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An Evolutionary Algorithm that 
Constructs Recurrent Neural Networks 

Peter J. Angeline, Gregory M. Saunders, and Jordan B. Pollack 

Akhact-Standard methods for simultaneously inducing the 
structure and weights of recurrent neural networks limit every 
task to an assumed class of architectures. Such a simplification 
is necessary since the interactions between network structure 
and function are not well understood. Evolutionary computations, 
which include genetic algorithms and evolutionary programming, 
are population-based search methods that have shown promise in 
many similarly complex tasks. This paper argues that genetic al- 
gorithms are inappropriate for network acquisition and describes 
an evolutionary program, called GNARL, that simultaneously 
acquires both the structure and weights for recurrent networks. 
GNARL’S empirical acquisition method allows for the emergence 
of complex behaviors and topologies that are potentially excluded 
by the artificial architectural constraints imposed in standard 
network induction methods. 

I. INTRODUCTION 

N ITS complete form, network induction entails both I parametric and structural learning [l]; i.e., learning both 
weight values and an appropriate topology of nodes and links. 
Current connectionist methods to solve this task fall into two 
broad categories. Constructive algorithms initially assume a 
simple network and add nodes and links as warranted [2]-[8], 
while destructive methods start with a large network and prune 
off superfluous components [9]-[ 121. Though these algorithms 
address the complete problem of network acquisition, they do 
so in a highly constrained manner. Generally, constructive 
and destructive methods limit the available architectures in 
some way. In some of these methods, once an architecture 
has been explored and determined to be insufficient, a new 
architecture is adopted and the old becomes topologically 
unreachable. Others use only a single predefined structural 
modification, such as “add a fully connected hidden unit,” to 
generate successive topologies. Such structural hill climbing 
methods are susceptible to becoming trapped at structural local 
optima, which places the burden of task induction mostly 
on the identification of suitable parametric values rather than 
distributing the burden evenly. In addition, constructive and 
destructive algorithms investigate only restricted topological 
subsets rather than the complete class of network architectures. 
For example, Ash [2] allows only feedforward networks; 
Fahlman [6] assumes a restricted form of recurrence, and 
Chen et al. [7] explore only fully connected topologies. As 
a consequence, these algorithms tend to force a task into an 
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assumed architectural class rather than fitting an appropriate 
architecture to the task. 

The deficiencies of constructive and destructive methods 
stem from inadequate methods for assigning credit to structural 
components of a network. The constrained topologies are 
assumed to limit the complexity of structural and parametric 
interactions and increase the likelihood of finding a sufficient 
network to solve the problem. Ideally, such limiting constraints 
should arise from solving the task rather than be implicit in 
the algorithm. 

This paper presents GNARL, a network induction algo- 
rithm that simultaneously acquires both network topology and 
weight values while making minimal architectural restrictions 
and avoiding structural hill climbing. The algorithm, described 
in Section 111, is an instance of evolutionary programming 
[13], [14], a class of evolutionary computations that has been 
shown to perform well on complex tasks. Section I1 argues 
that this class of evolutionary computation is better suited for 
evolving neural networks than genetic algorithms [15], [ 161, 
a more popular variety of evolutionary computations. Finally, 
Section IV demonstrates GNARL’s ability to create recurrent 
networks for a variety of problems of interest. 

11. EVOLVING CONNECTIONIST NETWORKS 

Evolutionary computations are a promising collection of 
algorithms that hold promise for structural and parametric 
learning of recurrent networks [17]. These algorithms are 
distinguished by their reliance on a population of search space 
positions, rather than a single position, to locate extrema 
of a function defined over the search space. During one 
search cycle, or generation, the members of the population 
are ranked according to a fitness function, and those with 
higher fitness are probabilistically selected to become par- 
ents in the next generation. New population members, called 
offspring, are created using specialized reproduction heuris- 
tics. Using the population, reproduction heuristics, and fitness 
function, evolutionary computations implement nonmonotonic 
search methods that perform well in complex multimodal 
environments. Subclasses of evolutionary computations can be 
distinguished by examining the specific reproduction heuristics 
employed. 

Genetic algorithms (GA’s) [ 151, [ 161 are a popular form of 
evolutionary computation that rely chiefly on the reproduction 
heuristic of crossover.’ This operator forms offspring by 

‘Genetic algorithms also employ other operators to manipulates the popu- 
lation, including a form of mutation, but their distinguishing feature is a heavy 
reliance on crossover. 

1045-9227/94$04.00 0 1994 IEEE 



ANGELINE, SAUNDERS, AND POLLACK: AN EVOLUTIONARY ALGORITHM THAT CONSTRUCTS RECURRENT NEURAL NETWORKS 55 

Fig. 1. The dual representation scheme used in genetic algorithms. The 
interpretation function maps between the elements in recombination space 
on which the search is performed and the subset of structures that can be 
evaluated as potential task solutions. 

recombining representational components from two members 
of the population without regard to content. Such a purely 
structural approach to creating novel population members 
assumes that components of all parent representations may 
be freely exchanged without inhibiting the search process. 

Various combinations of GA’s and connectionist networks 
have been investigated. Much research concentrates on the 
acquisition of parameters for fixed network architectures 
[18]-[21]. Other work allows a variable topology, but disasso- 
ciates structure acquisition from acquisition of weight values 
by interweaving a GA search for network topology with a tra- 
ditional parametric training algorithm [22], [23]. Some studies 
attempt to coevolve both the topology and weight values 
within the GA framework, but as in the connectionist systems 
described above, the network architectures are restricted 
[24]-[26]. In spite of this collection of studies, current theory 
from both genetic algorithms and connectionism suggests 
that GA’s are not well-suited for evolving networks. In the 
following section, the reasons for this mismatch are discussed. 

A. Evolving Networks With Genetic Algorithms 

Genetic algorithms create new individuals by recombin- 
ing the representational components of two members of the 
population. Because of this commitment to structural recom- 
bination, GA’s typically rely on two distinct representational 
spaces (Fig. 1). Recombination space, usually defined over a 
set of fixed-length binary strings, is the set of structures to 
which the genetic operators are applied. It is in this space 
that the search actually occurs. Evaluation space, typically 
involving a problem-dependent representation, is the set of 
task-dependent structures that are evaluated on their ability 
to perform the desired task. When using GA’s to evolve net- 
works, the evaluation space is a set of networks. An interpreta- 
tion function maps between these two representational spaces. 
Any set of finite-length bit strings cannot represent all possible 
networks, thus the evaluation space is restricted to a predeter- 
mined set. By design, the dual representation scheme allows 
the GA to crossover bit strings without any knowledge of their 
interpretation as networks. The implicit assumption is that the 
interpretation function will be defined so that bit strings created 
by the dynamics of the GA in recombination space will map 
to successively better networks in evaluation space. 

The dual representation of GA’s is an important feature 
for searching in certain environments. For instance, when it 
is unclear how to search the evaluation space directly, and 

Fig. 2. The competing conventions problem [29]. Bit strings A and B map 
to stmcturally and computationally equivalent networks that assign the hidden 
units in different orders. Because the bit strings are distinct, crossover is likely 
to produce an offspring that contains multiple copies of the same hidden node, 
yielding a network with less computational ability than either parent. 

when there exists an interpretation function such that searching 
the space of bit strings by crossover leads to good points in 
evaluation space, then the dual representation is ideal. It is 
unclear, however, that there exists an interpretation function 
that makes GA’s beneficial for evolving neural networks. 
Clearly, the choice of interpretation function introduces a 
strong bias into the search, typically by excluding many 
potentially interesting and useful networks (another exam- 
ple of forcing the task into an architecture). Moreover, the 
benefits of having a dual representation hinge on crossover 
being an appropriate evolutionary operator for the task for 
some particular interpretation function; otherwise, the need to 
translate between the dual representations is an unnecessary 
complication. 

Characterizing tasks for which crossover is a beneficial 
operator is an open question. Current theory suggests that 
crossover will tend to recombine short, connected substrings of 
the bit string representation that correspond to above-average 
task solutions when evaluated [15], [16]. These substrings 
are called building blocks, making explicit the intuition that 
larger structures with high fitness are built out of smaller 
structures with moderate fitness. Crossover tends to be most 
effective in environments where the fitness of a member of the 
population is reasonably correlated with the expected ability 
of its representational components [27]. Environments where 
this is not true are called deceptive [28]. 

There are three forms of deception when using crossover to 
evolve connectionist networks. The first involves networks that 
share both a common topology and common weights. Because 
the interpretation function may be many-to-one, identical 
networks need not have the same bit string representation (see 
Fig. 2). Given two such networks, crossover will tend to create 
offspring that contain repeated components rather than the 
full complement of either parent’s hidden units. The resulting 
networks will necessarily perform worse than their parents 
because they do not possess key computational components 
for the task. Schaffer et al. [29] term this the competing con- 
ventions problem, and point out that the number of competing 
conventions grows exponentially with the number of hidden 
units. 

The second form of deception involves two networks with 
identical topologies but different weights. It is well known 
that for a given task, a single connectionist topology affords 
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multiple solutions for a task, each implemented by a unique 
distributed representation spread across the hidden units [30], 
[31]. While the removal of a small number of nodes has been 
shown to effect only minor alterations in the performance 
of a trained network [30], [31], the computational role each 
node plays in the overall representation of the task solution 
is determined purely by the presence and strengths of its 
interconnections. Furthermore, there need be no correlation 
between distinct distributed representations over a particular 
network architecture for a given task. This seriously reduces 
the chance that an arbitrary crossover operation between dis- 
tinct distributed representations will construct viable offspring 
regardless of the interpretation function used. 

Finally, deception can occur when the parents differ topo- 
logically. The types of distributed representations that can 
develop in a network vary widely with the number of hidden 
units and the network’s connectivity. Thus, the distributed rep- 
resentations of topologically distinct networks have a greater 
chance of being incompatible for recombination into viable 
off spring. 

In short, for crossover to be an appropriate operator for 
evolving networks, the interpretation function must somehow 
compensate for all the types of deceptiveness described above. 
This suggests that the complexity of an appropriate interpre- 
tation function may more than rival the complexity of the 
original learning problem. Thus, the prospect of evolving con- 
nectionist networks with crossover appears limited in general, 
and better results should be expected with representations 
and reproduction heuristics that respect the uniqueness of a 
network’s distributed representation. Part of this point has been 
tacitly validated in the genetic algorithm literature by the ap- 
pearance of non-binary representations for evolving networks 
(e.g., [32], [33]). Crossover, however, is still commonplace. 

B .  Networks and Evolutionary Programming 

Evolutionary programming (EP) [14], [34] is another form 
of evolutionary computation more suited to complete network 
induction. EP systems assume representations that are more 
natural for the task rather than relying on a singular, general 
representation as in GA’s. Once an appropriate representation 
is chosen, representation-dependent mutation operators are 
defined that create offspring within a specific behavioral 
locus of the parent (see Fig. 3) .  EP commits to mutation as 
the sole reproductive operator for searching over a solution 
space. Recombination operators are not used. Evolutionary 
programming is preferable to genetic algorithms when there 
is no sufficient calculus to guide recombination or when 
separating the search and evaluation spaces does not afford 
an advantage. 

Relatively few previous EP systems have addressed the 
problem of evolving connectionist networks. Fogel et al. [35] 
investigate training feedforward networks on some classic 
connectionist problems. McDonnell and Waagen [36] use EP 
to evolve the connectivity of feedforward networks with a 
constant number of hidden units by evolving both a weight 
matrix and a connectivity matrix. Fogel [14], [37] uses EP to 
induce three-layer fully-connected feedforward networks with 
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Fig. 3. The evolutionary programming approach to modeling evolution. 
Unlike genetic algorithms, evolutionary programs perform search in the space 
of networks. Offspring created by mutation remain within a locus of similarity 
to their parents. 

a variable number of hidden units that employ good strategies 
for playing tic-tac-toe. 

In each of the above studies, the mutation operator alters 
the parameters of network 7 by the function: 

w = w + N(O,aE(7)) vw E 77 (1) 

where w is a weight, ~ ( 7 )  is the error of the network on the 
task (typically the mean squared error), Q: is a user-defined 
proportionality constant, and N ( p ,  0’) is a gaussian variable 
with mean p and variance gz. The implementations of struc- 
tural mutations in these studies differ somewhat. McDonnell 
and Waagen [36] randomly select a set of positions in the 
connectivity matrix for feedforward networks and toggle the 
associated link’s presence in the network with a probability 
based on the variance of the incident nodes’ activation over 
the training set. The structural mutation used by Fogel [14], 
[37] adds or deletes a single fully connected hidden unit 
with equal probability. While these methods address complete 
network induction they too suffer from limiting architectural 
assumptions. 

Evolutionary programming offers distinct advantages over 
genetic algorithms when evolving networks. First, EP ma- 
nipulates networks directly, thus obviating the need for a 
dual representation and a problematic interpretation function. 
Second, by avoiding recombination between networks when 
creating offspring, the individuality of each network’s dis- 
tributed representation is respected. 

111. THE GNARL ALGORITHM 

GNARL, which stands for GeNeralized Acquisition of Re- 
current Links, is an evolutionary algorithm that nonmonotoni- 
cally constructs recurrent networks to solve a given task. The 
name GNARL reflects the types of networks that arise from 
a generalized network induction algorithm performing both 
structural and parametric learning. Instead of having uniform 
or symmetric topologies, the resulting networks have “gnarled’ 
interconnections of hidden units that more accurately reflect 
constraints inherent in the task. 

The general architecture of a GNARL network is straight- 
forward. The input and output nodes are considered to be 
provided by the task and are immutable by the algorithm; thus 
each network for a given task always has mi, input nodes and 
7nout output nodes. The number of hidden nodes varies from 0 
to a user-supplied maximum h,,,. Bias is optional: if provided 
in an experiment, it is implemented as an additional input 
node with constant value one. All non-input nodes employ the 
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Fig. 4. Sample initial network. The number of input nodes (min) and number 
of output nodes (7n,,t) is fixed for a given task. The presence of a bias node 
( b  = 0 or 1) as well as the maximum number of hidden units (hmax) is set 
by the user. The initial connectivity is chosen randomly (as indicated in the 
text). The disconnected hidden node does not affect this particular network’s 
computation. but is available as a resource for structural mutations. 

standard sigmoid activation function. Links use real-valued 
weights, and must obey three restrictions: 

RI:  There can be no links to an input node. 
Rz: There can be no linksfiom an output node. 
Rs: Given two nodes 5 and y, there is at most one link 

Thus GNARL networks may have no connections, sparse 
connections, or full connectivity. Consequently, GNARL’S 
search space is: 
s = (7)’ . 17 is a network with real-valued weights, 

7) has min + b input nodes, where b = 1 if a bias 

q has mout output nodes, 
7 has i hidden nodes, 0 5 i 5 h,,,} 

RI - R3 are strictly implementational constraints. Nothing 
in the algorithm described below hinges on S being pruned 
by these restrictions. 

from x to y. 

satisfies RI - RY, 

node is provided, and 0 otherwise, 

A .  Selection, Reproduction, and Mutation of Networks 

GNARL initializes the population with randomly generated 
networks (see Fig. 4). The number of hidden nodes for each 
network is chosen from a uniform distribution over a user- 
supplied range. The number of initial links is chosen similarly 
from a second user-supplied range. The incident nodes for each 
link are chosen in accordance with the structural mutations 
described below. Once a topology has been chosen, all links 
are assigned random weights, selected uniformly from the 
range [- 1, 11. There is nothing in this initialization procedure 
that forces a node to have any incident links, let alone for 
a path to exist between the input and output nodes. In the 
experiments below, the number of hidden units for a network 
in the initial population was selected uniformly between one 
and five, and the number of initial links varied uniformly 
between one and 10. 

In each generation of search, the networks are first evaluated 
by a user-supplied fitness function f : S -+ R, where R 
represents the reals. Networks scoring in the top 50% are 
designated as the parents of the next generation; all other 
networks are discarded. This selection method is used in many 
EP algorithms, although competitive methods of selection have 
also been investigated [ 141. 

Generating an offspring involves three steps: copying the 
parent, determining the severity of the mutations to be per- 
formed, and finally mutating the copy. Network mutations are 
separated into two classes, corresponding with the types of 
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learning discussed in [ 11. Parametric mutations alter the value 
of parameters (link weights) currently in the network, whereas 
structural mutations alter the number of hidden nodes and the 
presence of links in the network, thus altering the space of 
parame ters . 

1) Severity of Mutations: The severity of a mutation to a 
given parent, 7). is dictated by that network’s temperature, 
T(77): 

J max 

where fmax is the maximum fitness for a given task. Thus, 
the temperature of a network is determined by how close the 
network is to being a solution for the task. This measure of 
the network’s performance is used to anneal the structural and 
parametric similarity between parent and offspring, so that 
networks with a high temperature are mutated severely, and 
those with a low temperature are mutated only slightly. This 
allows a coarse-grained search initially, and a progressively 
finer-grained search as a network approaches a solution to the 
task. T(Q)  is related to the concept of temperature in simulated 
annealing [38] where a higher temperature indirectly increases 
the variety of states that can be visited by the system. 

2 )  Parametric Mutation of Networks: Parametric muta- 
tions are accomplished by perturbing each weight w of a 
network 7 with gaussian noise, a method motivated by [14], 
[37]. In that body of work, weights are modified as follows: 

w = w + N ( 0 ,  aT(q)) vw E 7) (3) 

where a is a user-defined proportionality constant, and 
N ( p ,  02 )  is a gaussian random variable, as before. While large 
parametric mutations are occasionally necessary to escape 
parametric local minima during search, it is more likely they 
will adversely affect the offspring’s ability to perform better 
than its parent. To compensate, GNARL updates weights using 
a variant of (3). First, the instantaneous temperature T of the 
network is computed: 

+(7) = U(0,1)T(rl)  (4) 

where U(0, l )  is a uniform random variable over the interval 
[O, 11. This new temperature, varying from 0 to T(Q) ,  is then 
substituted into (3): 

w = w + N(O,a?(q)) vw E 7) ( 5 )  

In essence, this modification lessens the frequency of large 
parametric mutations without disallowing them completely. In 
the experiments described below, a is one. 

3 )  Structural Mutation of Networks: The structural muta- 
tions used by GNARL alter the number of hidden nodes and 
the connectivity between all nodes, subject to restrictions 
RI - R3 discussed earlier. To avoid radical jumps in fitness 
from parent to offspring, structural mutations attempt to 
preserve the behavior of a network. For instance, new links 
are initialized with zero weight, leaving the behavior of the 
modified network unchanged. Similarly, hidden units are 
added to the network without any incident connections. 
Links must be added by future structural mutations to 



determine how to incorporate the new computational unit. 
Unfortunately, achieving this behavioral continuity between 
parent and child is not so simple when removing a hidden 
node or link. Consequently, the deletion of a node involves the 
complete removal of the node and all incident links with no 
further modification to compensate for the behavioral change. 
Similarly, deleting a link removes that parameter from the 
network. 

The selection of which node to remove is uniform over 
the collection of hidden nodes. Addition or deletion of a 
link is slightly more complicated. A parameter identifies the 
likelihood that a link to be added or deleted will be incident 
with an input or output node. Biasing the link selection process 
in this way is necessary when there is a large differential 
between the number of hidden nodes and the number of 
input or output nodes. This parameter was set to 0.2 in the 
experiments described in the next section. 

Research in [14] and [37] uses the heuristic of adding or 
deleting at most a single fully connected node per structural 
mutation. Therefore, it is possible for this method to become 
trapped at a structural local minima for an indefinite time, 
although this is less probable than in nonevolutionary algo- 
rithms given that several topologies may be present in the 
population. In order to more effectively search the range of 
network architectures, GNARL uses a seventy of mutation 
for each separate structural mutation. A unique user-defined 
interval specifying a range of modification is associated with 
each of the four structural mutations. Given an interval of 
[Amin7 A,,,] for a particular structural mutation, the number 
of modifications of this type made to an offspring is given by: 

(6) 

Thus the number of modifications varies uniformly over a 
shrinking interval based on the parent network’s fitness. In the 
experiments below, the maximum number of nodes added or 
deleted was three, while the maximum number of links added 
or deleted was five. The minimum number for each interval 
was always one. 

A m i n  + LU[O, l ] ? ( ~ ) ( ~ m a x  - Amin)]  

B .  Fitness of a Network 

In evolving networks to perform a task, GNARL does not 
require an explicit target vector-all that is needed is the 
feedback given by the fitness function f .  But if such a vector 
is present, as in supervised learning, there are many ways of 
transforming it into a measure of fitness. For example, given 
a training set ( ( 2 1 ,  YI), ( 2 2 ,  yz), . . .}, three possible measures 
of fitness for a network v are sum of square errors (7), sum of 
absolute errors (8), and sum of exponential absolute errors (9): 

(7) 
1 

i 

i 

Furthermore, because GNARL explores the space of networks 
by mutation and selection, the choice of fitness function does 

a= I + output 0 
n 

/U 
Start b=l --f output 1 

Fig. 5. An FSA that defines the enable-trigger task [39]. The system is given 
a data stream of bit pairs { ( a i ,  b l ) ,  ( a 2 ,  b 2 ) ,  ’ .  .}, and produces an output of 
0’s and 1’s. To capture this system’s input/output behavior, a connectionist 
network must leam to store state indefinitely. 

not alter the mechanics of the algorithm. To show GNARL’S 
flexibility, each of these fitness functions will be demonstrated 
in the experiments below. 

IV. EXPERIMENTS 
In this section, GNARL is applied to several problems of 

interest. The goal in this section is to demonstrate the abilities 
of the algorithm on problems from language induction to 
search and collection. The various parameter values for the 
program are set as described above, unless otherwise noted. 

A .  Williams’ Trigger Problem 

As an initial test, GNARL induced a solution for the 
enable-trigger task proposed in [39]. Consider the finite state 
generator shown in Fig. 5. At each time step the system 
receives two input bits, ( U ,  b) ,  representing “enable” and 
“trigger” signals, respectively. This system begins in state SI, 
and switches to state S2 only when enabled by a = 1. The 
system remains in S 2  until it is triggered by b = 1, at which 
point it outputs 1 and resets the state to SI. So, for instance, 
on an input stream {(O,O) ,  (0, l), (1, l), (0, I)}, the system 
will output {0, O , O ,  1) and end in SI .  This simple problem 
allows an indefinite amount of time to pass between the enable 
and the trigger inputs; thus no finite length sample of the 
output stream will indicate the current state of the system. 
This forces GNARL to develop networks that can preserve 
state information indefinitely. 

The fitness function used in this experiment was the sum 
of exponential absolute errors (9). Population size was 50 
networks with the maximum number of hidden units restricted 
to six. A bias node was provided in each network in this initial 
experiment, ensuring that an activation value of 1 was always 
available. Note that this does not imply that each node had 
a nonzero bias; links to the bias node had to be acquired by 
structural mutation. 

Training began with all two input strings of length two, 
shown in Table I. After 118 generations (3000 network eval- 
uations2), GNARL evolved a network that solved this task for 
the strings in Table I within a tolerance of 0.3 on the output 
units. The training set was then increased to include all 64 
input strings of length three and evolution of the networks 
was allowed to continue. After an additional 422 generations, 
GNARL once again found a suitable network. At this point, the 
difficulty of the task was increased a final time by training on 
all 256 strings of length four. After another 225 generations 

2Number of networks evaluated in a run is popsize + (0.5 * generations * 
popsize), giving 3000 network evaluations for this trial. 
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TABLE I 
INITIAL TRAINING DATA FOR ENABLE-TRIGGER TASK 

Input Target output Input Target output 

Bias Bi 

0 
(a) (b) 

Fig. 6. Connectivity of two recurrent networks found in the enable-trigger 
experiment. (a) The best network of generation 1. (b) The best network of 
generation 765. This network solves the task for all strings of length eight. 

(- 20000 network evaluations in total) GNARL once again 
found a network to solve this task, shown in Fig. 6b. Note 
that there are two completely isolated nodes. Given the fitness 
function used in this experiment, the two isolated nodes do not 
effect the network’s viability. To investigate the generalization 
of this network, it was tested over all 4096 unique strings 
of length six. The outputs were rounded off to the nearest 
integer, testing only the network’s separation of the strings. 
The network performed correctly on 99.5% of this novel set, 
generating incorrect responses for only 20 strings. 

Figure 7 shows the connectivity of the population member 
with the best fimess for each generation over the course 
of the run. Initially, the best network is sparsely-connected 
and remains sparsely-connected throughout most of the run. 
At about generation 400, the size and connectivity increases 
dramatically only to be overtaken by the relatively sparse 
architecture shown in Fig. 6(b) on the final generation. Appar- 
ently, this sparsely connected network evolved more quickly 
than the full architectures that were best in earlier genera- 
tions. The oscillations between different network architectures 
throughout the run reflects the development of such competing 
architectures in the population. 

B .  Inducing Regular Languages 

A current topic of research in the connectionist community 
is the induction of finite state automata (FSA’s) by networks 
with second-order recurrent connections. For instance, Pollack 
[40] trains sequential cascaded networks (SCN’s) over a test 
set of languages, provided in [41] and shown in Table 11, using 
a variation of backpropagation. An interesting result of this 
work is that the number of states used by the network to 
implement finite state behavior is potentially infinite. Other 
studies using the training sets in [41] have investigated var- 
ious network architectures and training methods, as well as 
algorithms for extracting FSA’s from the trained architectures 
[42]-[45]. 

An explicit collection of positive and negative examples, 
shown in Table 111, that pose specific difficulties for inducing 

Generation number 

Fig. 7. Different network topologies explored by GNARL during the first 
540 generations on the enable-trigger problem. The presence of a link between 
node z and j at generation g is indicated by a dot at position (g, 1O*i + j) 
in the graph. Note that because node 3 is the output node, there are no 
connections from it throughout the run. The arrow designates the point of 
transition between the first two training sets. 

TABLE I1 
REGULAR LANGUAGES To BE INTRODUCED 

Language Description 

1 1* 
2 (1 0) 
3 
4 
5 
6 
7 0*1*0*1* 

No odd length 0 strings anytime after an odd length 1 string 
No more thantwo 0’s in a row 

An even number of 10’s and Ol’s, pairwise 
(Number of 1’s-number of 0’s) mod 3 = 0 

the intended languages is offered in [41]. Notice that the 
training sets are unbalanced, incomplete, and vary widely in 
their ability to strictly define the intended regular language. 
GNARL’S ability to learn and generalize from these training 
sets was compared against the training results reported for 
the second-order architecture used in [42]. Notice that all the 
languages in Table I1 require recurrent connections in order to 
induce the language completely. The type of recurrence needed 
for each language varies. For instance, languages 1 through 4 
require an incorrect input be remembered indefinitely, forcing 
the network to develop an analog version of a trap state. 
Networks for language 6, however, must parse and count 
individual inputs, potentially changing state from accept to 
reject or vice versa on each successive input. 

The results obtained in [42] are summarized in Table IV. 
The table shows the number of networks evaluated to learn 
the training set and the accuracy of generalization for the 
learned network to the intended regular language. Accuracy 
is measured as the percentage of strings of length 10 or less 
that are cohectly classified by the network. For comparison, 
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TABLE I11 TABLE V 
TRAINING SETS FOR THE LANGUAGES OF TABLE 11 FROM [41] SPEED AND GENERALIZATION RESULTS FOR GNARL TO TRAIN 

RECURRENT NETWORKS TO RECOGNIZE THE DATA SETS OF TABLE 111 
Language Positive instances Negative instances 

Language Evaluations % accuracy Evaluations % accuracy 
(SAE) (SAW W E )  W E )  

e, 1, 11, 111, 1111, 11111, 
111111, 1111111, 11111111 

0, 10,01,00,011, 110, 
OOO, 11111110, 10111111 1 

A 

e, 10, 1010, 101010, 10101010, 
10101010101010 

E ,  1,0 ,01 ,  11,00, 100, 110, 
111, OOO, 100100, 
110000011100001, 

1111011ooo10011100 

e, 1.0,  10,01,00,  100100, 
001111110100,0100100100, 

11100,010 

E ,  11,00,001, 0101, 1010, 
1OOO111101, 

1001100001111010, 111111, 
0000 

E ,  10,01, 1100, 111,000000, 
0111101111, 100100100 

r, 1 ,0 ,  10,01, 11111, OOO, 

1,0 ,  11.00, 01, 101, loo, 
1001010, 10110, 

110101010 
10, 101,010, 110, 1011, 
1OoO1,111010,1001OOO, 
11 11 1OOO,O111001101, 

11011100110 
OOO, 11OOOOOO1 

000000000,00000. oooo, 
11 11 100001 1, 

1 1 0 1 0 1 m 1 0 1 1 1  
1101010000010111, 

101001oO01 

1, 0, 111, 010, o o o o m ,  
lOOO,Ol, 10, 1110010100, 
010111111110, Oool, 011 

1, 0, 11, 00, 101, 011, 
11001, 1111,00000000, 
0101 11, 1011 1101 11 1, 

1001001001 
1010,001 1001 1oO0, 

001 1001 1,0101, 0101010101, 1011010, 
m 1 m 1 1 1 1 , 0 0 1 0 0 ,  10101,010100, 101001, 

011111011111,00 100100110101 

7 

TABLE IV 
SPEED AND GENERALIZATION RESULTS REFORTED 

BY [42] FOR LEARNING THE DATA SETS OF TABLE 111 

Average Average % Fewest Best % 
evaluations accuracy evaluations accuracy 

1 3033.8 88.98 28 
2 4522.6 91.18 807 
3 12326.8 64.87 442 
4 4393.2 42.50 60 
5 1587.2 44.94 368 
6 2137.6 23.19 306 
1 2969.0 36.97 373 

~ 

100.0 
100.0 
78.31 
60.92 
66.83 
46.21 
55.74 

the table lists both the average and best performance of the 
five runs reported in [42]. 

This experiment used a population of 50 networks, each 
limited to at most eight hidden units. Each run lasted at most 
lo00 generations, allowing a maximum of 25050 networks 
to be evaluated for a single data set. Two experiments were 
run for each data set, one using the sum of absolute errors 
(SAE) and the other using sum of square errors (SSE). The 
error for a particular string was computed only for the final 
output of the network after the entire string plus three trailing 
“null” symbols had been entered, one input per time step. The 
concatenation of the trailing null symbols was used to identify 
the end of the string and allow input of the null string, a 
method also used in [42]. Each network had a single input 
and output and no bias node was provided. The three possible 
logical inputs for this task, 0, 1, and null, were represented by 
activations of - 1, 1, and 0, respectively. The tolerance for the 
output value was 0.1, as in [42]. 

1 3915 100.00 5300 99.27 
2 5400 96.34 13915 13.33 
3 25050t 58.81 18650 68.00 
4 15775 92.57* 2 1850 57.15 
5 25050t 49.39 22325 5 1.25 
6 21475 55.59* 25050t 44.11 
1 12200 11.31* 250507 3 1.46 

ZOOM) 25000 I 

5MM 

3 4 5 6  

Training Set 

Fig. 8. The number of network evaluations required to learn the seven 
datasets of Table 3. GNARL (using both SAE and SSE fitness measures) 
compared to the average number of evaluations for the five runs described 
in [42]. 

Table V shows, for both fitness functions, the number of 
evaluations until convergence and the accuracy of the best 
evolved network. Only four of the runs, each of those denoted 
by a ‘+’ in the table, failed to produce a network with 
the specified tolerance in the allotted 1000 generations. In 
the runs using SAE, the two runs that did not converge 
had not separated a few elements of the associated training 
set and appeared to be far from discovering a network that 
could correctly classify the complete training set. Both of 
the uncompleted runs using SSE successfully separated the 
data sets but had not done so to the 0.1 tolerance within 
the 1000 generation limit. Fig. 8 compares the number of 
evaluations by GNARL to the average number of evaluations 
reported in [42]. As the graph shows, GNARL consistently 
evaluates more networks, but not a disproportionate num- 
ber. Considering that the space of networks being searched 
by GNARL is much larger than the space being searched 
by [42], these numbers appear to be within a tolerable in- 
crease. 

The graph of Fig. 9 compares the accuracy of the GNARL 
networks to the average accuracy found in [42] over five 
runs. The GNARL networks consistently exceeded the average 
accuracy found in [42]. 

These results demonstrate GNARL’S ability to simultane- 
ously acquire the topology and weights of recurrent networks, 
and that this can be done within a comparable number of 
network evaluations as training a network with static archi- 
tecture on the same task. GNARL also appears to generalize 
better consistently, possibly due to its selective inclusion and 
exclusion of some links. 
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0 SAEfitness 
I SSEfitness 

Language 

Fig. 9. Percentage accuracy of evolved networks on languages in Table 11. 
GNARL (using SAE and SSE fitness measures) compared to average accuracy 
of the five runs in [42]. 

Start 

Fig. 10. The ant problem. The trail is connected initially, but becomes 
progressively more difficult to follow. The underlying 2-D grid is toroidal, 
so that position “A” is the first break in the trail-it is simple to reach this 
point. Positions “B” and “C” indicate the only two positions along the trail 
where the ant discovered in run 1 behaves differently from the 5-state FSA 
of [46] (see Fig. 13). 

C .  The Ant Problem 

GNARL was tested on a complex search and collection 
task-the Tracker task described in [46], and further inves- 
tigated in [47]. In this problem, a simulated ant is placed on a 
two-dimensional toroidal grid that contains a trail of food. The 
ant traverses the grid, collecting any food it contacts along the 
way. The goal of the task is to discover an ant that collects 
the maximum number of pieces of food in a given time period 
(see Fig. 10). 

Following [46], each ant is controlled by a network with 
two input nodes and four output nodes (Fig. 11). The first 
input node denotes the presence of food in the square directly 
in front of the ant; the second denotes the absence of food 
in this same square, restricting the possible legal inputs to 
the network to ( I ,  0) or (0, 1). Each of the four output units 
corresponds to a unique action: move forward one step, tum 
left 90°, tum right 90°, or no-op. At each step, the action 
whose corresponding output node has maximum activation is 
performed. As in the original study [46], no-op allows the 
ant to remain at a fixed position while activation flows along 
recurrent connections. Fitness is defined as the number of grid 
positions cleared within 200 time steps. The task is difficult 
because simple networks can perform surprisingly well: the 
network shown in Fig. 11 collects 42 pieces of food before 
spinning endlessly at position A (in Fig. lo), illustrating a 
very high local maximum in the search space. 

The experiment used a population of 100 networks, each 
limited to at most nine hidden units, and did not provide a 
bias node. In the first run (2090 generations), GNARL found 

~ 

61 

Move Left Right No-OD 1,y O 

Food Nofood 

Fig. 11. The semantics of the 1/0 units for the ant network. The first input 
node denotes the presence of food in the square directly in front of the ant; 
the second denotes the absence of food in this same square. This particular 
network finds 42 pieces of food before spinning endlessly in place at position 
P, illustrating a very high local maximum in the search space. 

Fig. 12. The Tracker Task, first run. (a) The best network in the initial 
population. Nodes 0 and 1 are input, nodes 5-8 are output, and nodes 2 4  
are hidden nodes. (b) Network induced by GNARL after 2090 generations. 
Forward links are dashed; bidirectional links and loops are solid. The light 
gray connection between nodes 8 and 13 is the sole backlink. This network 
clears the trail in 319 epochs. 

a network [see Fig. 12(b)] that clears 81 grid positions within 
the 200 time steps. When this ant is run for an additional 119 
time steps, it successfully clears the entire trail. To understand 
how the network traverses the path of food, consider the 
simple FSA shown in Fig. 13, hand-crafted in [46] as an 
approximate solution to the problem. This simple machine 
receives a score of 81 in the allotted 200 time steps, and clears 
the entire trail only five time steps faster than the network in 
Fig. 12(b). A step by step comparison indicates there is only a 
slight difference between the two. GNARL’S evolved network 
follows the general strategy embodied by this FSA at all but 
two places, marked as positions B and C in Fig. 10. Here the 
evolved network makes a few additional moves, accounting 
for the slightly longer completion time. 

Fig. 14 illustrates the strategy the network uses to implement 
the FSA by showing the state of the output units of the network 
over three different sets. Each point is a triple of the form 
(move, right, left).3 Figure 14(a) shows the result of supplying 
to the network 200 “food” inputs-a fixed point that executes 

3No-op is not shown because it was never used in the final network. 
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NoFwdlRight 

Fig. 13. FSA hand-crafted for the Tracker task in [46]. The large arrow 
indicates the initial state. This simple system implements the strategy “move 
forward if there is food in front of you, otherwise turn right four times, looking 
for food. If food is found while tuming, pursue it, otherwise, move forward 
one step and repeat.” This FSA traverses the entire trail in 314 steps, and gets 
a score of 81 in the allotted 200 time steps, 

JU 

(d) 

Fig. 15. Limit behavior of the network of the second run. Graphs show 
the state of the output units Move, Right, Left. (a) Fixed point attractor that 
results for sequence of 3500 “food” signals; (b) A limit cycle attractor that 
results when a sequence of 3500 “no food” signals is given to the network; 
(c) All states visited while traversing the trail; (d) The path of the ant on an 
empty grid. The z axis represents time. The ant’s path is comprised of a set 
of “railroad tracks.” Along each track, tick marks represent back and forth 
movement. At the junctures between tracks, a more complicated movement 
occurs. There are no artifacts of the toroidal grid in this plot, all are actual 
movements [cf. Fig. 14(d)]. 

Left Left 

(b) ‘ Move Move 

FSA; instead, it is a quasiperiodic trajectory of points shaped 
like a “ D  in output space [see Fig. 15(b)]. The placement 
of the “D” is in the “Move / Right” comer of the space and 
encodes a complex altemation between these two operations 
[see Fig. 15(d)]. 

a genetic algorithm on 
a population Of 65 536 bit strings with a direct encoding to 
evolve only the weights of a neural network with five hidden 
units to solve this task. me particular network architecture 
in 1461 uses logic for the hidden units and 
an identity activation function for the output units. The first 
GNARL network was discovered after evaluating a total of 

(d) 
Fig. 14. Limit behavior of the network that clears the trail in 319 steps. 
Graphs show the state of the output units Move, Right, Left. (a) A fixed-point 
attractor that results for sequence of 500 “food” signals; (b) A limit cycle 
attractor that results when a sequence of 500 “no food” signals is given to 
network; (c)  All states visited while traversing the trail: (d) The path of the 
ant on an empty grid. The z axis represents time. Note that .r is fixed, and 
y increases monotonically at a fixed rate. The large jumps in y position are 
artifacts of the toroidal grid. 

contrast, research in [46] 

104 600 networks, while the second was found after evaluating 
79 850. The experiment reported in [46] discovered a compa- 
rable network after about 17 generations. Given [46] used a 
population size of 65 536 and replaced 95% of the population 
each generation, the total number of network evaluations to 
acquire the equivalent network was 1 123 942. This is 10.74 
and 14.07 times the number of networks evaluated by GNARL 
in the two runs. In spite of the differences between the two 
studies, this significant reduction in the number of evaluations 
provides empirical evidence that crossover may not be best 
suited to the evolution of networks. 

“Move.” Figure 14(b) shows the sequence of states reached 
when 200 “no food” signals are supplied to the network-a 
collection of points describing a limit cycle of length five that 
repeatedly executes the sequence “Right, Right, Right, Right, 
Move.,, These attractors the response of the 
network to the task [Fig. 14(c), (d)]; the additional points in 
Fig. 14(c) are transients encountered as the network altemates 
between these attractors. The differences in the number of 
steps required to clear the trail between the FSA of Fig. 13 
and GNARL’S network arise due to the state of the hidden 
units when transferring from the “food’ attractor to the “no 
food” attractor. 

However, not all evolved network behaviors are so simple 
as to approximate an FSA [40]. In a second run (1595 
generations) GNARL induced a network that cleared 82 grid 
points within the 200 time steps. Fig. 15 demonstrates the 
behavior of this network. Once again, the “food” attractor, 
shown in Fig. 15(a), is a single point in the space that always 
executes “Move.” The “no food’ behavior, however, is not an 

V. CONCLUSION 
Allowing the task to specify an appropriate architecture 

for its solution should, in principle, be the defining aspect 
of the complete network induction problem. By restricting 
the space of networks explored, constructive, destructive, 
and genetic algorithms only partially address the problem 
of topology acquisition. GNARL’S architectural constraints 
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RI - R3 similarly reduce the search space, but to a less 
extensive degree. Furthermore, none of these constraints is 
necessary, and their removal would affect only ease of imple- 
mentation. In fact, no assumed features of GNARL’s networks 
are essential for the algorithm’s operation. GNARL could 
even use nondifferentiable activation functions, a constraint 
necessary for backpropagation. 

GNARL’s minimal representational constraints would be 
meaningless if not complemented by appropriate search dy- 
namics to traverse the space of networks. First, unlike con- 
structive and destructive algorithms, GNARL permits a non- 
monotonic search over the space of network topologies. Con- 
sider that in monotonic search algorithms, the questions of 
when and how to modify structure take on great significance 
because a premature topological change cannot be undone. 
In contrast, GNARL can revisit a particular architecture at 
any point, but for the architecture to be propagated it must 
confer an advantage over other competing topologies. Such 
a non-linear traversal of the space is imperative for acquir- 
ing appropriate solutions because the efficacy of the various 
architectures changes as the parametric values are modified. 

GNARL allows multiple structural manipulations to a net- 
work within a single mutation. As discussed earlier, construc- 
tive and destructive algorithms define a unit of modification; 
e.g., “add a fully connected hidden node.” Since such singular 
structural modifications create a one-unit structural horizon 
beyond which no information is available, such algorithms 
may easily fixate on an architecture that is better than networks 
one modification step away, but worse than those two or 
more steps distant. In GNARL, several nodes and links can 
be added or deleted with each mutation, the range being 
determined by user-specified limits and the current ability of 
the network. This simultaneous modification of the structural 
and parametric modifications based on fitness allows the 
algorithm to discover appropriate networks quickly, especially 
in comparison with evolutionary techniques that do not respect 
the uniqueness of distributed representations. 

Finally, as in all evolutionary computations, GNARL main- 
tains a population of structures during the search. This allows 
the algorithm to investigate several differing architectures 
in parallel while avoiding over-commitment to a particular 
network topology. 

These search dynamics, combined with GNARL’s minimal 
representational constraints, make the algorithm extremely 
versatile. Of course, if topological constraints are known a 
priori, they should be incorporated into the search. But such 
constraints should be introduced as part of the task specifica- 
tion rather than being built into the search algorithm. Since the 
only requirement on a fitness function f is that f : S --+ R, 
diverse criteria can be used to rate a network’s performance. 
For instance, the first two experiments described above eval- 
uated networks based on a desired input/output mapping; the 
Tracker task experiment, however, considered overall network 
performance, not specific mappings. Other criteria could also 
be introduced, including specific structural constraints (e.g., 
minimal number of hidden units or links) as well as constraints 
on generalization. In some cases, strong task resuictions can 
even be implicit in simple fitness functions [48]. 

The dynamics of the algorithms guided by the task con- 
straints represented in the fitness function allow GNARL to 
empirically determine an appropriate architecture. Over time, 
the continual cycle of test-prune-reproduce will constrain the 
population to only those architectures that have acquired the 
task most rapidly. Inappropriate networks will not be indefi- 
nitely competitive and will be removed from the population 
eventually. 

Complete network induction must be approached with re- 
spect to the complex interaction between network topology, 
parametric values, and task performance. By fixing topology, 
gradient descent methods can be used to discover appropriate 
solutions. But the relationship between network structure and 
task performance is not well understood, and there is no 
“backpropagation” through the space of network architectures. 
Instead, the network induction problem is approached with 
heuristics that, as described above, often restrict the available 
architectures, the dynamics of the search mechanism, or both. 
Artificial architectural constraints (such as “feedforwardness”) 
or overly constrained search mechanisms can impede the 
induction of entire classes of behaviors, while forced structural 
liberties (such as assumed full recurrence) may unnecessarily 
increase structural complexity or learning time. By relying on 
a simple stochastic process, GNARL strikes a middle ground 
between these two extremes, allowing the network’s complex- 
ity and behavior to emerge in response to the requirements of 
the task. 
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