-group. This finishes the generation of one
generation.

5) Update H-group and L-group: When learning gap
is reached, the learning population is replaced by
the current population. The H-group and L-group are
therefore recalculated according to the current learning
population and the same threshold. The new H-group
and L-group are stored for KNN.

6) Termination condition: The above steps 4),5) repeat
until some termination conditions are satisfied:

i) the optimal (if known) is reached; or
ii) the maximum allowed generations is
reached; or
iii) the best fitness value has not been improv-
ing for a certain number of generations.

The pseudo-code for our specific instantiation of
LEM(KNN), which we call KNNGA, is set out here as
Algorithm 1.

C. KNNGA ‘with verification’

In KNNGA, when a new individual is generated, the
fitness of the neighbours of this individual from the learning
population are checked, and this guides whether or not it
enters the population in the next generation. The key aspect
(presumably) of the difference between KNNGA and GA
(or the difference between a ‘learning-guided’ search and
a pure black box search) is that, in this way, a newly
generated individual is discarded before evaluation if we
predict beforehand that it will not be good enough.

The flip-side of this, of course, is that we may well admit
new individuals into the population that pass this test, but
ultimately they prove to be unfit. That is, it could be that the
prediction provided by KNN is wrong.

To understand the degree to which this happens, we also
test a modification of KNNGA which includes a step of ver-
ifying the correctness of the prediction. When an individual
is generated by a mutation or crossover operation, as before,
KNNGA calculates its k nearest neighbours. Again there are
two possible cases, for the second case where the majority
of its k nearest neighbours are in L-group (for maximization

Algorithm 1 pseudo-code for KNNGA
1: population size = 100; i = 0.
2: max generation number = 500.
3: k = 5, learning gap = 5, threshold = 0.3.
4: generation number = 0.
5: Initialize a new population with population size.
6: Evaluate current population.
7: repeat
8: reproduce current population.
9: if (generation number%learning gap == 0) then

10: copy current population into learning population.
11: calculate the H-group and L-group according to

threshold.
12: end if
13: while (i < population size) do
14: mutate a parent individual to generate a new child.
15: calculate the k nearest neighbours for this child.
16: if (the majority of this child’s k neighbours are

nearer to H-Group) then
17: evaluate and place it into the next generation.
18: j++.
19: else
20: child is aborted.
21: end if
22: apply crossover on two parent individuals in the

current population to generate two new children.
23: for each of these two children, repeat steps 15-21.
24: end while
25: generation number++.
26: until (generation number == max generation number)

problem), this individual is aborted without evaluation; for
the first case where the majority of its k nearest neighbours
are in H-group, this individual is further tested instead of
being immediately placed into next generation. That is,
after being evaluated, it is compared with a pre-selected
value (eg., the worst fitness value in the current population),
if this individual’s fitness value is higher than this value,
then it survives into the next generation; otherwise, it is
still aborted. We call this modified version of KNNGA as
KNNGA(V) (KNNGA with verification). Compared with
KNNGA, KNNGA(V) adds one more condition restricting
the new individuals to be able to survive. Namely, in order to
survive into the next generation, the new individual should be
not only nearer to the H-group, but also better than the worst
individual in the current generation. The predictions made
by KNNGA are verified as correct or not in this sense. The
corresponding KNNGA algorithm should also be modified.
KNNGA(V) is the same as KNNGA except that Algorithm
1’s 16-21 lines are modified as follows:

This ‘with-verification’ variant does not at first sight seem
well-suited to the goal, in problems with time-expensive
fitness functions, of reducing the number of evaluations as
much as possible. However, we were interested in any trade-
off there may be between the increase in computation time



Algorithm 2 part pseudo-code for KNNGA(V)
1: if (the majority of this child’s k neighbours are nearer to

H-Group) then
2: evaluate this child with the fitness function.
3: find the worst fitness value of the current population.
4: if (fitness(child) > worst fitness ) then
5: place this child into the next generation.
6: j++.
7: else
8: child is aborted.
9: end if

10: else
11: child is aborted.
12: end if

and the quality of solutions obtained.

D. KNNGA and KNNGA(V) Execution time

One of our own motivating factors for investigating LEM-
based methods is their promise of speedup on large-scale
optimisation problems. That is, achieving good results in rel-
atively few evaluations, which is particularly important when
a single evaluation is time-expensive. We therefore provide
this simple analysis of execution time for completeness, to
better understand how the number of evaluations depends on
other aspects of the algorithms studied.

We assume for both KNNGA and GA that the population
size is p, the maximum number of generations is M, the time
for evaluating one single individual is teval, and the crossover
operation has the setting m parents and n children (m gen-
erally equals to p, and m ≥ n), and the mutation operation
has m parents and m children. Meanwhile, tsearch represents
the time spent on searching for a satisfying individual. For
the general GAs, the time spent on the whole evolutionary
process TGA is calculated by:

TGA = (p + M(m + n))teval

There are p evaluations for the initial population, and m+n
evaluations for each of the following M generations. The
time spent on the evolution/learning process TKNNGA is
calculated by:

TKNNGA = (p + Mp)teval + Mptsearch

Again, p evaluations are needed for the initial population,
and p evaluations in each of the following M generations. In
addition to the evaluation time, KNNGA needs search time
ptsearch in each M generations.

III. PICTURING THE LEM(KNN) PROCEDURE

In this section, we use a simple example problem to illus-
trate how KNNGA operates. We assume the problem has a
two-dimensional population space, therefore each individual
consists of two genes (attributes). The problem is a linear
function maximization problem. As KNNGA is running, the

sequential populations will be occupied by the individuals
nearer to the H-group in the current population.
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Fig. 1. Example illustration

Figure 1A shows the first generation, the initial individuals
are evenly distributed within the whole population space, and
for a given threshold (eg.,30%) the H-group and L-group are
formed.

Figure 1B shows the second generation derived by KN-
NGA, this population space is crowded by individuals that
are within the high fitness half of the first population. Since
the degree to which the individuals are now spread out
in genotype space is around half what it was previously,
the density in genotype space is roughly doubled. This
population now undergoes classification into H-group and
L-group, resulting in Figure 1C.

Figure 1C shows the third generation of the population,
and we see continued reduction in the ‘spread’ of the
population. Clearly, the current whole population has focused
on a region increasingly defined by the H-group individuals
of the first and second generations.

An obvious and perhaps important aspect of LEM(KNN)
(and LEM methods in general, is this strongly defined move-
ment of the population between generations, which is clearly
guided (by the results of learning) and less randomised and
exploratory than a normal GA. Naturally this has potential
drawbacks; we could expect the learning process to misguide
the population on certain landscapes, and become stuck in
poor regions. Whether or not this generally happens on
problems of interest and importance, and (if so) whether
the deceptive nature of the landscape is equally deceptive
for normal GAs in such cases, are moot points. Empirical
evidence to date is suggestive that this general strategy is
certainly more often effective than not.



IV. COMPARING LEM(KNN) WITH THE

CORRESPONDING GA

This section describes the experimental results derived
from the comparison between KNNGA and the correspond-
ing GA (i.e. the evolutionary algorithm identical to our
KNNGA implementation in all respects other than the use
of KNN). The test problems used are those that were used
in [10] to evaluate the performance of LEM(AQ). In that
work, Michalski et al report on two problems from the
De Jong’s suite [3], and variants are tested with different
numbers of dimensions (as in [10]). (Michalski et al also
report that similar findings were achieved with the other
De Jong problems and are reported in [9]). An additional
problem tested in [10] is also tested here; this is from the
domain of parameter estimation in nonlinear digital filter
design, simulated using equations gleaned from [16].

We were interested in the basic performance of KNNGA
vs GA, so that we could sample the degree to which (if
any) the LEM framework could be successful when using the
simplest possible learning scheme. However we also took the
opportunity to contrast with- and without-crossover versions
for both the GA and KNNGA. Thus we use notation such as
‘GA(m)’ (the GA with mutation only) and ‘KNNGA(c,m)’
(KNNGA with both crossover and mutation).

In all cases, the encoding was a vector of real-valued
genes each encoding numbers within a specified interval.
We used binary tournament selection [4], elitism (the next
generation’s population is always initialised with the best
of the previous generation), and uniform crossover [12].
Mutation is implemented by randomly adding or subtracting
a small value to one gene. For different problems, the values
for k, learning gap may be different and this is specified
later. For each problem, KNNGA and GA use the same
initialization method to generate the initial population. For
all cases, the population size is 100.

All experiments are repeated 100 times independently to
provide sufficient evidence for claims of statistical signifi-
cance. For statistical analysis, we use randomisation testing
[2], which is relatively free of assumptions about the true
distributions of the samples involved. As it turns out, the
differences in performance as suggested by the plots shown
were all confirmed significant at a confidence level of 99.9%,
except in those cases where the best two are clearly close
(usually KNNGA(c,m) and KNNGA(c,m)(V)), in which case
the difference in performance was inconclusive at this con-
fidence level.

Finally, it is worth pointing out again that all algorithms
began with the same initial population. It sometimes appears
from the graphs (e.g. see figure 2) that the KNN variants
began with an advantage, however they didn’t. The KNN
variants tended to achieve a very rapid improvement in fitness
in the first few generations, which is horizontally compressed
to almost nothing in the plots.

A. Experimental Study 1: Simple Function Optimization

1) Problem 1: Find the maximum of function f1 with five
variables.

f1(x1, x2, x3, x4, x5) =
5∑

i=1

integer(xi)

−5.12 ≤ xi ≤ 5.12 Maximum : 25.

Figure 2 shows the results of running KNNGA(c,m),
KNNGA(m), KNNGA(c,m)(V), GA(c,m) and GA(m) on
problem 1. For both of KNNGA and GA, mutation standard
deviation is 0.1, mutation rate is 0.2, and crossover is
implemented with 100 parents and 10 children. For KNNGA,
k is 5, threshold is 30%, and learning gap is 1.
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Fig. 2. Results on problem 1 comparing KNNGA(c,m), KNNGA(m),
KNNGA(c,m)(V), GA(c,m) and GA(m). This is a maximisation problem.
Mean results over 100 trial runs.

All KNNGA variants outperform the GA variants. Within
500 generations, GA(m) only reaches the best fitness value
of 13.21, and GA (c,m) reaches 16.31. In contrast, within the
same number of generations, KNNGA(m) and KNNGA(c,m)
achieve the best fitness values 16.18 and 23.47, respectively.
KNNGA(c,m)(V) achieves best fitness value 23.0. It is in-
teresting that the extra evaluation step of KNNGA(c,m)(V)
does not yield any advantage in solution quality.

2) Problem 2: Find the maximum of the function f2 of
30 continuous variables with Gaussian noise:

f2(x1, x2, x3, . . . , x30) =
30∑

i=1

ix4
i + Gauss(0, 1)

−1.28 ≤ xi ≤ 1.28

Maximum : approximately 1248.225.

For this problem, the number of optimum increases as the
number of variables scales up. Figure 3 shows the results of
running the five KNNGAs and GAs algorithms on problem 2.
For both KNNGA and GA, the mutation value is 0.005 due to
the smaller variables range (-1.28, 1.28) and the mutation rate
is 1/30. Crossover is implemented with 100 parents and 10



children. For KNNGA, k is 5, threshold is 30%, and learning
gap is 1.
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Fig. 3. Results on problem 2 (maximization); mean results over 100 runs.

Within 2000 generations, KNNGA(m) and KNNGA(c,m)
reach the best fitness values 758.3 and 1048.7, GA(m)
and GA(c,m) can reach 840.7 and 993.1, respectively. KN-
NGA(c,m)(V) achieves best fitness value 1039.2.

B. Experimental Study 2: Designing Digital Filters

In this study, we test KNNGA algorithm on the problem
of parameter estimation for digital filter design. The fitness
function was defined by equations specifying linear and
nonlinear filters presented in [16].

1) problem 3: Determine optimal parameters of nonlinear
filters defined by the equation:

y(k) =
[

3 − 0.3y(k − 1)u(k − 2)
5 + 0.4y(k − 2)u2(k − 1)

]2

+ (1.25u2(k − 1) − 2.5u2(k))

× ln(|1.25u2(k − 2) − 2.5u2(k)|) + n(k)

where: k is the sample index or time, n() is a noise
component ranging from -0.25 to 0.25, and u() is an inserted
function (sin, step, random).

The coefficients -0.3, 0.4, 1.25, and -2.5 are assumed as
variables which will be optimized and can be seen as the
genes of individuals. The problem is to find their correct
values using samples {〈vectori, y(vectori)〉}, where vectori

is a specific assignment of values to variables and y(vectori)
is the value of the equation for this assignment. When
substituted in the equation, individuals generate a value of
y that is compared with the value computed when correct
coefficients are used in the equation. The fitness of an
individual is defined as in [16] as the reciprocal of the mean-
square error over 200 sample window (equation (1)):

Fitness(V ector) =
1

MeanSquareError

=
200∑

200(V ector − KnownV alue)2

(1)

For this minimization problem, the fitness landscape is not
clear even for the low variables cases. Figure 4, 5 shows the
results of running the five KNNGAs and GAs on problem
3. For both KNNGA and GA, the mutation value is 0.1 and
the mutation rate is 1/4. Crossover is implemented with 100
parents and 10 children. For KNNGA, k is 5, threshold is
30%, and learning gap is 1.
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Fig. 4. Results on parameter estimation for nonlinear filter design, prob-
lem3; each curve is average of 100 runs, and the problem is minimization.
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Fig. 5. KNNGA(m) vs KNNGA(c,m)(E) on the nonlinear filter design
problem (we divided the results over two plots in this case for ease of
visualisation).

The reduction in mean square errors achieved by KNNGA
over GA is evident. Within 1500 generations. KNNGA(m)
and KNNGA(c,m) reduce the mean square errors to 3426.3
and 2896.7, GA(m) and GA(c,m) can reduce the mean
square error values to 7886.5 and 7588.2, respectively. KN-
NGA(c,m)(V) reaches mean square error to 4301.5.

C. Experimental Study 3: More Complex Function Optimiza-
tion

1) problem 4: Find the maximum of function f4 with 100
variables.)

f4(xi) =
100∑
i=1

integer(xi) − 5.12 ≤ xi ≤ 5.12

Maximum : 500.



This is the same problem with problem 1, but with more
variables. Figure 6 shows the results of running the five
KNNGAs and GAs algorithms on problem 4. The mutation
value is 0.1, the mutation rate is (10/100 = 0.1). Crossover is
implemented with 100 parents and 10 children. For KNNGA,
k is 5, threshold is 30%, and learning gap is 5.
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Fig. 6. Results on problem 4; the 100-variable version of problem 1. Each
line is the average of 100 runs.

The improvement achieved by KNNGA over GA is
evident. Within 5000 generations. KNNGA(m) and KN-
NGA(c,m) reach the best fitness values 415.7 and 360.1,
GA(m) and GA(c,m) reach the best fitness values 140.8 and
170.6, respectively. KNNGA(c,m)(V) achieves 351.87.

2) problem 5: Find the maximum of the function f5 of
100 continuous variables with a Gaussian noise:

f5(x1, x2, x3, . . . , x100) =
100∑
i=1

ix4
i + Gauss(0, 1)

−1.28 ≤ xi ≤ 1.28 Maximum : 13556.

This is the same problem with problem 2, but with 100
variables. The optima are approached more difficultly than
in problem 2. Figure 7 shows the results of running the five
KNNGAs and GAs on problem 5. The mutation value is 0.1,
the mutation rate is 0.1. Crossover is implemented with 100
parents and 10 children. For KNNGA, k is 5, threshold is
30%, and learning gap is 5.

The improvement achieved by KNNGA over GA is evident
within 60000 generations. KNNGA(m) and KNNGA(c,m)
reach the best fitness values 13042.7 and 12787.3, GA(m)
and GA(c, m) can only reach 11805.4 and 12269.7, respec-
tively. KNNGA(c,m)(V) reaches 12971.5.

D. Summary of Results

The results on this suite of problems show clear and very
significant superiority for the KNN variants. Neglecting the
‘with verification’ case for the moment, either KNNGA(c,m)
or KNNGA(m) were in top place on each problem, and
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Fig. 7. Results on problem 5, the 100-variable version of problem 2.

always better than the non-KNN versions. The typical result
is that the KNN variants show a significant acceleration in
fitness in the very early generations, followed by steady
further improvement, leaving the ordinary’ versions far back
in their wake.

These findings reflect those of [9], [10] and other recent
LEM works that used more sophisticated learning mecha-
nisms and interaction between the learner and the GA. Since
the only application-specific demand of KNN is a suitable
distance measure (in that way it is more generally applicable
than many other learning mechanisms), it seems fair to say
that LEM methods using KNN are clearly recommended
for trial in the case of large-scale optimization tasks in
which savings in evaluation time are necessary. Far more
work needs to be done to establish this properly, however
when LEM methods have been tried on large-scale real-world
problems so far their promise has indeed been realised [5].

Meanwhile, the performance of the ‘with-verification’
version of KNNGA was generally not significantly different
from that of KNNGA(c,m), which suggests that the ‘without’
verification version is preferable, simply because it is faster.
More interestingly, the lack of a major difference in perfor-
mance between these two suggests that KNN’s predictions,
at least in the cases of the problems tested here, are gen-
erally not misleading. Finally, it is clear that the differences
between GA(m) and GA(c,m) were generally reflected in the
differences between KNNGA(m) and KNNGA(c,m).

V. CONCLUDING DISCUSSION

We investigated a simple version of Michalski’s LEM [10]
which used k-nearest-neighbour as the learning component,
and had a straightforward interaction between the learning
and the GA, in which new individuals only entered the
population if the majority of their k nearest neighbours in
the current learning population were in the top 30% group.
One contribution of this work is the KNNGA algorithm, a
simple instantiation of LEM with KNN, which very clearly
trounces the corresponding GA in both speed and solution



quality. The speed advantage is particularly impressive in
general. Another contribution of this work is the fact that the
LEM framework has been shown to work well in the context
of using perhaps the simplest possible learning method. This
is in contrast to published approaches which have either used
AQ learners or C4.5. KNN is both simpler and more generic,
suggesting that LEM(KNN) may be applied to large-scale
optimisation problems independently of the chromosome
encoding required, needing only a suitable distance metric
to be defined.

We note that it has been difficult to compare our KNNGA
with the specific LEM method used in [10], since not all
parameters are provided in the LEM paper. However, while
the improvements in performance over the GA are similarly
vast, it does seem that the LEM(AQ) implementation re-
ported there provides superior results to KNNGA. Two clear
explanations for this are available: the simplicity of KNN
compared with the relative sophistication of AQ, and the dif-
ferences in the way that the learning influences the evolution
in the two cases. We have deliberately opted for the simplest
possible approaches in both cases here, and therefore can
show that the bulk of the improvement afforded by the LEM
framework is still present in these circumstances, suggesting
that the specific choice of learning method and the design of
the learning/evolution interaction provide opportunities for
further improvement and refinement, rather than being crucial
to being able to show superior performance at all.

Continued research on instantiations and variations of the
LEM framework are clearly warranted. Lines of work that we
expect to explore are: the relationship between the problem
landscape and the choice of learning method; the interaction
between the learning method and the learning gap, and
the use of more than one learning method (with perhaps
adaptive techniques to choose between them at different
points). Further hybridisation and comparisons with EDA
style approaches, and EDA/search hybrids are also warranted.
Importantly, however, LEM-based approaches would seem to
have much to offer for speedup of large scale optimisation,
and we recommend its application to real-world problems
of that nature. A specific issue with some possible LEM
variants, including the KNN case in many dimensions, is
that the learning method itself may take up nontrivial time.
This is why we recommend LEM-based research in particular
for problems where this ‘learning time’ remains trivial in
comparison to the other aspects of the search, either because
a single fitness evaluation takes significant time, or because,
very many fitness evaluations are needed, or both.
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