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Abstract. The target of machine learning is a predictive model that
performs well on unseen data. Often, such a model has multiple intended
uses, related to different points in the tradeoff between (e.g.) sensitivity
and specificity. Moreover, when feature selection is required, different fea-
ture subsets will suit different target performance characteristics. Given
a feature selection task with such multiple distinct requirements, one is
in fact faced with a very-many-objective optimization task, whose target
is a Pareto surface of feature subsets, each specialized for (e.g.) a differ-
ent sensitivity/specificity tradeoff profile. We argue that this view has
many advantages. We motivate, develop and test such an approach. We
show that it can be achieved successfully using a dominance-based mul-
tiobjective algorithm, despite an arbitrarily large number of objectives.

1 Introduction

One of our motivating applications concerns images of textures (e.g. images of
sections of wallpaper, fabric, carpet, etc.). Determining computationally whether
two textures are similar to human eyes is a challenging and unsolved problem.
However, experimental data are available that, for a varied set of textures, in-
dicate which pairs users considered to be similar; we also have ∼5000 computa-
tional features for each texture. To support applications in texture search and
browsing, we need to predict whether two textures are perceptually similar, us-
ing only the computational features. We also wish to reduce, via feature selection
(FS), the number of features that need to be computed.

The selected features need to serve multiple purposes. Consider a search
engine that, when given a ‘query’ texture, searches a database for other textures
that would be perceived as being similar. Some users will be interested in as
many ‘matching’ textures as possible and not be troubled by false positives.
Others may require only a few textures but may insist that those provided be
similar to the query case. Similar considerations apply in any domain where,
for different predictive tasks involving the same data, the relative costs of false
positives and false negatives vary significantly.

For such scenarios, in which FS is needed but the required performance pro-
files of the reduced feature set are complex and varied, we introduce a multiob-
jective (MO) approach that aims to find multiple subsets of features, each spe-
cialized for distinct required performance characteristics. In general, FS is easily



phrased as a MO problem, e.g. one may maximize accuracy while minimizing a
measure of feature subset complexity [7–9]. However, based on the many ways
of measuring accuracy, we argue that this may be considered a problem with an
infinite set of objectives. We explain this in sections 2 and 3, showing how the
choice of sensitivity and specificity as measures of classifier performance leads
naturally to a problem with an infinite set of objectives. In sections 4 and 5 we
then describe an algorithm capable of handling such a problem. Sections 6 and
7 describe an investigation of this algorithm on three datasets. The effectiveness
of the approach is discussed in section 8, along with ideas for further work.

2 Feature Subset Evaluation in the Wrapper Approach

When selecting features for a particular target application, the quality of the
feature set is determined by the resulting performance of the application. Here we
consider two-class problems, with the ‘class of interest’ considered ‘positive’ and
the other ‘negative’. Performance is calculated using the number of true positives
(TP ), false positives (FP ), true negatives (TN) and false negatives (FN). We
make particular use of the following measures: sensitivity (|TP | /(|TP |+ |FN |));
specificity (|TN | /(|TN | + |FP |)); and confidence (|TP | /(|TP | + |FP |)).

In the ‘wrapper’ approach to FS, feature set quality is estimated by applying
a simple classification algorithm. So if the balanced error rate is to be minimized
in the target application, the evaluation of a feature set should be an attempt to
minimize the balanced error rate using a suitable classifier. If, as in the case of the
texture search engine, the target application’s performance is judged according
to multiple, perhaps unknown accuracy measures, then feature subset evaluation
should be an attempt to optimize each of these measures. In this case, use of
a classification algorithm such as basic k-Nearest Neighbour (k-NN, as used by
Emanouilidis [4], in an effort to optimize specificity, sensitivity and feature set
size) is not appropriate, since k -NN generates only a single sensitivity-specificity
pair that cannot simultaneously optimize each of the competing objectives. On
the other hand, a model-based algorithm such as naive Bayes (NB) produces a
probability that each record belongs to the class of interest. Concrete predictions
are obtained by assigning a record to the class of interest if the probability is
above a threshold. By varying the threshold, NB classifiers produce a range of
different sensitivity-specificity trade-offs.

3 Uncountably Many-Objective Feature Selection

Users of a texture search engine will have varying preferences for the balance
to be struck between sensitivity and specificity. Figure 1 shows the results of
applying a classifier like NB to a single feature subset and the preferences of three
users. User 1 is happy with just a few (12%) similar textures being returned, but
is irritated by false positives. User 3 requires almost all (94%) similar textures
to be returned, and will tolerate a large number of false positives. User 2 takes
the middle ground, being satisfied with a sensitivity of 48%. Each user has set



Fig. 1. User 1 is happy with few correct matches, but is easily irritated by false posi-
tives. User 3 requires most truly similar textures to be provided and can tolerate many
false positives. User 2 strikes a balance between these extremes.

a threshold on sensitivity and wishes specificity to be maximized subject to
this constraint. Users may state their requirements in different ways, e.g. via
estimates of the relative costs of false positives and false negatives, yet clearly
we wish the graph to be as high as possible at each value of sensitivity.

Conceptually, this results in uncountably many objectives: to please each po-
tential user of our search engine we should maximize specificity for each value
of sensitivity. In practice, however, the graph of specificity against sensitivity
is piecewise horizontal, with the number of pieces bounded by the number of
records in the class of interest. This reduces the number of objectives to ‘very
many’. The height of neighbouring points on the graph are also highly corre-
lated, which increases the chance that any pair of feature sets are comparable,
i.e. that one dominates the other. Finally, section 4 introduces modified domi-
nance relations that further increase the probability that a pair of solutions are
comparable, enabling an effective dominance-based approach to this problem.
Meanwhile, note that the methods developed here can handle the conceptually
infinite-objectives case — the resulting dominance relations and crowding mea-
sures are suitable for the comparison of graphs, rather than vectors of objectives.

There are many approaches to evaluating feature subsets; in this paper we
examine two. In each case, an objective is the value of some measure of quality
at a fixed value of some other quality measure or parameter. The first approach
plots specificity against sensitivity (equivalent to optimizing ROC curves [5]);
the second plots confidence against sensitivity. In either case, if a threshold
value produces a sensitivity-specificity pair or a sensitivity-confidence pair that
is dominated by some other pair, it is not considered part of the curve produced.

4 Dominance and Crowding

The basic dominance relation is familiar: one solution dominates another if it
is at least as good on all objectives and better on at least one. In the case of
specificity vs. sensitivity curves, this translates to the curve for the first solution
being at least as high as the curve for the second in all places, and higher in



some. While this seems reasonable, there is a concern that the large number of
objectives will result in a weak dominance relation. (Here, a dominance relation
is considered ‘strong’ if, given a random pair of solutions, the probability that
they are comparable is high.) Solution B need only beat solution A over a tiny
portion of the curve in order to avoid being dominated by A. This may result in
a lack of selection pressure in dominance based algorithms such as NSGA II [3]
and a potentially unmanageable number of non-dominated solutions. Hence we
apply a simple modification to the dominance relation. In Fig. 2 the area in dark

Fig. 2. Dividing the area of dark red by the area of pale green gives a value used by
the modified dominance relation.

red is dominated by feature set A but not by feature set B, while the pale green
area is dominated by B but not A. The modified dominance relation states that
A dominates B if there is a red area but no green area, or if the result of dividing
the red area by the green area exceeds a given dominance factor. A dominance
factor of 1 makes almost every pair of solutions comparable, reducing to the
problem of maximizing the area under the curve — a commonly used measure of
the performance of a machine learning algorithm (e.g. [2]). At the other extreme,
an infinite dominance factor produces the basic dominance relation.

Any well-behaved dominance relation should be anti-symmetric and tran-
sitive. If the dominance factor is at least 1, then the relation is clearly anti-
symmetric — if the red area is bigger than the green area then the green area
cannot be bigger than the red area. Transitivity can also be shown, though this
requires a little more work. A brief proof is available in supplementary material
at http://www.macs.hw.ac.uk/~ar136, along with our code and datasets.

Finally, to underpin maintenance of a limited-size archive of non-dominated
solutions, we consider the choice of ‘crowding’ measure. It is possible to generalize
the standard crowding measure of NSGA II [3], but we elect to use a crowding
measure based on distances between pairs of solutions. We define this as the area
between the two curves, i.e. the sum of the red and green areas in Fig. 2.

5 Implementation

Two classification algorithms, logistic regression (LR) and naive Bayes (with
Laplace correction) (NB) [10], are used to evaluate the feature subsets. LR re-



quires numeric data, so categorical data were converted. For example, a categor-
ical field with three categories, cyan, magenta and yellow, is converted into two
numeric fields, taking the values zero and one. A one in the first field translates
to ‘cyan’, while a one in the second field translates to ‘magenta’. Two zeroes
imply that the record is ‘yellow’. In contrast, our implementation of NB requires
categorical data. Any numeric field is discretized by partitioning its range into
a number of bins. To avoid problems that may arise from a highly non-uniform
distribution over the bins, we aim for an equal-frequency discretization. (Details
may be found in the supplementary material.)

Feature subsets were optimized using NSGA II [3], with the dominance re-
lation and crowding measure replaced by those described above. Solutions were
encoded as bitstrings, with bits indicating the presence or absence of the corre-
sponding feature. A limit on the number of features was imposed and enforced
after crossover by removing random features as necessary. Three types of muta-
tion were used at equal rates: addition of a feature (if permitted), removal of a
feature or swapping a feature in the subset for one currently absent.

It has been suggested that dominance based algorithms such as NSGA II
perform poorly for problems with more than 4 objectives [6], most likely due to
the resulting weak dominance relation. Here we illustrate that despite the large
number of objectives, good results can be obtained if the dominance relation is
strong enough.

Finally, we note that, after performing the optimization, the presence of
so many objectives raises issues with the presentation of the results. Figure 3
shows quality plots for four non-dominated feature subsets. Their quality may
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Fig. 3. Quality plots for four feature sub-
sets, generated from the ionosphere data
with dominance factor set to 2 and a limit
of 4 features per subset.

0.6

0.7

0.8

0.9

1

S
p

e
c
if

ic
it

y Feature subset 1

Feature subset 2

Feature subset 4

0.4

0.5

0.6

0.7 0.8 0.9 1

S
p

e
c
if

ic
it

y

Sensitivity

Fig. 4. Plotting the envelope of the qual-
ity plots for four feature subsets. Notice
that feature subset 3 does not contribute,
despite being non-dominated.

be compared without too much difficulty using the figure. However, this task
becomes much more difficult given twenty or thirty non-dominated solutions.

One possibility is to plot only those points that are non-dominated with
regard to sensitivity and specificity, producing Fig. 4. Notice that feature subset



3 does not contribute to the sensitivity-specificity front. However, this subset may
be the best choice, since it performs well over all values of sensitivity. Moreover,
this method of presenting results may result in an overoptimistic view of certain
feature subsets on unseen data. An alternative approach is to present two types
of graph. The main graph plots solutions according to, e.g., the specificity at
two different values of sensitivity. Selecting a solution produces a second graph
of specificity against sensitivity for the solution including two markers, in this
case vertical lines, that indicate the objectives used on the main graph. With a
suitable user interface, dragging these markers changes the objectives used on
the main graph, allowing the user to fully explore the solution set.

6 Experimentation

We explore this approach to generating multiple feature subsets by testing our
algorithm on three datasets. In each case the result is a Pareto front of feature
subsets, each of which has its own characteristic tradeoff curve (e.g. specificity
vs. sensitivity). In evaluating the technique, we are constrained by the fact that
there are as yet no suitable alternative algorithms in the literature that address
the same problem. The closest is the approach of Emanouilidis [4]. However, we
maximize specificity for each possible value of sensitivity. Emanouilidis’s use of
1-NN as the core classifier means that only a single sensitivity-specificity pair
is obtained for each feature set and it is these single values of sensitivity and
specificity that are maximized. Hence the algorithms optimize different measures
of feature set quality. (Note that we can compare the best sensitivity-specificity
values obtained by the two approaches, where we might expect Emanouilidis’s
use of 1-NN to restrict the spread of solutions across the sensitivity-specificity
front.) Evaluation of our approach is therefore restricted mainly to illustrating
that it achieves apparently effective results on the three datasets studied, in each
case yielding a set of feature subsets with varied performance characteristics.
Beyond this, we also report on aspects of performance that vary according to
the dominance factor, and according to constraints on the size of feature subsets.

In all experiments, we used a crossover rate of 0.8, a mutation rate (the chance
that a solution is mutated) of 0.2, a population size of 100, 500 generations, and
10-bin discretization when NB was used as the core classifier. Each dataset is
split into training and test sets, used during optimization and final evaluation
respectively. Whenever a feature subset is evaluated on the training or test set,
cross-validation (CV) is used — leave-one-out-CV for the ionosphere data, and
5-fold CV in the other two cases. Dataset details are as follows:

Ionosphere: Available from [1] and used previously for MOFS [4], the iono-
sphere data comprises 351 records and 35 fields. The class field is either “good”
(g) or “bad” (b), where “bad” is the class of interest. Non-class fields are numeric.
The dataset was split into training and test data, with the test set containing
100 records, 36 in the class of interest.

Breast Cancer Wisconsin (Diagnostic): Again from [1], this dataset
has a class field that takes the value ‘M’ (malignant) or ‘B’ (benign) and has



30 numeric input fields. The class of interest is the malignant class. The 569
records, 212 in the class of interest, are divided randomly into training and test
sets, with the test set containing 169 records, including 63 in the class of interest.

Texture: In the texture data, each record corresponds with a pair of textures.
5376 numerical features were extracted computationally from a set of textures,
using a range of methods including spectrum analysis, radon transforms, auto-
correlation etc. This was reduced to 283 features using simple correlation-based
methods. The input fields were obtained by calculating feature differences for
each texture pair. The class field was obtained by asking 30 people to group sim-
ilar textures, given either the full set of textures or a subset. Two textures were
considered similar if at least a third of people grouped the pair together. The
training set involved 19900 texture pairs (200 textures), 333 of which were con-
sidered similar. The test set was produced using another 100 textures, generating
4950 records, 85 in the class of interest.

The texture data is much larger than the other datasets, providing a more
challenging test. The class of interest forms only a small part of the dataset,
making it difficult to make true positive predictions without introducing many
false positives, i.e. it is difficult to achieve high confidence values.

7 Results

First, to examine the effect of the dominance factor and to determine a suitable
value for this parameter, experiments were performed on the ionosphere data
using an upper limit of 4 features per feature subset. NB was used to evalu-
ate feature sets, with sensitivity-specificity curves used to determine feature set
quality. The time taken by the algorithm and the numbers of non-dominated so-
lutions obtained, averaged over 30 runs, are outlined in Table 1. The last column
corresponds with the use of the basic dominance relation.

Table 1. The effect of modifying the dominance factor.

Dominance factor 1 2 5 10 20 50 ∞

No. non-dominated 1.00 3.77 16.0 41.9 85.7 187 397
Time (s) 20.7 23.0 23.9 25.5 26.9 28.4 20.3

Note that the number of non-dominated solutions is small compared with the
number of solutions examined, even when the basic dominance relation is used.
This implies that the dominance relation is stronger than one might expect for
a problem with so many objectives. However, given the difficulty in comparing
397 feature subsets, modified dominance is used in the following experiments.

On the Ionosphere data, the algorithm was applied using NB, sensitivity-
specificity curves and a dominance factor of 5. Runs were performed with differ-
ent limits on the number of features. Table 2 shows the number of non-dominated



Table 2. Number of non-dominated solutions for different feature set size limits.

Max. features 1 2 3 4 5 6 7 8
No. non-dominated 7.00 19.0 16.0 16.0 36.0 32.4 70.0 173

Time (s) 11.0 19.6 20.1 23.6 26.1 27.5 30.7 34.2
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Fig. 5. Performance on Ionosphere training data.

solutions obtained and time requirements, averaged over 30 runs. Time taken was
sufficient to find all Pareto-optimal solutions for subsets of up to 5 features, in all
runs. Results on training and test data are shown in Figs. 5 and 6 respectively.
(For clarity, Figs. 5–9 show the envelope of the sensitivity-specificity curves.)

Comparing with [4], the most notable difference is that the results presented
in Figs. 5 and 6 cover a much broader range of sensitivity-specificity values, since
the classification algorithm used is capable of effectively evaluating feature sets
that perform well at either high sensitivity or high specificity values.

On the breast cancer data, the algorithm was applied using LR, sensitivity-
confidence curves and a dominance factor of 5. Typical time requirements were
23 min. for four features and 32 min. for eight. Results are shown in Figs. 7 and
8. Finally, on the texture data the algorithm was applied using NB, sensitivity-
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Fig. 6. Performance on Ionosphere test data.
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Fig. 7. Performance on Breast Cancer Wisconsin (diagnostic) training data.
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confidence curves and a dominance factor of 2. Typical time requirements were
23 min. for four features and 29 min. for eight. Results are in Fig. 9.

8 Discussion

This paper has shown that FS can be effectively treated as a MO optimization
problem with an infinite set of objectives. The approach has advantages over
other FS methods, in that each feature subset generated is evaluated across a
range of values of sensitivity. There are many possible avenues of further research.
For example, if one is only interested in the feature sets that contribute to
the overall sensitivity-specificity (or sensitivity-confidence) front, an alternative
approach to dominance is indicated. Meanwhile, the class field in the texture data
originally indicated the proportion of people that considered a pair of textures
to be similar. This can be considered as the ‘probability of class membership’.
Here we used a threshold to convert this into a binary field. However, research
should be performed into adapting the approach of this paper to probabilistic
class membership. Finally, an obvious avenue of further work is to generalize the
method to multi-class problems. For example, given a three class problem we
may evaluate feature subsets according to the accuracy on each class. So rather
than dealing with curves and the area between curves, the problem becomes one
of surfaces and the volume between surfaces.
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Fig. 9. Performance on texture data, for one to eight features; results on training (left)
and test (right) data.
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