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Recurrent Neural Networks and 
Robust Time Series Prediction 

Jerome T. Connor, R. Douglas Martin, Member, IEEE, and L. E. Atlas, Member IEEE 

Abstract-We propose a robust learning algorithm and apply it 
to recurrent neural networks. This algorithm is based on filtering 
outliers from the data and then estimating parameters from the 
filtered data. The filtering removes outliers from both the target 
function and the inputs of the neural network. The filtering is soff 
in that some outliers are neither completely rejected nor accepted. 

To show the need for robust recurrent networks, we compare 
the predictive ability of least squares estimated recurrent net- 
works on synthetic data and on the Puget Power Electric Demand 
time series. These investigations result in a class of recurrent 
neural networks, NARMA(p, q), which show advantages over 
feedforward neural networks for time series with a moving 
average component. 

Conventional least squares methods of fitting NARMA(p,q) 
neural network models are shown to suffer a lack of robustness 
towards outliers. This sensitivity to outliers is demonstrated on 
both the synthetic and real data sets. Filtering the Puget Power 
Electric Demand time series is shown to automatically remove the 
outliers due to holidays. Neural networks trained on filtered data 
are then shown to give better predictions than neural networks 
trained on unfiltered time series. 

I. INTRODUCTION 

E PROPOSE a robust learning algorithm and apply 
it to recurrent neural networks. This algorithm is 

based on filtering outliers from the data and then estimating 
parameters from the filtered data. To show the need for 
recurrent neural networks, we compare the predictive ability 
of recurrent networks on synthetic and real data. Conventional 
least squares methods of fitting neural networks, both recurrent 
and feedforward, are shown to suffer lack of robustness 
towards outliers. This sensitivity to outliers demonstrates the 
need for robust leaming algorithms. 

Neural network models are usually analyzed from the 
point of view of nonlinear modeling. To differentiate 
between feedforward and recurrent neural networks, this 
paper compares nonlinear AR and linear autoregressive 
moving average (ARMA) modeling by feedforward and 
recurrent networks respectively. Section I1 reviews linear 
autoregressive moving average (ARMA) models as a point of 
departure for the use of feedforward and recurrent networks. 
Section 111 investigates nonlinear autoregressive moving 
average (NARMA) models of time series. In particular, neural 
networks are analyzed as nonlinear extensions of traditional 
linear models. From this, we see recurrent networks have an 
advantage over feedforward neural networks in much the same 
way that ARMA models have advantages over autoregressive 
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models for some types of time series. Section IV examines 
the predictive ability of recurrent NARMA and feedforward 
NAR models of various time series. 

Section V shows that standard least mean squares estimation 
techniques lead to neural network models that are not robust 
to outliers. Section VI proposes a new robust estimation 
algorithm for neural network parameter estimation. In Section 
VII, a comparison of recurrent networks and other models on 
data from a competition in electric load forecasting sponsored 
by the Puget Sound Power and Light Company is discussed. 
On the competition data, a recurrent network model gives 
superior results to feedforward networks and various types of 
linear models. Last, in Section VIII, recurrent neural networks 
trained with the robust leaming algorithm are demonstrated 
that lead to even better results for electric load forecasting. 

11. LINEAR ARMA MODEL AND OPTIMAL PREDICTORS 

The statistical approach to forecasting involves the construc- 
tion of stochastic models to predict the value of an observation 
xt using previous observations. This is often accomplished 
using linear stochastic difference equation models with random 
inputs. By far the most important class of such models is the 
linear autoregressive moving average (ARMA) models. Here 
we very briefly review linear ARMA models and optimal 
predictors for these models. Detailed discussions of these 
models may be found, (e.g., [3], 1141). 

A. Linear ARMA(p, q )  Models 

purposes is the class of ARMA(p, q) models 
A very general class of linear models used for forecasting 

P 4 

where it is assumed that E (e& t--1.xt-2,...) = 0. This 
condition is satisfied for example when the et are zero mean, 
independent and identically distributed, and are independent of 
past xt’s. It is assumed throughout that et has a finite variance 
nz. For a zero mean process xt the intercept y is zero. To 
simplify notation we assume y = 0, which is equivalent to 
replacing xt by xt - E(zt).  

B .  Optimum Prediction 
The theory of prediction focuses on optimum prediction in 

the minimum mean squared error sense. It is well known that 
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the minimum mean squared error predictor, given the infinite 
past, is the conditional mean 

i t  = E (xtlZt-1, xt-z1.. .) 

assuming the conditional mean exists (see [17] or [29]). 
In practice one has only the finite past xt-l ,  . . . , x l ,  com- 

mencing with the first observation x1. In this case, the mini- 
mum mean squared error predictor is 

i t  = E(xtl~t-1,xt-z, . . .  ,XI). ( 2 )  

C .  Approximately Optimal ARMA Predictors 

It may be shown that for the ARMA(p, q) model (l), the 
optimal predictor ( 2 )  is approximately given by the recursive 
algorithm 

it = (P1zt-1 + . . . + p p x t - p  + @lit-1 + . . . + @,it-q (3) 

where 

et-3 = xt-j - 9,-j j = 1, 2 , .  . . , q .  (4) 

In this case, the following initial conditions are often used: 
A , .  

5 0  = x-1= ... = k P + 1  = io = ... = ewq+l = 0.  

For improvements on the initial conditions see Box and 
Jenkins’ discussion of “back-forecasting’’ [3]. 

D. Optimal AR(p) Predictors 

ARMA(p, q) process model: 
An AR(p) process model is the following special case of an 

( 5 )  xt = cplxt-1 + . . . + (Ppxt-p + et. 

The corresponding optimal predictor is given by 

i t  = p1xt-1 + ’ ’ .  + (Ppxt-p. (6) 

111. NONLINEAR ARMA MODELS 
AND NETWORK APPROXIMATIONS 

Many types of nonlinear models have been proposed in 
the literature, see for example MARS [ 111, projection pursuit 
[ 121, CART [ 5 ] ,  autoregressive models [38], bilinear models 
[37], and Volterra series expansions [6]. Here we focus on 
feedforward and recurrent neural networks and how they may 
be used to approximate nonlinear AR and ARMA models, 
respectively. 

A. Nonlinear Autoregressive Models and 
Feedforward Networks 

A natural generalization of the linear AR(p) model to the 
nonlinear case would be the nonlinear autoregressive (NAR) 
model 

xt = h(xt-l:  x t - z , . .  . x twp)  + et 

where h is an unknown smooth function. As with (1) we 
assume that E (etlxt-1,xt-Zr...) = 0 ,  and that et has finite 
variance 02. Under these conditions the minimum mean square 

Fig. 1 .  Feedforward network for NAR(p) modeling. 

error optimal predictor of xt given 
conditional mean 

is the 

Pt  = E (xtlxt-l! . . . , x tPp)  = h(xt-1, . . . , x tPp)  t 2 p + 1. 
(7) 

This predictor has mean-squared error oz. 
Feedforward networks were proposed as a NAR model 

for time series prediction by Lapedes and Farber [21]. A 
feedforward network is a nonlinear approximation to h given 
by 

1 Pt = Qxt+. . . x t - p )  = wif wijxt- j  + ei 
$ (j:l (8) 

where the function f ( x )  is a smooth bounded monotonic 
function, typically a sigmoid. This architecture is illustrated 
in Fig. 1, where the sigmoid functions are denoted as circles 
and the weights are connections between circles. 

The parameters Wi and w;j are estimated from a training 
sample xy , . . .  ! x ; ,  thereby obtaining an estimate f~ of h. 
Estimates are obtained by minimizing the sum of the squared 
residuals Cz”,l ( x t  - it)2. This is done for example by a 
gradient descent procedure known as “backpropagation” see 
[35] or by a second order method [ 2 ] .  

More complicated feedforward networks exist than (8). 
We have avoided the use of multiple layer neural networks 
because they have not given any advantages for the sim- 
ple time series problems considered in this paper. In more 
complicated situations such as speech recognition, multiple 
layered networks must be considered. For instance, the time- 
delay neural network (TDNN) of Waibel et al. [39] is often 
used for speech recognition. No matter how complicated the 
feedforward architecture becomes, such as the TDNN, it is 
always a member of the class of nonlinear models described 
in (7) with some finite value of p .  

We have also avoided the use of direct linear connections 
from the input to the output. A single neuron can approximate 
a linear model by constraining the output to always fall within 
the linear region of the neuron. In practice, we have found 
that this often occurs. 

B .  Nonlinear ARMA Models and Recurrent Networks 

This section is devoted to expressing recurrent networks as 
extensions of traditional ARMA time series models. Recurrent 
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networks are neural networks that have feedback. Recurrent 
networks can be used in either continuous or discrete time. 
The work in this paper is done in discrete time. 

Broadly speaking, there are two types of recurrent networks: 
relaxation and standard. Relaxation networks start from a given 
state and settle to a fixed point, typically denoting a class. 
By imposing constraints on the feedback connections, the 
convergence can be guaranteed. It is possible for relaxation 
networks to never reach a fixed point, but such behavior is 
generally considered undesirable because it does not aid in 
classification. For examples of relaxation networks, see [ 151, 
[16], and [33]. 

We use recurrent networks which try to model a trajectory 
rather than reach a fixed point. For time series prediction, 
the changing input results in a recurrent neural network that 
usually never reaches a fixed point. We use recurrent networks 
that can predict a continuous range of values, differing from 
relaxation networks which are used for classification. For a 
review of recurrent networks see [lo], [18], [40], and [41]. As 
is shown in Section 111-C, the recurrent network introduced in 
this section can be viewed as a special case of that discussed 
in [40]. For a review on the various topologies of recurrent 
network see [301. 

One natural nonlinear generalization of the linear ARMA 
model to the nonlinear case is given by 

(9) 

where h is an unknown smooth function, and as in (1) it is 
assumed that E (etlxt-l,  x t - zr . .  .) = 0 and that the variance 
of et is u2. We call this a NARMA(p, q) model. In this case, 
the conditional mean predictor based on the infinite past of 
observations is 

dt = E [ h ( ~ ~ ~ ~ , ~ ~ ~ , x ~ - ~ , e ~ ~ ~ ; ~ ~ , e ~ - , ) ~ x ~ - ~ , x t - ~ , ~ ~ ~ ] .  

Suppose that the NARMA model is invertible in the sense that 
there exists a function g such that 

xt = g(x t  -1 ,  xt - -2, . . . )  +et.  

Then given the infinite past of observations xt-l ,  xt-2, . . ., 
one can in principle use the above equation to computed the 
e t - j  in (9) as a function of xu: 

et-j =et-j(xt--j ,xt--j- l , . . . )  j = I , . . . , q  . (10) 

xt = h (xt--1,xt--2, ... , xt-p,  et-1, ... , et-,) + et 

In this case the conditional mean estimate is 

Ot = h (xt-1, . . .  , x tPp ,  et-l,  . .  . , e t p q )  (11) 

where the et-j are specified by (10) in terms of present and 
past (relative to time t - j ) x u .  The predictor (11) has a 
mean-squared error 02. 

Since in practice one has only a finite observation record, 
one can not compute (10) and (1 1). However, by analogy with 
the recursive computation of the predictor Pt for the linear 
ARMA process, given by (3) and (4), it seems reasonable 
to approximate the conditional mean predictor (1 1) by the 
recursive algorithm 

Pt  = h (x t - l ,  xt-2, . . . , x tPp,  et-l , et-2,. . . , &-,) (12) 
2 .  3 -  - Z . - O j 3  J j= t -  l ; . . , t - q  (13) 

, . -  
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Fig. 2. Recurrent NARMA(p,q) modeling. 

with appropriate initial conditions [e.g., those following (4)]. 
The approximate conditional mean predictor model (12), 

(13) can be approximated by the following NARMA(p,q) 
recurrent network model: 

) d t  = g Waf ($ wijxt-j + 2 w:j(xt-j - it-j) + 02 
j=1  

(14) 
This recurrent network topology is shown in Fig. 2. The 

parameters Wi , w;j, and wij are estimated by least squares, 
just as in the case of the feedforward network, i.e., by choosing 
the above parameters to minimize C (xt  - it)'. 

C. Fully Interconnected Network 

The NARMA recurrent network (14) is a special case of 
the somewhat more general recurrent network, shown in Fig. 
3. For this network 

I 

i=l 

where the I hidden outputs g i ( t )  are computed recursively in 
time as follows: 

waj Xt-3 

gi(t) = f rF'q) j=1  

) 
P I  

+ 'LZl i lkd t  - k) + 0i . (16) 
k=l k 1  

The weights, walk are distinct from the doubly subscripted 
weight wij. 

We can now see that (14) is a special case of (15) and (16) 
as follows: 

First set: 

and then for the case where p > q 
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Fig. 3. Fully recurrent network. 

This claim is verified by direct substitution of (17) and (18) 
into (16): 

4 \ 

/ P  4 \ 

k=l 
(21) 

The weight relationships (17) and (18) are modified in an 
obvious way for the cases p = q and p < q .  

To distinguish the recurrent network (RN) given by (14), 
from the more general neural network (15), (16), we re- 
fer to (15) and (16) as a NARMA fully recurrent network 
(FRN). Because there may be some potential for the richer 
class of NARMA FRN to provide a better approximation to 
h( xt-1, . . . , xtPp,  et- 1, . . . ! et-q) than the NARMA RN class, 
we consider both of these classes of approximations in the re- 
mainder of the paper. Bear in mind however that the NARMA 
FRN class can require many more weights/parameters than 
the NARMA RN class. We compute the parameter estimates 
for both RN and FRN architectures by variations of real-time 
recurrent learning (RTRL), see [34]. 

Iv. FITTING FEEDFORWARD AND RECURRENT 
NETWORKS TO SIMULATED DATA 

From the previous sections, one sees that a recurrent net- 
work should have no advantage over a feedforward network in 
modeling and predicting nonlinear autoregressive models, but 
that a recurrent network could have considerable advantages 

TABLE I 
NEURAL NETWORK PERFORMANCE ON AR( 1 ) TIME SERIES 

Network P I Training Testing Set 
Set M.S.E. M.S.E. 

Feedforward 
1.00 1.02 (.020) 

2 0 3 1.03 1.08 (.021) 
3 0 2 1.00 1.03 (.020) 

.99 1.06 (.021) 4 0 3 
5 0 3 .98 1.09 (.021) 

1 4 2.03 2.12 (.043) 

NAR 1 0 3 

Recurrent 
NARMA 

1 1 3 .99 1.01 (.020) 
- Fully 1 5 1.01 1.04 (.020) 

Recurrent 

for modeling and predicting NARMA processes. To confirm 
this, feedforward, NARMA recurrent RN, and Fully Recurrent 
FRN neural networks given by [SI, and [ 141-[ 161, respectively, 
were trained and tested on linear AR( 1) and MA( 1) processes, 
and on a Bilinear NARMA( 1,l) process. The stopping criteria 
and the number of hidden units of the neural network model 
was chosen by way of cross validation. The mean squared 
errors of Tables 1-111 are normalized so that the best infinite 
past predictor would have a normalized mean squared error of 
1. We also give standard errors of the estimated mean square 
error in parenthesis. Note that the small number of hidden 
units in the following models is not due to the complexity of 
the leaming algorithm but rather to the better generalization 
of parsimonious models. 

A. Gaussian AR(1) Process 
The following Gaussian AR( 1) process was generated 

xt = 0.9xt-1 + et. 

where the et are N (0, 1) white noise. The parameters of the 
network were estimated using the first 500 observations of 
a time series generated from the AR(1) model. The neural 
network model was tested on an independent AR( 1) time series 
of 10000 observations. The results are shown in Table I. 

The testing set error is the basis of model comparison. 
Training set error is indicative of whether the model has 
overfitted the data. In this example, the MSE on the training 
set should be at best equal to 1. For many of the networks the 
MSE less than 1 indicates that some of the noise were modeled, 
which is not good from a prediction perspective. For example, 
the NAR(5) model has a lower error on the training set, but 
relatively poor performance on the testing set. 

All the networks model the AR( 1) time series well with the 
exception of the Recurrent NARMA(0, 1 )  network, which is 
the only network denied the autoregressive part. The testing 
set MSE for NAR( 1) is close to the theoretical best predictor, 
which indicates that nonlinear neural network models can do 
a good job of modeling linear Gaussian (AR) processes. 

B. Gaussian MA(1) Process 

A Gaussian MA(1) process is given by 

Zt = et + 0.9et-1 
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TABLE I1 
NEURAL NETWORK PERFORMANCE ON MA( 1)  TIME SERIES 

Training Testing Set 
9 I Set M.S.E. M.S.E. Network p 

Feedforward 
NAR 1 0 6 1.30 1.36 (.027) 

2 0 5 1.25 1.25 (.024) 
3 0 3 1 . 1 1  1.16 (.023) 
4 0 3 1.08 1.14 (.023) 
5 0 3 1.05 1.09 (.022) 

I 3 I .oo 1.02 (.020) 

Fully I - 4 0.99 1.05 (.021) 

Recurrent 
NARMA 

1 I 4 0.99 1.02 (.020) 

Recurrent 

TABLE 111 
NEURAL NETWORK PERFORMANCE ON A BILINEAR NARMA( 1.1) TIME SERIES. 

The recurrent NARMA(0,l) model performs poorly due to 
the lack of an autoregressive component which is needed 
in prediction of the bilinear NARMA( 1,l)  time series. Both 
the recurrent NARMA( 1 , l )  and the fully recurrent networks 
outperform all other networks (including all feedforward NAR 
networks) on the bilinear NARMA( 1, 1) time series. The good 
performance of the fully recurrent network relative to the 
recurrent NARMA networks indicates that the fully recurrent 
network may be better at modeling some nonlinearities. 

Adding previous observations to the feedforward NAR does 
improve performance, but only up to p = 2. The performance 
for p = 5 has the second lowest error on the training set, 
but has the second highest error rate on the testing set. Again, 
greater parsimony and better input representation lead to better 
generalization. 

v. NON-ROBUSTNESS OF Ls 
Training Testing Set METHODS FOR NEURAL NETWORKS 

q I Set M.S.E. M.S.E. Network p 

Both feedforward nonlinear autoregression (NAR) and re- 
NAR 1 0 7 1. ,7 (,028) current nonlinear autoregression moving average (NARMA) 

2 0 8 1.11 1.35 (.026) models are traditionally fit by a least squares (LS) criterion. 
3 0 6 1.15 1.50 (.030) For example in the case of fitting a feedforward NAR(p) type 
4 0 4 network model, one estimates the model by minimizing the 
5 0 4 

Feed forward 

(.029’ sum of the squared residuals 
I 2 1.49 1.79 (.035) Recurrent 

NARMA 
I I 5 1.11 1.28 (.025) 

Fully 1 - 5 1.03 1 . 1  1 (.022) 
Recurrent 

where the et are N(0,l) white noise. The parameters of the 
network were estimated using the first 500 observations of a 
time series generated from the MA( I )  model. The neural net- 
work model is tested on a time series of 10000 observations. 
The results are shown in Table 11. 

As should have been expected, the recurrent NARMA 
network models the time series better than all feedforward 
networks. The testing set error for the NARMA network pre- 
dictors is close to the theoretical best MA( 1) model predictor, 
which indicates that nonlinear neural network models can 
model linear Gaussian MA processes. 

Unlike the NAR( 1) example, the greater order of the feed- 
forward NAR(p) model leads to lower training and testing set 
errors for the MA(I) time series. For the NAR(p) model, the 
cost in complexity of large p is countered by the availability 
of useful data. Finally, it should be noticed that as number of 
past observations incorporated in the feedforward network is 
increased, the testing set error approaches the theoretical limit: 
i.e.. high order AR models approximate low order MA models. 

C .  Bilinear NARMA(1,l) Process 

The following bilinear NARMA( 1,l) process 

.rt = et + O.Set&l.ct_l 

was generated, where the et are N (0, 1) white noise. The 
parameters of the network are determined by the first 500 
observations of the time series generated from the bilinear 
NARMA( 1 , l )  model. The results are shown in Table 111. 

1 = 1  

with input weight vectors w? = (wll, wLg,  ... .<uulLp) for the 
ith hidden unit, and output weights W,, for each hidden unit 
i = 1 , 2 ; . . , 1 .  The minimization of (22) ,  as mentioned in 
Section 111, can be done using any one of various gradient 
methods; e.g., backpropagation with gradient descent, Gauss- 
Newton type optimization, etc. 

A. Fitting NAR(1) Processes with A NAR(1) 
Type Neural Network 
1 )  A NAR(1) Model Time Series with a Single Additive Outlier: 
To observe the effect of a single outlier on least squares fitting 
of a neural network predictor model, consider the process 

y t  = .Gt + *ut (24) 

where 

and 

20 t = 100 i 0 t #  100 ‘Ut  = 

with the et being i.i.d. N( 0, I ) .  Fig. 4 shows a time series of 
length n = 200 generated from (24), (25), and (26). 
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Fig. 4(a). Time series generated by a NAR( 1) model. 
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Fig. 4(b). 
gand least squares fitted predictor g and &OO. 

Scatter plot of yt vs. yf-1 for (24) and (26), with true predictor 

- 4 1  -4 -2 0 

Yt-1 

Fig. 4(c). Local view of Fig. 4(b). 

Fig. 4(b) displays a scatter plot of yt versus yt-1,  along 

1 )  The true model conditional mean (best) predictor 
with the following three superimposed curves: 

assuming that all *ut's are zero. 
2) The least squares estimated conditional mean NAR(1) 

predictor 6 based on the 'yt as given by (24)-(26), 

t 

Fig. 5(a). Time series for NAR(1) model (24), (26). and (30) with 10% 
outliers. 

4 

2 

yt 0 

-2 

-4 

-4 -2 0 2 4 
yt-1 

Fig. 5(b). 
squares and robust NAR(1) estimates. 

Lag one, scatter plot for 10% outlier data with thc true, and least 

namely 
10 

i j (y t -1)  = bvio(yt-l,fii + 4 i ) .  (28) 
i = l  

3 )  The least squares estimated conditional mean NAR( I )  
based on the outlier free x t s :  i.e., based predictor 

on deleting the single additive outlier at t = 100: 
4 

ggooct(Yt-1) = 1 *io(yt-l,tTl; + 4;). (29) 
1=1 

The effect of a single outlier on the NAR( 1 )  least squares 
neural network fit is clearly shown in Fig. 4(b). The first outlier 
data point ( g ~ ~ : y 1 0 0 )  has a large local effect on the fitted 
predictor model, while the other outlier data point ( ~ I O O .  y101) 

produces a semi-global effect on the predictor when y - 1  is 
large and positive (the fit is not very good for large negative 
values of ~ ~ - 1 ) .  Fig. 4(c) is a local view of Fig. 4(b), which 
shows more clearly the local impact of the outlier in the 
vicinity of y t - l  = 1.3. In summary: the neural network model 
fitted by least squares does a reasonable job for a wide range of 
predictor values of yt-1,  but fails rather badly in local regions 
of yt-l and for large values of l y - l l .  
2) A NAR(I)  Model Time Series with Multiple Additive Out- 
liers: Fig. 5(a) shows a time series of length 71 = 200 
generated by the model (24) and (26), in the preceding NAR( I )  
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single outlier example. Instead of the single additive outlier 
described in (25), multiple additive outliers are allowed. The Et 

are white Gaussian noise with mean zero and variance a: = 1. 
The ?it are generated in the following way 

ut = wt. 3 z t  (30) 

where the Zt are independent standard normal random vari- 
ables, and the W, are independent 0-1 (Bernoulli) random 
variables with P(Wt = 1) = y. Thus, y is the average 
fraction of outliers, whose values are 3Zt - N(O,9), where 
the notation N ( p ,  a2) stands for the normal distribution with 
mean p and variance u2. 

Fig. 5(a) is for y = 0.1: i.e., 10% outliers on average (with 
12% outliers for this realization). Fig. 5(b) displays the lag-one 
scatterplots for the series of Fig. 5(a) along with: 

1) The true predictor g (solid line) given by equation (27). 
2) The least squares estimated conditional mean NAR(1) 

predictor g based on the yt as given by (24), (26) and 
(30) withy = 0.1 corresponding to 10% outliers, namely 

5 

j ( y t - 1 )  = % ( Y t - l G  + Q. (31) 
2 = 1  

3) The least squares estimated conditional mean NAR(1) 
predictor ggood based on the outlier free data, i.e., with 
all ut = 0. 

The message is clear: While the least squares estimate ggood 
based on outlier free data is a reasonable good estimate of the 
true predictor g, the least squares estimate g is badly affected 
by outliers, and would provide very poor predictions for some 
values y t - l .  

VI. ROBUST FILTERING OF FEEDFORWARD 
AND RECURRENT PREDICTOR MODELS 

Previous work in robust estimation of neural network mod- 
eling (see [20]), would limit the influence of an outlier when it 
appears in the target function. Our robust ARMA model fitting 
method limits the influence of an outlier when it is both the 
target and an input of the neural network model. 

The robust ARMA model fitting method of [24] is applied to 
the case of feedforward and recurrent networks of NAR and 
NARMA types, respectively. The method relies on a robust 
filtering method for interpolating at times of occurrence of 
outliers, and is related to a non-Gaussian maximum likelihood 
estimation procedure. 

A. Robust Filters For NARMA Models 

The NARMA(p, q) model 

X t  = f ( Z t - 1  , . . . , X t - p , E t - l ~ . . . , E t - q )  +et  (32) 

may be written in ( p  + 4 )  dimensional vector state space 
form as follows. Define ( p  + q )  dimensional column vectors 
z t , f ( z t - l )  and et as follows: 

(33) 

(34) 

T xt = ( X t ~ . . . , Z t - - p + l , E t ! . . . , E t  --q+l) 
T 

f(.t--l) = [ f ( z t - l ) , X t - l , .  .. : Zt--p+l: 0: E t - 1 , .  .. : E t - q + l ]  

. . .  .. E t  = ( E t ,  0, .  0. E t ,  0, .  0)T (35) 

where the second E t  in (35) occurs at the ( p  + 1)th position. 
Then the NARMA(p, q) model with additive outliers may 

be written as 

(36) 
(37) 

is a p + q dimensional vector. Let Q denote the covariance 
matrix of Et.  

Let gt denote the robust filter esimate of zt based on y1 up 
to yt and let i$' denote the robust one step ahead predictor of 
gt based on ob5ervations y1 up to yt-l. Similarly let .$' and 
y;-l be the one step ahead predictor xt and yt respectively, 
based on y1 up to ,yt-l .  

The form of robust filter for this model is similar to those 
proposed by [20], [25] ,  and [28] for linear state space models. 
The main differences consists of mimicking the so-called 
"extended" Kalman filter for nonlinear state space models, by 
making use of linearization of f (z t -1)  about the robust filter 
estimate P t - l :  

Zt  = f(.t-1) + E t  

y t  = hTst Jr ?it 

where lit represents additive outliers and h = (1,0,0, . . . .  

f(zt-1) f ( & - 1 )  + o f ( % - i ) ( x t - i  - % I )  (38) 

where Df(Zt-1)  is the ( p  + y) x ( p  + y) matrix of the partial 
derivatives of f evaluated at & - I .  Specifically, 

Df(2t-1) = 

F1 F2 . .  . F p  i Fp+l i Fp+2 F p + ~ .  .. Fp+q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I : o :  0 

0 : o :  0 

0 : o :  I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(39) 

The one step ahead state and observation predictions of the 
where Fi = (a /a(s t ) ; ) f (U)IU=i . t_ l  for 1 5 i 5 p + y. 

NARMA(p, q) process defined in (36) and (37) is given by 

2t-1 = f ( 2 t - 1 )  (40) 
5i-l = hTf(3;t-l) = f (&-1) .  (41) 

where the estimated state at time t - 1 is given by i t - l .  Also 
note that (41) is the first element of the vector in (40). 

The robust filter recursion estimate of f t - l  is given by 

where for robustifying function $ we use the Hampel two- 
part redescending function $HA shown in Fig. 6. Note that 
s t$( (y t  -y;- ' ) /s)  is the robustly estimated residual. The one 
step ahead state prediction covariance, Mt, used in (42) is 
given by 

&+l = w & ) P t m T ( 4 t )  + 42 (43) 

(44) 
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Fig. 6. Hampel psi function. 

where W ( T )  = ( + ( T ) / T )  and s: = (Mt)ll. 

In the case of a NARMA(p,q) model we have 
* A  2t-1= ( P t - l , . . . , x t - - p ~ € t - l , . ‘ . , i t - ~ )  (45) 

and we need expressions for &-I ,  . . . , it-*. These are readily 
obtained by analogy to (12) and (13). 

U = t - 1,. . . , t - 4 ,  

where x, has been replaced by P,. Note also our change 
in notation in (12) and (13), P, denoted a one step ahead 
predictor and now PE-’ denotes a one step ahead predictor 
and P, denotes a filtered value. 

Notice that use of 7 )  = results in the following 
behavior for the robust filter: 

A A  

E ,  = x, - f(2,-1) = 2,  + iz-1, 
(50) 

it is a pure prediction 

lit = f(.t-1) 

when lytl is sufficiently large due to the presence of an 
additive outlier: i.e., when Iyt - & ‘ I  > bst ,  and 
P t  = (&)I = yt when the magnitude of Iyt - $:-‘I is 
“small”, i.e., when lyt --&‘I < ast. The latter condition 
holds for the bulk of the observations when no outliers 
are present. 

Results of [24] and [28] suggest that if + is the score 
function of the observation prediction density f ( ~ ~ J y ~ - ~ ) ,  then 
gt and 2j-l are approximate conditional mean estimates (see 
also [23]). This provides a good rational for the above robust 
filter recursions. 

The above robust filter recursions include NAR(p) and 
NMA(q) filters as special cases in the following way. The 
NAR(1) robust filter is given by 

Note the manner in which f influences the state prediction 
error variance mt+l: high values of If’(&)l increase mt+l, 
and when lf’(Pt)l is close to zero we have mt+l z 0,”. 

The NMA(1) robust filter is given by 

(54) 

(55)  

Note once again the manner in which f influences the state 
prediction error variance mt+l:  high values of If’(Pt)l in- 
crease mt+l, and when If’(&)\ is close to zero we have 
mt+1 = 0,”. 
B .  Robust Neural Network Training 

As in the previous section, let 

y;-1 = f(2t-1) 
. . A  - - f(i*-1, ’ . . , xt--p, E t - 1 ,  . . . , it-*) (57) 

be the robust one step ahead predictor of yt, with the 
&-I, . . . , Pt-p computed using the robust NARMA filter 
recursion of the previous section. But now let f be 
approximated by a recurrent neural network as in Section 
111-B: 

f(2,-1) = d 2 t - 1 )  

9 

) 
I 

+ wzO W,j& + W : j 2 t - j  + 8, 
z=1 ( j : l  3=1 

(58 )  

with 

(59) At-J-1 
E t - J  = xt-J - xt-J 

where ?:I;-’ is the one step ahead robust predictor of x t P j .  It 
is important to use the robustly filtered value P t P j  rather than 
the observation ytPjr in order to produce cleaned estimates 

Now the robustly filtered values are based on the state 
which are free of outliers. 

transiton equation 

et = g ( 2 t - 1 )  + E t  (60) 

where g is identical to the f in (34) except that the first 
component f (z t - l )  of f is replaced by the approximation 
g ( 2 t - 1 ) .  In the robust NARMA filter equations (40)-(44) g 
and g replace f and f respectively. 

Denote the set of parameters in (58) by X 

X = {WT,~T,...,wT,w ;T:..,w;T.eT} (61) 

and acknowledge the dependence of g on A by writing 

g(2t-1) = g( i t -1 ,X ) .  (62) 

It is known ([24], [26]) that an approximate maximum likeli- 
hood type estimate (M-estimate) X for the model [24] with xt 
a Gaussian ARMA model and P(vt # 0) = y > 0, is given by 

The two main types of p in (63) that have been used in 
practice are the Huber function p~ and the Tukey “bisquare” 
function p~ shown in Fig. 7(a) and (b). Both of these functions 
are quadratic for sufficiently small argument T .  The Huber 
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Huber and Tukey rho functions. 

function p~ is unbounded and convex, with p H ( r )  behaving 
like Irl for Irl 2 c. The Tukey function PB is bounded and 
hence non-convex. 

It has been found in practice that there is usually not much 
difference between the A given by (63) and the following 
somewhat simpler statement: 

Although the estimates (63) and (64) were originally intro- 
duced for robust estimation of linear AR and ARMA models 
with additive outliers, their use for robust fitting of feedforward 
and recurrent network approximations to NAR and NARMA 
models is quite natural. Thus we focus on use of the simpler 
form (64) with the recurrent model predictor form 

G-Y4 =g(?t-1, A) 

(65) 

We use p = p~ as given in Fig. 7(a). We describe computation 

We now describe an iterative computational strategy for 
approximately solving the optimization problem (64), assum- 
ing for the time being that Pt and st do not depend on A. 
Differentiating the right hand side of (64) with respect to A 
give the estimating equation 

of i t ( A )  shortly. 

where the gradient Dg(Pt-1,A) of g(Pt-1,A) 1s a column 
vector, and (66) is solved for the estimate A. 

Now consider the first element of the vector recursion (42) 
with 6i-l = f ( P t - l ,  A) replaced by g(Pt--1, A): 

Multiplying both sides of (67) by D g ( f t - l , A )  and summing 
gives 

The left-hand side would be equivalent to (66) if st had a 
constant value. In fact st equals a robust estimate 6, of a, for 
most t when most of the observations yt are free of outliers 
(see [25]). Thus it is reasonable to assume that the left hand 
side of (68) is equal to (66), up to a constant multiplier. 

On the right hand side of (68) is the estimating equation 
for the least-squares fitted network approximaeon based on 
the robustly filtered data. That is, the estimate A obtained by 
solving the right hand side of (68) is given by 

In the above arguments leading to (69) we have been treating 
the P t  and st as fixed and independent of A. This is not quite 
ture, as the robust filter depends upon A. However, typically 
most values of & equal yt and such values are essentially 
independent of A, as are the corresponding values of st. At 
gross outlier positions Pt = k;- ' (A) and st = s t ( A )  depend 
upon A. Thus (69) should yield a good approximation to (66), 
at least when the fraction of outliers is not too large. 

The above discussion motivates the fol!owing simple itera- 
tive strategy for computing the estimate A: 

1) Train a NARMA(pq) recurrent network approximation 
via least squares to get an initial estimate Ao of the 
network parameters. Here we use: Backpropagation for 
NAR(p) models and a variant of the Williams and Zipser 
algorithm [41] for the NARMA(p,q) models. 

If the outliers correspond to the largest estimated 
residuals obtained from the estimated NARMA(p,q) 
model, the following algorithm produces a robust 
NARMA(pq) model The model can be constrained 
to be smooth via Bayesian or Minimum Description 
Length techniques, the outliers are then less likely to 
be modeled explicitly. Alternatively, if a fairly small 
number of iterations M is used, outliers are not modeled. 
We have found !hat M in the range 100 to 1000 suffices 
for computing A. 

2) Compute a highly robust scale estimate 6, of ucA based 
on the initial prediction residuals rf = yt - 5i-l (A) with 
no robust filtering. The standardized median absolute 
deviation about the median (MADM) 

e.," = 1.483MED{Ir: -MED{r:}J} 

provides such an estimate. The standardization constant 
1.483 insures that &E is a consistent estimate of the true 
uE when the Et are Gaussian. Note that as the percentage 
of outliers increases, reliability of the scale estimate goes 
down. But for up to 20% outliers, the MADM approach 
to robust scale estimates is reliable. 

3) For j = O , l , .  . . J 
4) a. Filter the training data with a robust filter based 

on I j .  This results in robustly filtered estimates 

Compute a new MADM robust scale estimate 
&:+' based on the residuals = yt - y:-'(A ) 

- J  
k; = &(A ). 

b. 
- J  
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where the robust filter from a) has been used to 
construct the predictor yip' (iJ) 
Use as training data the 2:, t = 1, . . . , n, to train a 
recurrent NARMA type predictor model via least 
squares for M iterations (here M J + ~  = 1000 
suffices). This results in new recurrent network 
parameter estimates X 

c. 

,. J+l . Go to (a). 

5) We have found that typically J = 25 to 100 iterations 

1 )  Tuning Constants: With the above algorithm we do not 
make explicit use of the loss function p in (66), so we do not 
need to specify any tuning constant for p. The 4 function we 
use for the robust filter (40)-(44) (with f replaced by g )  is 
the Hampel two-part redescending function of Fig. 6. This 
function has two tuning constants, a and b,  which provide a 
trade-off between statistical efficiency of estimation when no 
outliers are present and robustness when outliers are present. 
Our experience indicates that the values a = 2 and b = 3 work 
well for a wide range of applications. 

of the above outer loop suffices. 

C. Comment on Estimation Maximization (EM) Algorithm 

The iterative approach of filtering for outliers and re- 
estimating parameters is a special case of the EM algorithm 
first presented in [9]. The EM algorithm has been applied 
recently to hierarchical mixture of experts models, [18] and 
[31] among others. This is referred to as a soft filtering 
approach because a data point can effect more than one model. 
A hard filtering approach would classify a data point as either 
in one class or the other, MARS and CART are examples of 
hard filtering. 

The model we have described has two data classes, normal 
and outlier data. Our approach classifies points with small 
residuals as being normal and those ponts with extremely large 
residuals as being outliers. There is a gray area where the data 
is not classified as normal or outlier. In this case, the data 
point influences the model but the influence is down weighted. 
Because of the gray area, our algorithm is an example of soft 
filtering. 

It should also be noted that the algorithm can be done 
on-line if the parameters and the scale are both calculated 
recursively, see [ 181 for a related discussion in the context of 
hierarchical mixture models. 

D. NAR(1) Robust Fitting Example 

In this section we provide an example of applying the robust 
neural network procedure of Sections VI-A and VI-B to time 
series with additive outliers, namely the 10% additive outlier 
example of equations (24), (25), and (30). See also Fig. 5(a) 
and (b). 

Fig. 8 displays the lag-one scatterplot for the series of Fig. 
5(a), along with: 

1) The true function g (solid line) given by (27) 
2 )  The least squares estimated NAR(1) predictor g based 

on the vt as given by (24), (25),  and (30) with y = 0.1 
corresponding to 10% outliers. 

~ 
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Fig. 8. 
squares and robust NAR(1) estimates. 

Lag one, scatter plot for 10% outlier data with the true, and least 

3) The robustly estimated NAR(1) predictor grobust based 
on the gt as given by (24), (25),  and (30) with y = 0.1 
corresponding to l a %  outliers. 

VII. COMPETITION ON LOAD FORECASTING DATA 
Neural networks have been applied to electric load forecast- 

ing with some success. See for example, [8], [22], [32], and 
[42]. A recurrent network modeled the data that came from 
a competition to predict the loads of the Puget Sound Power 
and Light Company from November 11, 1990 to March 31, 
1991. The object was to predict the hourly demand for the 
electric power. The predictions were made in the following 
manner, which was dictated by economic considerations. At 
8:OO A.M. on each working day, Monday through Friday, a 
prediction is made for each hour of the following working 
day, commencing with 1:OO A.M. and ending at 12:OO P.M. 
With regard to predictions made on Friday, the next working 
day is Monday. 

The predictor variables available for use in our predictor 
model are: 

1) Power demand (or load) 1 and temperature T up to and 
including 8:OO A.M., the time at which predictions are 
made for the next day 

2 )  The weatherman's prediction made at 8:OO A.M. each 
day for every hour of the next day to be predicted. 
Monday forecasts are made on Friday, Tuesday through 
Friday forecasts are made on the preceding day. 

The forecasting competition was based on prediction per- 
formance during the period Nov. 11, 1990 to March 31, 
1991. The historical time series data for load, temperature 
and temperature predictions by the weatherman for the same 
intervals (November 11 to March 31) during each of the four 
years 1986-7 through 1989-1990 were available. In Figs. 9 
and 10 we display this time series data. Fig. 9 displays all of 
the 9:OO A.M. data for 1987, 1989, and 1991, superimposed 
in a single plot. This allows one to gauge the overall trend 
effect across the years 1987-1991. Fig. 10 displays the power 
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Fig. 9. 9:OO A.M. power demand for 1991, 1989, and 1987. 
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Fig. 10. Hourly power demand for the week of 1/20/91. 

demand hour by hour over a one week interval. This plot 
shows quite clearly the diurnal and weekly non-stationary 
cycle behavior of the data. 

Because of the strong diurnal cycle we decided to build 
a separate model for each hour to be predicted. In order to 
model the weekly cyclic and seasonal trend/cycle fragment, we 
include a day of the week variable dw = 1 , 2 , 3 , 4 , 5  and day 
of the year variable dy = 1 , 2 , .  . . ,222 (to cover Nov. 11 to 
March 3 1 of each year). To model any trend from year to year, 
we included a year variable k = 1 , 2 , 3 , 4 , 5  corresponding to 

The prediction performance results are presented for the fol- 
lowing “NARMAX” models (NARMA( 1, 1) plus exogeneous 
temperature and temperature prediction variables): 

1986-7, ..., 1990-1. 

For hours t - 1 , 2 , - . . , 8  

l k , t  = f t ( l k - l , t r  T k - l , 8 , T k , t ,  dw, k ,  ?/, e k - l , t )  + e k , t  
Tuesday-Friday 

l k , t  = f t ( l k - - 3 , t ,  T k - l , 8 , T k , t >  dw, k ,  Y, e k - 3 , t )  + e k , t  
Monday 

For hours t = 9 , 1 0 , . . . , 2 4  

l k , t  = f t ( l k - Z . t , T k - 1 , 8 ,  T k , t ,  dw, k ,  Y, e k - 2 , t )  + e k , t  
Wed.;-Friday 

l k , t  = f t ( l k - 4 , t ,  T k - 1 , 8 ,  T k , t ,  dw, I C ,  Y, e k - 4 , t )  f e k , t  
Tuesday 

Human 
Expert 

Fig. 11. 1991 A.M. peak mean square error. 

Human 
Expert 

Fig. 12. 1991 peak mean square error. 

Weekend results were not considered economically relevant. 
The weekday predictions are evaluated on four criteria which 
can be described in terms of the Mean Absolute Percentage 
Error (MAPE) function over the hours h l  to h2. 

MAPE ( h l ,  h2)  = i=hl h2 x 100%. 

l lk , i l  
k = l  

N 

i=hl  

The most important are the Mean Absolute Percentage Error 
(MAPE) of the A.M. peak, 7 A.M. to 9 A.M., E.k.h,f. = 
MAPE(7,9),  and the MAPE of the P.M. peak, EP.R.I. = 
MAPE (17,19). Two other criteria, the total error, = 
MAPE (1,24), and the winter peak error 

where l k , i  = niax 1 are also considered valuable. E,,, tends 
to be the most difficult measure, because the peak tends to 
be outside the training set. The performance of the recurrent 
network on two of these error measures is shown in Figs. 11 
and 12, for other error measures see [7]. 

The predictions for the 9 A.M. time series is shown in Fig. 
13. The effect of the nonlinear nature of neural networks was 
apparent in the error residuals of the test set. Figs. 14 and 
15 are plots of the residuals against the predicted load for 
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the training and testing set of the hourly recurrent network. 
Fig. 14 shows the desired behavior, residuals and predictions 

the residuals tend to be positive for larger loads and negative 
for lesser loads for the test set. Fig. 16 and 17 are plots of 
residuals versus the previous residuals for the training and 
testing set. The residuals are uncorrelated for the training set, 
Fig. 16, but the testing set, Fig. 17, shows definite skewing 
behavior. The skewing behavior in Fig. 15 and 17 is a product 

,bo 

that are uncorrelated for the training set. However in Fig. 15, 2 0 0 .  
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Fig. 13. Actual and predictions, 1991 test set. 
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Fig. 14. Residual vs. predictions, 1986-1990. 

Fig. 15. Residuals vs. predictions, 1991. 
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Fig. 16. Lag 1 scatter plot, 1986-1990. 
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I 

Y t  =It + vt (70) 

where It represents the electric power demand on day t ,  Tt is 
the temperature at day t ,  Tt is the forecasted temperature for ONE STEP PREDICT1oNs 

In Section VII, the Puger Power Demand time series was 
modeled for purposes of forecasting power demand. The robust 
algorithms developed in Section VI are now used on the 
8 A.M. Power Demand time series data. This time of day 
corresponds to nearly peak power demand for each day. An 

day t .  dw is the day of the week, Y is the year, pt is the random 
noise at 8:OO A.M. on day t. The observation (70) equation 
contains ut: which models the existence of outliers. Note 
that the variables Tt. Ft. dw and y are so-called exogenous 
variables. Hence the term NARX( I )  rather than NAR( 1). 
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Fig. 18. Observed and robustly filtered 1990 filtered training data 

Fig. 18 shows the original 8:OO A.M. power demand time 
series for the year 1990, which was used to train a 5 hidden 
unit feedforward network with the robust method of Section 
VI, along with the robustly filtered data based on the robustly 
trained network. 

Note that the robust filter values it agree with the observed 
data :yt most of the time (recall that we claimed in Section 
IV that the typical robust filter behavior has this general 
character). Some (but not all) of the times at which Z t  and 
:I/+ differ are holidays. Typically a holiday causes a large 
magnitude because holidays result in exceptionally low power 
demand. Notice also that when the robust filter “interpolates” 
(i.e., provides pure predictions for &) in the vicinity of outlier 
positions, it produces qualitative behavior similar to the rest 
of the unaltered series where :it = g t .  This is of course natural 
since the robustly trained neural network models well the 
dynamics of the outlier free positions of the time series. 

Fig. 19 shows the 1991 Puget Power Demand time series, 
along with one-day ahead predictions/forecasts (2:;; and 

and our robustly trained network, respectively. It is clear from 
this figure that the predictions :?;:;:bust based on the robustly 
trained neural network tend to be closer to the true values 
than the predictions 2;;; based on the classic least squares 
network fit. 

are displayed in Table IV using two measures of variability 
of the prediction errors 

2 ; t - I  ) based on the classic least squares trained network 

The differences in performance between :i~$ust and . ,t,LS 

namely: 
1 )  Mean-squared error (MSE). This is the usual measure 

of prediction error performance, hlSE = ( l / n )  E:==, r:. 
However, its value is inflated by the presence of outliers. 

2) Median of square error (Median of SE). This measure 
of prediction error is based on the sample median of 
the squared residuals, Median { T : .  . . . , T : } .  Hence this 
measure is not inflated by outliers, and gives a more 
accurate indication of prediction performance for the 
bulk of the data that is free of outliers. 
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Fig. 19. 
based on LS and Robust Network fits. 

Puget power demand data for 1991 competition data and predictions 

TABLE IV 
PERFORMAWE OF PREDICTORS ’.: L: AND 
- 1 , FOR TRAINI~G AND TEST DATA 

1990 Training Data 1991 Test Data 
Training 

Method M.S.E. Median S.E. M.S.E. Median S.E. 

Least Squares ,0248 .0140 ,0230 .0 187 
Robust ,035 1 ,0086 ,0167 ,0114 

Notice that on the 1991 training data the MSE measurement 
indicates that 2;;; is considerably better than the ?~,~,,,, , 
whereas its opposite is true using the Median of SE. The fact 
that for both 2$: and the Median of SE is smaller 
than the MSE for both 1990 training and 1991 test data reflects 
the fact that the MSE is inflated by the outliers in all the cases. 
On the 1991 test data set 2z&,st is better than 3&: by about 
the same relative amount using both MSE and Median of SE. 

Overall the robust neural network fitting method yields 
considerably improbed prediction performance relative the 
classical LS network fitting. 

A few passing comments on outliers due to holiday effects 
in closing: It is well known in the statistical time series 
literature that the holiday effects can be handled by a structured 
dummy variable approach (called “intervention analysis” by 
Box and Tiao, 1975). This method could be adopted to time 
series neural network fitting. Our experience indicates that the 
robust network fitting method we propose and the structured 
dummy variable method yields similar results in the network 
fitting stage when holiday effects cause outliers. However, 
the dummy variable approach has the advantage of providing 
possible considerable improved prediction for future holidays. 
We hope to explore this issue further is a subsequent paper. 

IX. CONLCUSION 

Recurrent networks were shown to be a special case of 
nonlinear autoregressive moving average models, abbreviated 
NARMA. Feedfonvard networks were shown to be a special 
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case of nonlinear autoregressive models, abbreviated NAR. 
This being the case, recurrent networks are well-suited for 
time series that possess moving average components. Good 
performance for these predictor models were demonstrated on 
synthetic time series. 

Neural networks fit by classical least squares were shown to 
be highly sensitive to outliers. In the case of a small number 
of outliers, the effect on the predictor tends to be localized. 
Our studies show that for single outliers, neural networks tend 
to model gross outliers completely. In such cases, the model 
is a useful predictor as long as the predictions are not near the 
outliers. However, very bad predictions can occur in localized 
regions of the parameter space. 

In cases where there is more than a small number of outliers 
(e.g., 5 to 20% of outliers), the classical least squares fitting 
of neural network models gives serious overall distortion to 
the neural network model. We introduced a robust filtering 
algorithm as an integral part of the training. The filtering gives 
rise to very good distortion free estimation/fitting of the neural 
network model. The essence of the robust filter is to provide 
(one sided) interpolated value at gross outlier positions. 

It was shown that recurrent neural networks can give supe- 
rior results for load forecasting, but as with other models, the 
input configuration is critical to good prediction performance. 
The relative superiority of recurrent networks to feedforward 
networks in load forecasting is not just due to its ability 
to model time series data with lower errors, but rather to 
model a training set parsimoniously. Robust filtering based 
training were shown to yield considerable improvement over 
conventional least squares fitting of neural network models 
for electric load forecasting. 
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