
54 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 1, JANUARY 1994

An Evolutionary Algorithm that
Constructs Recurrent Neural Networks

Peter J. Angeline, Gregory M. Saunders, and Jordan B. Pollack

Akhact-Standard methods for simultaneously inducing the
structure and weights of recurrent neural networks limit every
task to an assumed class of architectures. Such a simplification
is necessary since the interactions between network structure
and function are not well understood. Evolutionary computations,
which include genetic algorithms and evolutionary programming,
are population-based search methods that have shown promise in
many similarly complex tasks. This paper argues that genetic al-
gorithms are inappropriate for network acquisition and describes
an evolutionary program, called GNARL, that simultaneously
acquires both the structure and weights for recurrent networks.
GNARL’S empirical acquisition method allows for the emergence
of complex behaviors and topologies that are potentially excluded
by the artificial architectural constraints imposed in standard
network induction methods.

I. INTRODUCTION

N ITS complete form, network induction entails both I parametric and structural learning [l]; i.e., learning both
weight values and an appropriate topology of nodes and links.
Current connectionist methods to solve this task fall into two
broad categories. Constructive algorithms initially assume a
simple network and add nodes and links as warranted [2]-[8],
while destructive methods start with a large network and prune
off superfluous components [9]-[121. Though these algorithms
address the complete problem of network acquisition, they do
so in a highly constrained manner. Generally, constructive
and destructive methods limit the available architectures in
some way. In some of these methods, once an architecture
has been explored and determined to be insufficient, a new
architecture is adopted and the old becomes topologically
unreachable. Others use only a single predefined structural
modification, such as “add a fully connected hidden unit,” to
generate successive topologies. Such structural hill climbing
methods are susceptible to becoming trapped at structural local
optima, which places the burden of task induction mostly
on the identification of suitable parametric values rather than
distributing the burden evenly. In addition, constructive and
destructive algorithms investigate only restricted topological
subsets rather than the complete class of network architectures.
For example, Ash [2] allows only feedforward networks;
Fahlman [6] assumes a restricted form of recurrence, and
Chen et al. [7] explore only fully connected topologies. As
a consequence, these algorithms tend to force a task into an

Manuscript received December 23, 1992; revised June 28, 1993.
The authors are with the Laboratory for Artificial Intelligence Research,

Computer and Information Science Department, The Ohio State University,
Columbus, OH 43210.

E E E Log Number 9213546.

assumed architectural class rather than fitting an appropriate
architecture to the task.

The deficiencies of constructive and destructive methods
stem from inadequate methods for assigning credit to structural
components of a network. The constrained topologies are
assumed to limit the complexity of structural and parametric
interactions and increase the likelihood of finding a sufficient
network to solve the problem. Ideally, such limiting constraints
should arise from solving the task rather than be implicit in
the algorithm.

This paper presents GNARL, a network induction algo-
rithm that simultaneously acquires both network topology and
weight values while making minimal architectural restrictions
and avoiding structural hill climbing. The algorithm, described
in Section 111, is an instance of evolutionary programming
[13], [14], a class of evolutionary computations that has been
shown to perform well on complex tasks. Section I1 argues
that this class of evolutionary computation is better suited for
evolving neural networks than genetic algorithms [15], [161,
a more popular variety of evolutionary computations. Finally,
Section IV demonstrates GNARL’s ability to create recurrent
networks for a variety of problems of interest.

11. EVOLVING CONNECTIONIST NETWORKS

Evolutionary computations are a promising collection of
algorithms that hold promise for structural and parametric
learning of recurrent networks [17]. These algorithms are
distinguished by their reliance on a population of search space
positions, rather than a single position, to locate extrema
of a function defined over the search space. During one
search cycle, or generation, the members of the population
are ranked according to a fitness function, and those with
higher fitness are probabilistically selected to become par-
ents in the next generation. New population members, called
offspring, are created using specialized reproduction heuris-
tics. Using the population, reproduction heuristics, and fitness
function, evolutionary computations implement nonmonotonic
search methods that perform well in complex multimodal
environments. Subclasses of evolutionary computations can be
distinguished by examining the specific reproduction heuristics
employed.

Genetic algorithms (GA’s) [151, [161 are a popular form of
evolutionary computation that rely chiefly on the reproduction
heuristic of crossover.’ This operator forms offspring by

‘Genetic algorithms also employ other operators to manipulates the popu-
lation, including a form of mutation, but their distinguishing feature is a heavy
reliance on crossover.

1045-9227/94$04.00 0 1994 IEEE

ANGELINE, SAUNDERS, AND POLLACK: AN EVOLUTIONARY ALGORITHM THAT CONSTRUCTS RECURRENT NEURAL NETWORKS 55

Fig. 1. The dual representation scheme used in genetic algorithms. The
interpretation function maps between the elements in recombination space
on which the search is performed and the subset of structures that can be
evaluated as potential task solutions.

recombining representational components from two members
of the population without regard to content. Such a purely
structural approach to creating novel population members
assumes that components of all parent representations may
be freely exchanged without inhibiting the search process.

Various combinations of GA’s and connectionist networks
have been investigated. Much research concentrates on the
acquisition of parameters for fixed network architectures
[18]-[21]. Other work allows a variable topology, but disasso-
ciates structure acquisition from acquisition of weight values
by interweaving a GA search for network topology with a tra-
ditional parametric training algorithm [22], [23]. Some studies
attempt to coevolve both the topology and weight values
within the GA framework, but as in the connectionist systems
described above, the network architectures are restricted
[24]-[26]. In spite of this collection of studies, current theory
from both genetic algorithms and connectionism suggests
that GA’s are not well-suited for evolving networks. In the
following section, the reasons for this mismatch are discussed.

A. Evolving Networks With Genetic Algorithms

Genetic algorithms create new individuals by recombin-
ing the representational components of two members of the
population. Because of this commitment to structural recom-
bination, GA’s typically rely on two distinct representational
spaces (Fig. 1). Recombination space, usually defined over a
set of fixed-length binary strings, is the set of structures to
which the genetic operators are applied. It is in this space
that the search actually occurs. Evaluation space, typically
involving a problem-dependent representation, is the set of
task-dependent structures that are evaluated on their ability
to perform the desired task. When using GA’s to evolve net-
works, the evaluation space is a set of networks. An interpreta-
tion function maps between these two representational spaces.
Any set of finite-length bit strings cannot represent all possible
networks, thus the evaluation space is restricted to a predeter-
mined set. By design, the dual representation scheme allows
the GA to crossover bit strings without any knowledge of their
interpretation as networks. The implicit assumption is that the
interpretation function will be defined so that bit strings created
by the dynamics of the GA in recombination space will map
to successively better networks in evaluation space.

The dual representation of GA’s is an important feature
for searching in certain environments. For instance, when it
is unclear how to search the evaluation space directly, and

Fig. 2. The competing conventions problem [29]. Bit strings A and B map
to stmcturally and computationally equivalent networks that assign the hidden
units in different orders. Because the bit strings are distinct, crossover is likely
to produce an offspring that contains multiple copies of the same hidden node,
yielding a network with less computational ability than either parent.

when there exists an interpretation function such that searching
the space of bit strings by crossover leads to good points in
evaluation space, then the dual representation is ideal. It is
unclear, however, that there exists an interpretation function
that makes GA’s beneficial for evolving neural networks.
Clearly, the choice of interpretation function introduces a
strong bias into the search, typically by excluding many
potentially interesting and useful networks (another exam-
ple of forcing the task into an architecture). Moreover, the
benefits of having a dual representation hinge on crossover
being an appropriate evolutionary operator for the task for
some particular interpretation function; otherwise, the need to
translate between the dual representations is an unnecessary
complication.

Characterizing tasks for which crossover is a beneficial
operator is an open question. Current theory suggests that
crossover will tend to recombine short, connected substrings of
the bit string representation that correspond to above-average
task solutions when evaluated [15], [16]. These substrings
are called building blocks, making explicit the intuition that
larger structures with high fitness are built out of smaller
structures with moderate fitness. Crossover tends to be most
effective in environments where the fitness of a member of the
population is reasonably correlated with the expected ability
of its representational components [27]. Environments where
this is not true are called deceptive [28].

There are three forms of deception when using crossover to
evolve connectionist networks. The first involves networks that
share both a common topology and common weights. Because
the interpretation function may be many-to-one, identical
networks need not have the same bit string representation (see
Fig. 2). Given two such networks, crossover will tend to create
offspring that contain repeated components rather than the
full complement of either parent’s hidden units. The resulting
networks will necessarily perform worse than their parents
because they do not possess key computational components
for the task. Schaffer et al. [29] term this the competing con-
ventions problem, and point out that the number of competing
conventions grows exponentially with the number of hidden
units.

The second form of deception involves two networks with
identical topologies but different weights. It is well known
that for a given task, a single connectionist topology affords

56 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994

multiple solutions for a task, each implemented by a unique
distributed representation spread across the hidden units [30],
[31]. While the removal of a small number of nodes has been
shown to effect only minor alterations in the performance
of a trained network [30], [31], the computational role each
node plays in the overall representation of the task solution
is determined purely by the presence and strengths of its
interconnections. Furthermore, there need be no correlation
between distinct distributed representations over a particular
network architecture for a given task. This seriously reduces
the chance that an arbitrary crossover operation between dis-
tinct distributed representations will construct viable offspring
regardless of the interpretation function used.

Finally, deception can occur when the parents differ topo-
logically. The types of distributed representations that can
develop in a network vary widely with the number of hidden
units and the network’s connectivity. Thus, the distributed rep-
resentations of topologically distinct networks have a greater
chance of being incompatible for recombination into viable
off spring.

In short, for crossover to be an appropriate operator for
evolving networks, the interpretation function must somehow
compensate for all the types of deceptiveness described above.
This suggests that the complexity of an appropriate interpre-
tation function may more than rival the complexity of the
original learning problem. Thus, the prospect of evolving con-
nectionist networks with crossover appears limited in general,
and better results should be expected with representations
and reproduction heuristics that respect the uniqueness of a
network’s distributed representation. Part of this point has been
tacitly validated in the genetic algorithm literature by the ap-
pearance of non-binary representations for evolving networks
(e.g., [32], [33]). Crossover, however, is still commonplace.

B . Networks and Evolutionary Programming

Evolutionary programming (EP) [14], [34] is another form
of evolutionary computation more suited to complete network
induction. EP systems assume representations that are more
natural for the task rather than relying on a singular, general
representation as in GA’s. Once an appropriate representation
is chosen, representation-dependent mutation operators are
defined that create offspring within a specific behavioral
locus of the parent (see Fig. 3) . EP commits to mutation as
the sole reproductive operator for searching over a solution
space. Recombination operators are not used. Evolutionary
programming is preferable to genetic algorithms when there
is no sufficient calculus to guide recombination or when
separating the search and evaluation spaces does not afford
an advantage.

Relatively few previous EP systems have addressed the
problem of evolving connectionist networks. Fogel et al. [35]
investigate training feedforward networks on some classic
connectionist problems. McDonnell and Waagen [36] use EP
to evolve the connectivity of feedforward networks with a
constant number of hidden units by evolving both a weight
matrix and a connectivity matrix. Fogel [14], [37] uses EP to
induce three-layer fully-connected feedforward networks with

Structure
space Locus of ‘ ~ murorron ~~

operarion
Murarion

I 1

Fig. 3. The evolutionary programming approach to modeling evolution.
Unlike genetic algorithms, evolutionary programs perform search in the space
of networks. Offspring created by mutation remain within a locus of similarity
to their parents.

a variable number of hidden units that employ good strategies
for playing tic-tac-toe.

In each of the above studies, the mutation operator alters
the parameters of network 7 by the function:

w = w + N(O,aE(7)) vw E 77 (1)

where w is a weight, ~ (7) is the error of the network on the
task (typically the mean squared error), Q: is a user-defined
proportionality constant, and N (p , 0’) is a gaussian variable
with mean p and variance gz. The implementations of struc-
tural mutations in these studies differ somewhat. McDonnell
and Waagen [36] randomly select a set of positions in the
connectivity matrix for feedforward networks and toggle the
associated link’s presence in the network with a probability
based on the variance of the incident nodes’ activation over
the training set. The structural mutation used by Fogel [14],
[37] adds or deletes a single fully connected hidden unit
with equal probability. While these methods address complete
network induction they too suffer from limiting architectural
assumptions.

Evolutionary programming offers distinct advantages over
genetic algorithms when evolving networks. First, EP ma-
nipulates networks directly, thus obviating the need for a
dual representation and a problematic interpretation function.
Second, by avoiding recombination between networks when
creating offspring, the individuality of each network’s dis-
tributed representation is respected.

111. THE GNARL ALGORITHM

GNARL, which stands for GeNeralized Acquisition of Re-
current Links, is an evolutionary algorithm that nonmonotoni-
cally constructs recurrent networks to solve a given task. The
name GNARL reflects the types of networks that arise from
a generalized network induction algorithm performing both
structural and parametric learning. Instead of having uniform
or symmetric topologies, the resulting networks have “gnarled’
interconnections of hidden units that more accurately reflect
constraints inherent in the task.

The general architecture of a GNARL network is straight-
forward. The input and output nodes are considered to be
provided by the task and are immutable by the algorithm; thus
each network for a given task always has mi, input nodes and
7nout output nodes. The number of hidden nodes varies from 0
to a user-supplied maximum h,,,. Bias is optional: if provided
in an experiment, it is implemented as an additional input
node with constant value one. All non-input nodes employ the

ANGELINE, SAUNDERS, AND POLLACK: AN EVOLUTIONARY ALGORITHM THAT CONSTRUCTS RECURRENT NEURAL NETWORKS

rnpur aurpur
nodes nodes

ai most h,,
hidden nodes

Fig. 4. Sample initial network. The number of input nodes (min) and number
of output nodes (7n,,t) is fixed for a given task. The presence of a bias node
(b = 0 or 1) as well as the maximum number of hidden units (hmax) is set
by the user. The initial connectivity is chosen randomly (as indicated in the
text). The disconnected hidden node does not affect this particular network’s
computation. but is available as a resource for structural mutations.

standard sigmoid activation function. Links use real-valued
weights, and must obey three restrictions:

RI: There can be no links to an input node.
Rz: There can be no linksfiom an output node.
Rs: Given two nodes 5 and y, there is at most one link

Thus GNARL networks may have no connections, sparse
connections, or full connectivity. Consequently, GNARL’S
search space is:
s = (7)’ . 17 is a network with real-valued weights,

7) has min + b input nodes, where b = 1 if a bias

q has mout output nodes,
7 has i hidden nodes, 0 5 i 5 h,,,}

RI - R3 are strictly implementational constraints. Nothing
in the algorithm described below hinges on S being pruned
by these restrictions.

from x to y.

satisfies RI - RY,

node is provided, and 0 otherwise,

A . Selection, Reproduction, and Mutation of Networks

GNARL initializes the population with randomly generated
networks (see Fig. 4). The number of hidden nodes for each
network is chosen from a uniform distribution over a user-
supplied range. The number of initial links is chosen similarly
from a second user-supplied range. The incident nodes for each
link are chosen in accordance with the structural mutations
described below. Once a topology has been chosen, all links
are assigned random weights, selected uniformly from the
range [- 1, 11. There is nothing in this initialization procedure
that forces a node to have any incident links, let alone for
a path to exist between the input and output nodes. In the
experiments below, the number of hidden units for a network
in the initial population was selected uniformly between one
and five, and the number of initial links varied uniformly
between one and 10.

In each generation of search, the networks are first evaluated
by a user-supplied fitness function f : S -+ R, where R
represents the reals. Networks scoring in the top 50% are
designated as the parents of the next generation; all other
networks are discarded. This selection method is used in many
EP algorithms, although competitive methods of selection have
also been investigated [141.

Generating an offspring involves three steps: copying the
parent, determining the severity of the mutations to be per-
formed, and finally mutating the copy. Network mutations are
separated into two classes, corresponding with the types of

51

learning discussed in [11. Parametric mutations alter the value
of parameters (link weights) currently in the network, whereas
structural mutations alter the number of hidden nodes and the
presence of links in the network, thus altering the space of
parame ters .

1) Severity of Mutations: The severity of a mutation to a
given parent, 7). is dictated by that network’s temperature,
T(77):

J max

where fmax is the maximum fitness for a given task. Thus,
the temperature of a network is determined by how close the
network is to being a solution for the task. This measure of
the network’s performance is used to anneal the structural and
parametric similarity between parent and offspring, so that
networks with a high temperature are mutated severely, and
those with a low temperature are mutated only slightly. This
allows a coarse-grained search initially, and a progressively
finer-grained search as a network approaches a solution to the
task. T(Q) is related to the concept of temperature in simulated
annealing [38] where a higher temperature indirectly increases
the variety of states that can be visited by the system.

2) Parametric Mutation of Networks: Parametric muta-
tions are accomplished by perturbing each weight w of a
network 7 with gaussian noise, a method motivated by [14],
[37]. In that body of work, weights are modified as follows:

w = w + N (0 , aT(q)) vw E 7) (3)

where a is a user-defined proportionality constant, and
N (p , 02) is a gaussian random variable, as before. While large
parametric mutations are occasionally necessary to escape
parametric local minima during search, it is more likely they
will adversely affect the offspring’s ability to perform better
than its parent. To compensate, GNARL updates weights using
a variant of (3). First, the instantaneous temperature T of the
network is computed:

+(7) = U(0,1)T(rl) (4)

where U(0, l) is a uniform random variable over the interval
[O, 11. This new temperature, varying from 0 to T(Q) , is then
substituted into (3):

w = w + N(O,a?(q)) vw E 7) (5)

In essence, this modification lessens the frequency of large
parametric mutations without disallowing them completely. In
the experiments described below, a is one.

3) Structural Mutation of Networks: The structural muta-
tions used by GNARL alter the number of hidden nodes and
the connectivity between all nodes, subject to restrictions
RI - R3 discussed earlier. To avoid radical jumps in fitness
from parent to offspring, structural mutations attempt to
preserve the behavior of a network. For instance, new links
are initialized with zero weight, leaving the behavior of the
modified network unchanged. Similarly, hidden units are
added to the network without any incident connections.
Links must be added by future structural mutations to

determine how to incorporate the new computational unit.
Unfortunately, achieving this behavioral continuity between
parent and child is not so simple when removing a hidden
node or link. Consequently, the deletion of a node involves the
complete removal of the node and all incident links with no
further modification to compensate for the behavioral change.
Similarly, deleting a link removes that parameter from the
network.

The selection of which node to remove is uniform over
the collection of hidden nodes. Addition or deletion of a
link is slightly more complicated. A parameter identifies the
likelihood that a link to be added or deleted will be incident
with an input or output node. Biasing the link selection process
in this way is necessary when there is a large differential
between the number of hidden nodes and the number of
input or output nodes. This parameter was set to 0.2 in the
experiments described in the next section.

Research in [14] and [37] uses the heuristic of adding or
deleting at most a single fully connected node per structural
mutation. Therefore, it is possible for this method to become
trapped at a structural local minima for an indefinite time,
although this is less probable than in nonevolutionary algo-
rithms given that several topologies may be present in the
population. In order to more effectively search the range of
network architectures, GNARL uses a seventy of mutation
for each separate structural mutation. A unique user-defined
interval specifying a range of modification is associated with
each of the four structural mutations. Given an interval of
[Amin7 A,,,] for a particular structural mutation, the number
of modifications of this type made to an offspring is given by:

(6)

Thus the number of modifications varies uniformly over a
shrinking interval based on the parent network’s fitness. In the
experiments below, the maximum number of nodes added or
deleted was three, while the maximum number of links added
or deleted was five. The minimum number for each interval
was always one.

A m i n + LU[O, l] ? (~) (~ m a x - Amin)]

B . Fitness of a Network

In evolving networks to perform a task, GNARL does not
require an explicit target vector-all that is needed is the
feedback given by the fitness function f . But if such a vector
is present, as in supervised learning, there are many ways of
transforming it into a measure of fitness. For example, given
a training set ((2 1 , YI), (2 2 , yz), . . .}, three possible measures
of fitness for a network v are sum of square errors (7), sum of
absolute errors (8), and sum of exponential absolute errors (9):

(7)
1

i

i

Furthermore, because GNARL explores the space of networks
by mutation and selection, the choice of fitness function does

a= I + output 0
n

/U
Start b=l --f output 1

Fig. 5. An FSA that defines the enable-trigger task [39]. The system is given
a data stream of bit pairs { (a i , b l) , (a 2 , b 2) , ’ . .}, and produces an output of
0’s and 1’s. To capture this system’s input/output behavior, a connectionist
network must leam to store state indefinitely.

not alter the mechanics of the algorithm. To show GNARL’S
flexibility, each of these fitness functions will be demonstrated
in the experiments below.

IV. EXPERIMENTS
In this section, GNARL is applied to several problems of

interest. The goal in this section is to demonstrate the abilities
of the algorithm on problems from language induction to
search and collection. The various parameter values for the
program are set as described above, unless otherwise noted.

A . Williams’ Trigger Problem

As an initial test, GNARL induced a solution for the
enable-trigger task proposed in [39]. Consider the finite state
generator shown in Fig. 5. At each time step the system
receives two input bits, (U , b) , representing “enable” and
“trigger” signals, respectively. This system begins in state SI,
and switches to state S2 only when enabled by a = 1. The
system remains in S 2 until it is triggered by b = 1, at which
point it outputs 1 and resets the state to SI. So, for instance,
on an input stream {(O,O) , (0, l), (1, l), (0, I)}, the system
will output {0, O , O , 1) and end in SI . This simple problem
allows an indefinite amount of time to pass between the enable
and the trigger inputs; thus no finite length sample of the
output stream will indicate the current state of the system.
This forces GNARL to develop networks that can preserve
state information indefinitely.

The fitness function used in this experiment was the sum
of exponential absolute errors (9). Population size was 50
networks with the maximum number of hidden units restricted
to six. A bias node was provided in each network in this initial
experiment, ensuring that an activation value of 1 was always
available. Note that this does not imply that each node had
a nonzero bias; links to the bias node had to be acquired by
structural mutation.

Training began with all two input strings of length two,
shown in Table I. After 118 generations (3000 network eval-
uations2), GNARL evolved a network that solved this task for
the strings in Table I within a tolerance of 0.3 on the output
units. The training set was then increased to include all 64
input strings of length three and evolution of the networks
was allowed to continue. After an additional 422 generations,
GNARL once again found a suitable network. At this point, the
difficulty of the task was increased a final time by training on
all 256 strings of length four. After another 225 generations

2Number of networks evaluated in a run is popsize + (0.5 * generations *
popsize), giving 3000 network evaluations for this trial.

ANGELINE, SAUNDERS, AND POLLACK: AN EVOLUTIONARY ALGORITHM THAT CONSTRUCTS RECURRENT NEURAL NETWORKS

~

59

TABLE I
INITIAL TRAINING DATA FOR ENABLE-TRIGGER TASK

Input Target output Input Target output

Bias Bi

0
(a) (b)

Fig. 6. Connectivity of two recurrent networks found in the enable-trigger
experiment. (a) The best network of generation 1. (b) The best network of
generation 765. This network solves the task for all strings of length eight.

(- 20000 network evaluations in total) GNARL once again
found a network to solve this task, shown in Fig. 6b. Note
that there are two completely isolated nodes. Given the fitness
function used in this experiment, the two isolated nodes do not
effect the network’s viability. To investigate the generalization
of this network, it was tested over all 4096 unique strings
of length six. The outputs were rounded off to the nearest
integer, testing only the network’s separation of the strings.
The network performed correctly on 99.5% of this novel set,
generating incorrect responses for only 20 strings.

Figure 7 shows the connectivity of the population member
with the best fimess for each generation over the course
of the run. Initially, the best network is sparsely-connected
and remains sparsely-connected throughout most of the run.
At about generation 400, the size and connectivity increases
dramatically only to be overtaken by the relatively sparse
architecture shown in Fig. 6(b) on the final generation. Appar-
ently, this sparsely connected network evolved more quickly
than the full architectures that were best in earlier genera-
tions. The oscillations between different network architectures
throughout the run reflects the development of such competing
architectures in the population.

B . Inducing Regular Languages

A current topic of research in the connectionist community
is the induction of finite state automata (FSA’s) by networks
with second-order recurrent connections. For instance, Pollack
[40] trains sequential cascaded networks (SCN’s) over a test
set of languages, provided in [41] and shown in Table 11, using
a variation of backpropagation. An interesting result of this
work is that the number of states used by the network to
implement finite state behavior is potentially infinite. Other
studies using the training sets in [41] have investigated var-
ious network architectures and training methods, as well as
algorithms for extracting FSA’s from the trained architectures
[42]-[45].

An explicit collection of positive and negative examples,
shown in Table 111, that pose specific difficulties for inducing

Generation number

Fig. 7. Different network topologies explored by GNARL during the first
540 generations on the enable-trigger problem. The presence of a link between
node z and j at generation g is indicated by a dot at position (g, 1O*i + j)
in the graph. Note that because node 3 is the output node, there are no
connections from it throughout the run. The arrow designates the point of
transition between the first two training sets.

TABLE I1
REGULAR LANGUAGES To BE INTRODUCED

Language Description

1 1*
2 (1 0)
3
4
5
6
7 0*1*0*1*

No odd length 0 strings anytime after an odd length 1 string
No more thantwo 0’s in a row

An even number of 10’s and Ol’s, pairwise
(Number of 1’s-number of 0’s) mod 3 = 0

the intended languages is offered in [41]. Notice that the
training sets are unbalanced, incomplete, and vary widely in
their ability to strictly define the intended regular language.
GNARL’S ability to learn and generalize from these training
sets was compared against the training results reported for
the second-order architecture used in [42]. Notice that all the
languages in Table I1 require recurrent connections in order to
induce the language completely. The type of recurrence needed
for each language varies. For instance, languages 1 through 4
require an incorrect input be remembered indefinitely, forcing
the network to develop an analog version of a trap state.
Networks for language 6, however, must parse and count
individual inputs, potentially changing state from accept to
reject or vice versa on each successive input.

The results obtained in [42] are summarized in Table IV.
The table shows the number of networks evaluated to learn
the training set and the accuracy of generalization for the
learned network to the intended regular language. Accuracy
is measured as the percentage of strings of length 10 or less
that are cohectly classified by the network. For comparison,

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 1, JANUARY 1994 60

TABLE I11 TABLE V
TRAINING SETS FOR THE LANGUAGES OF TABLE 11 FROM [41] SPEED AND GENERALIZATION RESULTS FOR GNARL TO TRAIN

RECURRENT NETWORKS TO RECOGNIZE THE DATA SETS OF TABLE 111
Language Positive instances Negative instances

Language Evaluations % accuracy Evaluations % accuracy
(SAE) (SAW W E) W E)

e, 1, 11, 111, 1111, 11111,
111111, 1111111, 11111111

0, 10,01,00,011, 110,
OOO, 11111110, 10111111 1

A

e, 10, 1010, 101010, 10101010,
10101010101010

E , 1,0 ,01 , 11,00, 100, 110,
111, OOO, 100100,
110000011100001,

1111011ooo10011100

e, 1.0, 10,01,00, 100100,
001111110100,0100100100,

11100,010

E , 11,00,001, 0101, 1010,
1OOO111101,

1001100001111010, 111111,
0000

E , 10,01, 1100, 111,000000,
0111101111, 100100100

r, 1 ,0 , 10,01, 11111, OOO,

1,0 , 11.00, 01, 101, loo,
1001010, 10110,

110101010
10, 101,010, 110, 1011,
1OoO1,111010,1001OOO,
11 11 1OOO,O111001101,

11011100110
OOO, 11OOOOOO1

000000000,00000. oooo,
11 11 100001 1,

1 1 0 1 0 1 m 1 0 1 1 1
1101010000010111,

101001oO01

1, 0, 111, 010, o o o o m ,
lOOO,Ol, 10, 1110010100,
010111111110, Oool, 011

1, 0, 11, 00, 101, 011,
11001, 1111,00000000,
0101 11, 1011 1101 11 1,

1001001001
1010,001 1001 1oO0,

001 1001 1,0101, 0101010101, 1011010,
m 1 m 1 1 1 1 , 0 0 1 0 0 , 10101,010100, 101001,

011111011111,00 100100110101

7

TABLE IV
SPEED AND GENERALIZATION RESULTS REFORTED

BY [42] FOR LEARNING THE DATA SETS OF TABLE 111

Average Average % Fewest Best %
evaluations accuracy evaluations accuracy

1 3033.8 88.98 28
2 4522.6 91.18 807
3 12326.8 64.87 442
4 4393.2 42.50 60
5 1587.2 44.94 368
6 2137.6 23.19 306
1 2969.0 36.97 373

~

100.0
100.0
78.31
60.92
66.83
46.21
55.74

the table lists both the average and best performance of the
five runs reported in [42].

This experiment used a population of 50 networks, each
limited to at most eight hidden units. Each run lasted at most
lo00 generations, allowing a maximum of 25050 networks
to be evaluated for a single data set. Two experiments were
run for each data set, one using the sum of absolute errors
(SAE) and the other using sum of square errors (SSE). The
error for a particular string was computed only for the final
output of the network after the entire string plus three trailing
“null” symbols had been entered, one input per time step. The
concatenation of the trailing null symbols was used to identify
the end of the string and allow input of the null string, a
method also used in [42]. Each network had a single input
and output and no bias node was provided. The three possible
logical inputs for this task, 0, 1, and null, were represented by
activations of - 1, 1, and 0, respectively. The tolerance for the
output value was 0.1, as in [42].

1 3915 100.00 5300 99.27
2 5400 96.34 13915 13.33
3 25050t 58.81 18650 68.00
4 15775 92.57* 2 1850 57.15
5 25050t 49.39 22325 5 1.25
6 21475 55.59* 25050t 44.11
1 12200 11.31* 250507 3 1.46

ZOOM) 25000 I

5MM

3 4 5 6

Training Set

Fig. 8. The number of network evaluations required to learn the seven
datasets of Table 3. GNARL (using both SAE and SSE fitness measures)
compared to the average number of evaluations for the five runs described
in [42].

Table V shows, for both fitness functions, the number of
evaluations until convergence and the accuracy of the best
evolved network. Only four of the runs, each of those denoted
by a ‘+’ in the table, failed to produce a network with
the specified tolerance in the allotted 1000 generations. In
the runs using SAE, the two runs that did not converge
had not separated a few elements of the associated training
set and appeared to be far from discovering a network that
could correctly classify the complete training set. Both of
the uncompleted runs using SSE successfully separated the
data sets but had not done so to the 0.1 tolerance within
the 1000 generation limit. Fig. 8 compares the number of
evaluations by GNARL to the average number of evaluations
reported in [42]. As the graph shows, GNARL consistently
evaluates more networks, but not a disproportionate num-
ber. Considering that the space of networks being searched
by GNARL is much larger than the space being searched
by [42], these numbers appear to be within a tolerable in-
crease.

The graph of Fig. 9 compares the accuracy of the GNARL
networks to the average accuracy found in [42] over five
runs. The GNARL networks consistently exceeded the average
accuracy found in [42].

These results demonstrate GNARL’S ability to simultane-
ously acquire the topology and weights of recurrent networks,
and that this can be done within a comparable number of
network evaluations as training a network with static archi-
tecture on the same task. GNARL also appears to generalize
better consistently, possibly due to its selective inclusion and
exclusion of some links.

ANGELINE, SAUNDERS. AND POLLACK: AN EVOLUTIONARY ALGORITHM THAT CONSTRUCTS RECURRENT NEURAL NETWORKS

0 SAEfitness
I SSEfitness

Language

Fig. 9. Percentage accuracy of evolved networks on languages in Table 11.
GNARL (using SAE and SSE fitness measures) compared to average accuracy
of the five runs in [42].

Start

Fig. 10. The ant problem. The trail is connected initially, but becomes
progressively more difficult to follow. The underlying 2-D grid is toroidal,
so that position “A” is the first break in the trail-it is simple to reach this
point. Positions “B” and “C” indicate the only two positions along the trail
where the ant discovered in run 1 behaves differently from the 5-state FSA
of [46] (see Fig. 13).

C . The Ant Problem

GNARL was tested on a complex search and collection
task-the Tracker task described in [46], and further inves-
tigated in [47]. In this problem, a simulated ant is placed on a
two-dimensional toroidal grid that contains a trail of food. The
ant traverses the grid, collecting any food it contacts along the
way. The goal of the task is to discover an ant that collects
the maximum number of pieces of food in a given time period
(see Fig. 10).

Following [46], each ant is controlled by a network with
two input nodes and four output nodes (Fig. 11). The first
input node denotes the presence of food in the square directly
in front of the ant; the second denotes the absence of food
in this same square, restricting the possible legal inputs to
the network to (I , 0) or (0, 1). Each of the four output units
corresponds to a unique action: move forward one step, tum
left 90°, tum right 90°, or no-op. At each step, the action
whose corresponding output node has maximum activation is
performed. As in the original study [46], no-op allows the
ant to remain at a fixed position while activation flows along
recurrent connections. Fitness is defined as the number of grid
positions cleared within 200 time steps. The task is difficult
because simple networks can perform surprisingly well: the
network shown in Fig. 11 collects 42 pieces of food before
spinning endlessly at position A (in Fig. lo), illustrating a
very high local maximum in the search space.

The experiment used a population of 100 networks, each
limited to at most nine hidden units, and did not provide a
bias node. In the first run (2090 generations), GNARL found

~

61

Move Left Right No-OD 1,y O

Food Nofood

Fig. 11. The semantics of the 1/0 units for the ant network. The first input
node denotes the presence of food in the square directly in front of the ant;
the second denotes the absence of food in this same square. This particular
network finds 42 pieces of food before spinning endlessly in place at position
P, illustrating a very high local maximum in the search space.

Fig. 12. The Tracker Task, first run. (a) The best network in the initial
population. Nodes 0 and 1 are input, nodes 5-8 are output, and nodes 2 4
are hidden nodes. (b) Network induced by GNARL after 2090 generations.
Forward links are dashed; bidirectional links and loops are solid. The light
gray connection between nodes 8 and 13 is the sole backlink. This network
clears the trail in 319 epochs.

a network [see Fig. 12(b)] that clears 81 grid positions within
the 200 time steps. When this ant is run for an additional 119
time steps, it successfully clears the entire trail. To understand
how the network traverses the path of food, consider the
simple FSA shown in Fig. 13, hand-crafted in [46] as an
approximate solution to the problem. This simple machine
receives a score of 81 in the allotted 200 time steps, and clears
the entire trail only five time steps faster than the network in
Fig. 12(b). A step by step comparison indicates there is only a
slight difference between the two. GNARL’S evolved network
follows the general strategy embodied by this FSA at all but
two places, marked as positions B and C in Fig. 10. Here the
evolved network makes a few additional moves, accounting
for the slightly longer completion time.

Fig. 14 illustrates the strategy the network uses to implement
the FSA by showing the state of the output units of the network
over three different sets. Each point is a triple of the form
(move, right, left).3 Figure 14(a) shows the result of supplying
to the network 200 “food” inputs-a fixed point that executes

3No-op is not shown because it was never used in the final network.

62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 1. JANUARY 1994

NoFwdlRight

Fig. 13. FSA hand-crafted for the Tracker task in [46]. The large arrow
indicates the initial state. This simple system implements the strategy “move
forward if there is food in front of you, otherwise turn right four times, looking
for food. If food is found while tuming, pursue it, otherwise, move forward
one step and repeat.” This FSA traverses the entire trail in 314 steps, and gets
a score of 81 in the allotted 200 time steps,

JU

(d)

Fig. 15. Limit behavior of the network of the second run. Graphs show
the state of the output units Move, Right, Left. (a) Fixed point attractor that
results for sequence of 3500 “food” signals; (b) A limit cycle attractor that
results when a sequence of 3500 “no food” signals is given to the network;
(c) All states visited while traversing the trail; (d) The path of the ant on an
empty grid. The z axis represents time. The ant’s path is comprised of a set
of “railroad tracks.” Along each track, tick marks represent back and forth
movement. At the junctures between tracks, a more complicated movement
occurs. There are no artifacts of the toroidal grid in this plot, all are actual
movements [cf. Fig. 14(d)].

Left Left

(b) ‘ Move Move

FSA; instead, it is a quasiperiodic trajectory of points shaped
like a “ D in output space [see Fig. 15(b)]. The placement
of the “D” is in the “Move / Right” comer of the space and
encodes a complex altemation between these two operations
[see Fig. 15(d)].

a genetic algorithm on
a population Of 65 536 bit strings with a direct encoding to
evolve only the weights of a neural network with five hidden
units to solve this task. me particular network architecture
in 1461 uses logic for the hidden units and
an identity activation function for the output units. The first
GNARL network was discovered after evaluating a total of

(d)
Fig. 14. Limit behavior of the network that clears the trail in 319 steps.
Graphs show the state of the output units Move, Right, Left. (a) A fixed-point
attractor that results for sequence of 500 “food” signals; (b) A limit cycle
attractor that results when a sequence of 500 “no food” signals is given to
network; (c) All states visited while traversing the trail: (d) The path of the
ant on an empty grid. The z axis represents time. Note that .r is fixed, and
y increases monotonically at a fixed rate. The large jumps in y position are
artifacts of the toroidal grid.

contrast, research in [46]

104 600 networks, while the second was found after evaluating
79 850. The experiment reported in [46] discovered a compa-
rable network after about 17 generations. Given [46] used a
population size of 65 536 and replaced 95% of the population
each generation, the total number of network evaluations to
acquire the equivalent network was 1 123 942. This is 10.74
and 14.07 times the number of networks evaluated by GNARL
in the two runs. In spite of the differences between the two
studies, this significant reduction in the number of evaluations
provides empirical evidence that crossover may not be best
suited to the evolution of networks.

“Move.” Figure 14(b) shows the sequence of states reached
when 200 “no food” signals are supplied to the network-a
collection of points describing a limit cycle of length five that
repeatedly executes the sequence “Right, Right, Right, Right,
Move.,, These attractors the response of the
network to the task [Fig. 14(c), (d)]; the additional points in
Fig. 14(c) are transients encountered as the network altemates
between these attractors. The differences in the number of
steps required to clear the trail between the FSA of Fig. 13
and GNARL’S network arise due to the state of the hidden
units when transferring from the “food’ attractor to the “no
food” attractor.

However, not all evolved network behaviors are so simple
as to approximate an FSA [40]. In a second run (1595
generations) GNARL induced a network that cleared 82 grid
points within the 200 time steps. Fig. 15 demonstrates the
behavior of this network. Once again, the “food” attractor,
shown in Fig. 15(a), is a single point in the space that always
executes “Move.” The “no food’ behavior, however, is not an

V. CONCLUSION
Allowing the task to specify an appropriate architecture

for its solution should, in principle, be the defining aspect
of the complete network induction problem. By restricting
the space of networks explored, constructive, destructive,
and genetic algorithms only partially address the problem
of topology acquisition. GNARL’S architectural constraints

ANGELINE, SAUNDERS, AND POLLACK: AN EVOLUTIONARY ALGORITHM THAT CONSTRUCTS RECURRENT NEURAL NETWORKS 63

RI - R3 similarly reduce the search space, but to a less
extensive degree. Furthermore, none of these constraints is
necessary, and their removal would affect only ease of imple-
mentation. In fact, no assumed features of GNARL’s networks
are essential for the algorithm’s operation. GNARL could
even use nondifferentiable activation functions, a constraint
necessary for backpropagation.

GNARL’s minimal representational constraints would be
meaningless if not complemented by appropriate search dy-
namics to traverse the space of networks. First, unlike con-
structive and destructive algorithms, GNARL permits a non-
monotonic search over the space of network topologies. Con-
sider that in monotonic search algorithms, the questions of
when and how to modify structure take on great significance
because a premature topological change cannot be undone.
In contrast, GNARL can revisit a particular architecture at
any point, but for the architecture to be propagated it must
confer an advantage over other competing topologies. Such
a non-linear traversal of the space is imperative for acquir-
ing appropriate solutions because the efficacy of the various
architectures changes as the parametric values are modified.

GNARL allows multiple structural manipulations to a net-
work within a single mutation. As discussed earlier, construc-
tive and destructive algorithms define a unit of modification;
e.g., “add a fully connected hidden node.” Since such singular
structural modifications create a one-unit structural horizon
beyond which no information is available, such algorithms
may easily fixate on an architecture that is better than networks
one modification step away, but worse than those two or
more steps distant. In GNARL, several nodes and links can
be added or deleted with each mutation, the range being
determined by user-specified limits and the current ability of
the network. This simultaneous modification of the structural
and parametric modifications based on fitness allows the
algorithm to discover appropriate networks quickly, especially
in comparison with evolutionary techniques that do not respect
the uniqueness of distributed representations.

Finally, as in all evolutionary computations, GNARL main-
tains a population of structures during the search. This allows
the algorithm to investigate several differing architectures
in parallel while avoiding over-commitment to a particular
network topology.

These search dynamics, combined with GNARL’s minimal
representational constraints, make the algorithm extremely
versatile. Of course, if topological constraints are known a
priori, they should be incorporated into the search. But such
constraints should be introduced as part of the task specifica-
tion rather than being built into the search algorithm. Since the
only requirement on a fitness function f is that f : S --+ R,
diverse criteria can be used to rate a network’s performance.
For instance, the first two experiments described above eval-
uated networks based on a desired input/output mapping; the
Tracker task experiment, however, considered overall network
performance, not specific mappings. Other criteria could also
be introduced, including specific structural constraints (e.g.,
minimal number of hidden units or links) as well as constraints
on generalization. In some cases, strong task resuictions can
even be implicit in simple fitness functions [48].

The dynamics of the algorithms guided by the task con-
straints represented in the fitness function allow GNARL to
empirically determine an appropriate architecture. Over time,
the continual cycle of test-prune-reproduce will constrain the
population to only those architectures that have acquired the
task most rapidly. Inappropriate networks will not be indefi-
nitely competitive and will be removed from the population
eventually.

Complete network induction must be approached with re-
spect to the complex interaction between network topology,
parametric values, and task performance. By fixing topology,
gradient descent methods can be used to discover appropriate
solutions. But the relationship between network structure and
task performance is not well understood, and there is no
“backpropagation” through the space of network architectures.
Instead, the network induction problem is approached with
heuristics that, as described above, often restrict the available
architectures, the dynamics of the search mechanism, or both.
Artificial architectural constraints (such as “feedforwardness”)
or overly constrained search mechanisms can impede the
induction of entire classes of behaviors, while forced structural
liberties (such as assumed full recurrence) may unnecessarily
increase structural complexity or learning time. By relying on
a simple stochastic process, GNARL strikes a middle ground
between these two extremes, allowing the network’s complex-
ity and behavior to emerge in response to the requirements of
the task.

ACKNOWLEDGMENT
This research has been partially supported by ONR grants

NOOO14-92-J-1195 and N00014-93-14059. We are indebted
to Ed Large, Dave Stucki, and especially John Kolen for
proofreading help and discussions during the development of
this research. We would also like to thank our anonymous
reviewers, David Fogel, and the attendees of Connectfest ’92
for feedback on preliminary versions of this work.

REFERENCES

A. G. Barto, “Connectionist leaming for control,” in Neural Networks
for Control, W. T. Miller 111, R. S . Sutton, and P. J. Werbos, Eds.
Cambridge, MA: MIT Press, 1990, pp. 5-58.
T. Ash, “Dynamic node creation in backpropagation networks,” Con-
nection Science, vol. 1 , no. 4, pp. 365-375, 1989.
M. Frean, “The upstart algorithm: A method for constructing and train-
ing feed-forward neural networks,” Technical Report Preprint 89/469,
Edinburgh Physics Dept, 1990.
S. J. Hanson, “Meiosis networks,” in Advances in Neural Information
Processing Systems 2, D. Touretzky, Ed. San Mateo, CA: Morgan
Kaufmann, 1990, pp. 533-541.
S. E. Fahlman and C. hbiere, “The cascade-correlation architecture,”
in Advances in Neural Information Processing Systems 2, D. Touretzky,
Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 524-532.
S. Fahlman, “”he recurrent cascade-correlation architecture,” In Ad-
vances in Neural Information Processing System 3, R. Lippmann, J.
Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann,
1991, pp. 19&196.
D. Chen, C. Giles, G. Sun, H. Chen, Y. Less, and M. Goudreau,
“Constructive leaming of recurrent neural networks,” IEEE Internarional
Conference on Neural Ne?works,vol. 3, 1993, pp. 1196-1201.
M. R. Azimi-Sadjadi, S. Sheedvash and F. 0. Trujillo, “Recursive dy-
namic node creation in multilayer neural networks,” IEEE Transactions
on Neural Networks, vol. 4, no. 2, pp. 242-256, 1993.

64 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 5, NO. 1 , JANUARY 1994

[9] M. Mozer and P. Smolensky, “Skeletonization: A technique for trim-
ming the fat from a network via relevance assessment,” in Advances in
Neural Information Processing Systems I , D. Touretzky, Ed. San Mateo,
CA: Morgan Kaufmann, 1989, pp. 107-115.

[IO] Y. L. Cun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances
in Neural lnformation Processing Systems 2, D. Touretzky, Ed. San
Mateo, CA: Morgan Kaufmann, 1990.

[I11 B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information
Processing Systems 5 , S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds.
San Mateo, CA: Morgan Kaufmann, 1993, pp. 164-171.

1121 C. W. Omlin and C. L. Giles, “Pruning recurrent neural networks
for improved generalization performance,” Tech. Report No. 93-6,
Computer Science Department, Rensselaer Polytechnic Institute, April
1993.

[131 L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through
Simulated Evolution, New York: John Wiley & Sons, 1966.

[141 D. B. Fogel, “Evolving artificial intelligence,’’ Ph.D. thesis, University
of California, San Diego, 1992.

[151 J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor,
MI: The University of Michigan Press, 1975.

1161 D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Reading, MA: Addison-Wesley Publishing Company,
Inc., 1989.

[171 D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Transactions on Neural Networks: Special Issue on Evolutionary
Programming, D. B. Fogel and L. J. Fogel, Eds. In press.

[IS] A. P. Wieland, “Evolving neural network controllers for unstable
systems,’’ in IEEE International Joint Conference on Neural Networks,
Seattle, WA: IEEE Press, 1990, pp. 11-667-11-673,

[I91 D. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms,” in Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, San Mateo, CA: Morgan
Kaufmann, 1989, pp. 762-767.

[20] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Parallel
Computing, vol. 14, pp. 347-361, 1990.

[21] R. D. Beer and J . C. Gallagher, “Evolving dynamical neural networks
for adaptive behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91-122,
1992.

[22] G. F. Miller, P. M. Todd, and S . U. Hegde, “Designing neural networks
using genetic algorithms,” in Proceedings of the Third International
Conference on Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, CA:
Morgan Kaufmann, 1989, pp. 379-384.

[23] R. K. Belew, J. McInerney, and N. N. Schraudolf, “Evolving networks:
Using the genetic algorithm with connectionist learning,” in Artificial
Life 11: Proceedings of the Workshop on Artificial Life, C. G. Langton, C.
Taylor, J. D. Farmer, and S. Rasmussen, Eds. Reading, MA: Addison-
Wesley, 1992, pp. 511-547.

1241 J. Torreele, “Temporal processing with recurrent networks: An evo-
lutionary approach,” in Fourth International Conference on Genetic
Algorithms, R. K. Belew and L. B. Booker, Eds. San Mateo, CA: Morgan
Kaufmann, 1991, pp. 555-561.

[25] M. A. Potter, “A genetic cascade-correlation learning algorithm,’’ in
Proceedings of COGANN-92 International Workshop on Combinations
of Genetic Algorithms and Neural Networks, L. D. Whitley and J.
D. Schaffer, Eds. Los Alamitos, CA: IEEE Computer Society Press,
1992.

[26] N. Karunanithi, R. Das, and D. Whitley, “Genetic cascade learning
for neural networks,” in Proceedings of COGANN-92 International
Workshop on Combinations of Genetic Algorithms and Neural Networks,
L. D. Whitley and J. D. Schaffer, Eds. Los Alamitos, CA: IEEE
Computer Society Press, 1992.

[27] D. E. Goldberg, “Genetic algorithms and Walsh functions: Part 2,
Deception and its analysis,” ComplexSystems vol. 3, pp. 153-171, 1989.

[28] D. E. Goldberg, “Genetic algorithms and Walsh functions: Part 1, A
gentle introduction,” Complex Systems, vol. 3, pp. 129-152, 1989.

[29] J. D. Schaffer, L. D. Whitley, and L. J. Eshelman, “Combinations
of genetic algorithms and neural networks: A survey of the state
of the art,” in Proceedings of COGANN-92 International Workshop
on Combinations of Genetic Algorithms and Neural Networks, L. D.
Whitley and J. D. Schaffer, Eds. Los Alamitos, CA: IEEE Computer
Society Press, 1992.

[30] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, “Distributed
representations,” in Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations, D. E. Rumelhart
and J. L. McClelland, Eds. Cambridge, MA: MIT Press, 1986, pp.
77-109.

(311 T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to
pronounce english text,” Complex Systems, vol. 1, pp. 145-168, 1987.

1321 J. Koza and J. Rice, “Genetic generation of both the weights and archi-
tecture for a neural network,” in IEEE Internafional Joinf Conference
on Neural Networks. Seattle, WA: IEEE Press, 1991, pp. 11-397-11-404.

[33] R. Collins and D. Jefferson, “An artificial neural network representation
for artificial organisms,” in Parallel Problem Solvingfrom Nature, H. P.
Schwefel and R. Manner, Eds. Heidelberg: Springer-Verlag, 1991.

[34] D. B. Fogel, “A brief history of simulated evolution, ” in Proceedings of
the First Annual Conference on Evolutionay Programming, D. B. Fogel
and W. Atmar, Eds. La Jolla, CA: Evolutionary Programming Society,
1992.

[35] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,”
Biological Cybernetics, vol. 63, pp. 487493, 1990.

[36] J. R. McDonnell and D. Waagen, “Determining neural network con-
nectivity using evolutionary programming,” in Twenty-Jifth Asilomar
Conferences on Signals, Systems, and Computers, Monterey, CA, 1992.

1371 D. B. Fogel, “Using evolutionary programming to create neural networks
that are capable of playing Tic-Tac-Toe,” in International Conference on
Neural Networks, San Francisco, CA: IEEE Press, 1993, pp. 875-880.

1381 S . Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671-680, 1983.

[39] R. J. Williams, Adaptive State Representation and Estimation Using
Recurrent Connectionist Networks. Cambridge, MA: MIT Press, 1990,
chap. 4, pp. 97-114.

1401 J. B. Pollack, “The induction of dynamical recognizers,” Machine
Learning, vol. 7, pp. 227-252, 1991.

[41] M. Tomita, “Dynamic construction of finite automata from examples
using hill-climbing,” in Proceedings of the Fourth Annual Conference
of the Cognitive Science Society, Ann Arbor, MI, 1982, pp. 105-108.

[42] R. L. Watrous and G. M. Kuhn, “Induction of finite-state automata using
second-order recurrent networks,” in Advances in Neural Information
Processing 4 , J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San
Mateo, CA: Morgan Kaufmann, 1992, pp. 309-316.

1431 C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee, and D. Chen, “Higher
order recurrent networks & grammatical inference,” in Advances in
Neural Information Processing Systems 2 , D. S. Touretsky, Ed. San
Mateo, CA: Morgan Kaufmann, 1990, pp. 380-387.

[44] C. L. Giles, C. B. Miller, D. Chen, G . Z . Sun, H. H. Chen, and Y.
C. Lee, “Extracting and leaming an unknown grammar with recurrent
neural networks,” in Advances in Neural Information Processing 4 , J.
E. Moody, S . J . Hanson, and R. P. Lippmann, Eds. San Mateo, CA:
Morgan Kaufmann, 1992, pp. 317- 324.

1451 Z. Zeng, R. M. Goodman, and P. Smyth, “Leaming finite state machines
with self-clustering recurrent networks,” Neural Computation, in press.

1461 D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf,
C. Taylor, and A. Wang, “Evolution as a theme in artificial life:
The genesyshacker system,’’ in Artificial Life I I : Proceedings of the
Workshop on Artificial Life, C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen, Eds. Reading, MA: Addison-Wesley, 1992, pp. 549-577.

[47] J. Koza, “Genetic evolution and co-evolution of computer programs,”
in Artificial Life 11: Proceedings of the Workshop on Artifrcial Life, C.
G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds. Reaading,
MA: Addison-Wesley, 1992, pp. 603429.

[48] P. J. Angeline and J. B. Pollack, “Competitive environments evolve
better solutions for complex tasks,” in Genetic Algorithms: Proceedings
of the Fifth International Conference (GA931, S . Forrest, Ed. San Mateo,
CA: Morgan Kaufmann, 1993, pp. 264-270.

Peter J. Angeline received the B.S. degree
in mathematics in 1984 from Camegie-Mellon
university, and the M.S. degree in computer
science from The Ohio State University in
1989. He is currently a Ph.D. candidate in
computer science at The Ohio State Univer-
sity. His research interests include evolution-
ary algorithms, emergent computation, machine
learning, artificial intelligence, and artificial life.

ANGELINE, SAUNDERS, AND POLLACK: AN EVOLUTIONARY ALGORITHM THAT CONSTRUCTS RECURRENT NEURAL NETWORKS 65

Gregory M. Saunders received the B.S. degree
in mathematics in 1988 from Ohio State Uni-
versity, Columbus, Ohio. From 1988 to 1991 he
held a National Science Foundation fellowship,
and in 1989 received the M.S. degreejn com-
puter science from Ohio State University. He is
currently a Ph.D. candidate in computer science
at Ohio State University, Columbus, Ohio. His
research interests include evolutionary com-
putation, neural networks, and connectionist
methods of behavior-based control.

Jordan B. Pollack received the PbD. degree
in 1987 from the University of Illinois and is
now an assistant professor in the Computer and
Information Sciences Department of The Ohio
State University, where his interests span cogni-
tive science, artificial intelligence, connectionist
and neural networks, dynamical systems, and
artificial life.

