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Abstract. Systems biology offers a holistic perspective where individual proteins are viewed as elements in a network of protein-protein interactions (PPI), in which the proteins have contextual functions within functional modules. We have previously proposed a Gene Ontology-weighted clustering coefficient for identification of modules in PPI networks and a method, named SWEMODE (Semantic WEights for MODule Elucidation), where this measure is used to identify network modules. Here, we employ novel aspects of the method that were tested and evaluated. By taking the spatial aspect into account, by using the GO cellular component annotation, when calculating weighted cohesiveness, we are able to improve the results compared to previous work where only two of GO aspects (molecular function and biological process), were combined. We evaluate the predicted modules by calculating their overlap with MIPS functional complexes. In addition, we identify the “most frequent” proteins, i.e. the proteins that most frequently participate in overlapping modules. We also investigate the role of these proteins in the interconnectivity between modules. The majority of identified proteins are involved in the assembly and arrangement of cell structures, such as the cell wall and cell envelope.
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1   Introduction

At a higher level of hierarchy in the complexity pyramid of life [1], protein complexes and proteins interact weakly and transiently with preferred partners to form modules that serve distinct functions. Although modules are mostly seen as an abstraction of complexes, there is one important distinction between complexes and functional modules. Complexes correspond to groups of proteins that interact with each other at the same time and place, forming a single multimolecular mechanism. Examples of protein complexes include the anaphase-promoting complex, origin recognition complex, protein export and transport complexes, etc. Functional modules, in contrast, do not require physical interaction between all the components at the same point in time, but rather consist of proteins that participate in a particular cellular process while binding to each other at different times and places, such as in different conditions or phases of the cell cycle, in different cellular compartments, etc. [2] Examples of functional modules include the yeast pheromone response pathway, MAP signalling cascades, etc. Furthermore, not all functional modules require a physical interaction between components.[2] A functional module may be conceptualized as a process [3], which does not necessarily correspond to a structure defined in time and in space, like a protein complex.

Consequently, an integrated approach that combines network topology information with knowledge about molecular processes, functions and cellular compartments should be useful for providing new insights about functional modules. The GO Consortium [4] provides three separate ontologies – molecular function, biological process and cellular component – to describe the important attributes of gene products that we seek to integrate with topology, in order to identify functional modules.

2   Background and Related Work
A series of studies attempting to reveal the modules in cellular networks, ranging from metabolic,[5] to protein networks,[6, 7] strongly support the proposal that modular architecture is one of the principles underlying biological organisation. The modular nature of the cellular networks, including PPI networks, is reflected by high clustering, measured by clustering coefficient. The clustering coefficient measures the local cohesiveness around a node, and it is defined, for any node i, as the fraction of neighbours of i that are connected to each other. [8] As pointed in [9], each module may be reduced to a set of triangles, and high density of the triangles is highly characteristic for PPI networks, pointing at modular nature of such networks.
Although the clustering coefficient is a good measure of the density of interactions in a protein interaction sub-graph, it is strongly dependent on the size of the sub-graph. This makes it very difficult to use clustering coefficient value to discern sub-graphs for which the density is statistically significant. Spirin and Mirny [6] elaborated on this problem by starting from each sub-graph with n proteins and m interactions and computing the probability of obtaining more than m interactions among the same set of proteins in a random graph. They observed that the majority of cliques (fully connected graphs) of size four or greater are statistically significant in PPI networks compared with random graphs. Hence, small cliques are likely to appear by chance. Also, we know that data obtained from high-throughput Y2H screens is prone to errors, and may contain large numbers of false positives. For example, it is possible that two proteins, although able to interact, and therefore reported as positives in a Y2H screen, are never in close proximity to each other within the cell.[10] Besides this location constraint, there is also a time constraint(meaning that a pair of proteins that interact in the Y2H experiment may be expressed at different points in the cell cycle, and therefore never interact in vivo. Therefore, taking into account annotation regarding molecular function of the proteins and their involvement in biological processes or cellular components is likely to increase the reliability of protein-protein interactions, and thereby reduce the number of false positives.
Various methods of network clustering have been applied to reveal modular organisation in protein-protein interaction networks. [11-15] However, those methods have mostly been based on structural properties of the network, such as shortest path distance, mutual clustering coefficient and node degree information.
3   Materials and Methods

As stated earlier, we here employ and analyse further extensions of SWEMODE, according to two important aspects of biological networks: the overlap between modules and the k-core aspect. In previous work [16], no overlap was allowed between the modules, i.e. proteins were clustered into disjunct modules where one protein could only belong to one module. In this way, modules were treated as isolated functional units, with no possibility to reveal their interconnectivity. However, previous work on the analysis of the yeast filamentation and signalling network indicates that overlapping proteins [17] and highly interconnected proteins [12] in several cases constitute a part of an intermodule path and may play an important role for intermodule communication.
Besides introducing an overlap aspect, another extension of SWEMODE considers k-cores of the graph. The notion of a core-clustering coefficient has been introduced in previous work.[11] In this work, we develop a weighted counterpart, i.e. a weighted core-clustering coefficient, which takes into consideration functional weights and topological properties, i.e. information about the highest k-core for a graph. K-cores have been proposed earlier for detection of protein complexes from protein interaction networks.[11, 18] It has also been found recently that proteins that participate in central cores have more vital functions and higher probability of being evolutionarily conserved than the proteins that participate in more peripheral cores. [19] This also motivates our attempt to improve SWEMODE by including this aspect.
3.1   Protein Interaction Network

Information on protein interactions was downloaded from the Database of Interacting Proteins (DIP
) [20], which contains experimentally determined interactions between proteins in Saccharomyces cerevisiae. The majority of the interactions were identified with high-throughput yeast two-hybrid (Y2H) screens. [21] We used the subset of DIP-YEAST, denoted as CORE, which has been validated in [22]). After removal of 195 self-interactions, the CORE subset contained 6 375 interactions between 2 231 proteins.
3.2   Semantic Similarity Weights

The Gene Ontology (GO) [4] is becoming a de facto standard for annotation of gene products. GO consists of three sub-ontologies: molecular function, biological process and cellular component. Based on each of the three sub-ontologies, we use a semantic similarity measure to calculate a weight for each PPI. The weight corresponds to the similarities between the ontology terms assigned to the interacting proteins.

Semantic similarity is calculated as in [23] using the Lin similarity measure [24]. To calculate the similarity between two proteins i and j, the similarity between the terms belonging to the term sets Ti and Tj that are used to annotate these proteins must first be calculated. Given the ontology terms tk ( Ti and tl ( Tj, the semantic similarity is defined as [24]:
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where p(tk) is the probability of term tk and pms(tk,tl) is the probability of the minimum subsumer of tk and tl, which is defined as the lowest probability found among the parent terms shared by tk and tl.[25] We use the average term-term similarity[25] because we are interested in the overall similarity between the pair of proteins rather than between pairs of individual ontology terms. Given two proteins, i and j, with Ti and Tj containing m and n terms, respectively, the protein-protein similarity is defined as the average inter-set similarity between terms from Ti and Tj:
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3.3   Weighted Clustering Coefficient
As pointed out in previous work [26], the individual edge weights do not provide a general picture of the network’s complexity. Therefore, we here consider the sum of all weights between a particular node and its neighbours, also referred to as the protein strength. The strength si of node i is defined as:
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where 
[image: image5.wmf]ij

ss

 is semantic similarity (see Equation 2) between nodes i and j, based on their GO terms, and N(i) is the neighbourhood of node i. Recently, some extensions of the topological clustering coefficient have emerged for weighted networks. Barrat et al. [27] introduced a weighted clustering coefficient (
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) that combines topological and weighted characteristics. This measure has previously been applied to a world-wide airport network and a scientist collaboration network. We introduced a weighted measure that uses semantic similarity weights [16]. The weighted clustering coefficient 
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 is defined as:

	
[image: image8.wmf]{

}

å

Î

"

+

-

=

)

(

,

|

,

)

(

)

1

(

1

i

K

h

j

h

j

ih

ss

ij

ss

i

k

i

s

w

i

c


	(4)


where 
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 is the functional strength of node i (see Equation 3), 
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 is the semantic similarity reflecting the functional weight of the interaction, and 
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 is the set of edges connecting neighbours to node i. For each triangle formed in the neighbourhood of node i, involving nodes j and h, the semantic similarities 
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 are calculated. Hence, not only the number of triangles in the neighbourhood of node i is considered, but also the relative functional similarity between the nodes that form those triangles, with regard to the total functional strength of the node. The normalisation factor 
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 represents the summed weight of all edges connected from node i, multiplied by the maximum possible number of triangles in which each edge may participate. It also ensures that 
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It should be noted that we calculate three semantic similarity values for each pair of nodes: one based on GO molecular function, the second based on GO biological process, and the third based on GO cellular component. We then use the highest of the three as the final weight of the interaction. This gives the added advantage of taking all three aspects into consideration. 
3.4   SWEMODE
In previous work, Bader and Hogue [11] developed an algorithm for finding complexes in large-scale networks, called MCODE, which is based on the weighting of nodes with a core-clustering coefficient. The core-clustering coefficient of a node i is defined as the density of the highest k-core of the closed neighbourhood N[i]. The highest k-core of a graph is the central most densely connected sub-graph. In this work, we propose a weighted core-clustering coefficient for identifying topologically and functionally cohesive clusters. The weighting scheme, called 
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 uses the weighted core-clustering coefficient of node i, which is defined as the weighted clustering coefficient of the highest k-core of the closed neighbourhood N[i] multiplied with the highest core number. The use of weighted core-clustering (instead of the weighted clustering coefficient) is advantageous since it amplifies the importance of tightly interconnected regions, while removing many less connected nodes that are usually present in scale-free networks. [11] The relative weight assigned to node i, based on this measure, is the product of the weighted core-clustering coefficient and the highest k-core number of the immediate neighbourhood of i. By assigning this relative weight to i, the importance of highly interconnected regions is further amplified. There are other functions, such as the density function [11], but these are not evaluated here.

SWEMODE has three options concerning traversal of nodes that are considered for inclusion in a module, as described in [16]. In previous work, we applied immediate neighbour search [16], while we here use depth-first search, i.e. the protein graph is searched starting from the seed node, which is the highest weighted node, followed by recursively traversing the graph outwards from the seed node, identifying new module members according to the given NWP (Node Weight Percentage) criterion. At this stage, once a node has been visited and added to the complex, it can not be added to another complex. [16] However, in the post-processing step, overlap is allowed to some extent. Because we here choose to go further by inspecting the interconnectedness, it is valuable to not only traverse the immediate neighbours but also other indirect neighbours.
In a post-processing step, modules that contain less than three members may be removed, both before and after applying a so called “fluffing” step. The degree of “fluffing” is referred to as “fluff “, and can vary between 0.0 and 1.0. [11] For every member in the module, its immediate neighbours are added to the module if they have not been visited and if their neighbourhood weighted cohesiveness is higher that the given fluff threshold f.

4   Results
4.1   Overlap Score Evaluation against MIPS Complexes
We evaluated modules sets of modules generated across approximately 400 different parameter settings. NWP parameter was was varied from 0 to 0.95 in increments of 0.05 and fluff threshold parameter was varied between 0 and 1 (in increments of 0.1). We have run post-processing of modules both before and after removing the smallest modules (modules containing only 1 or 2 members). Resulting modules were compared with the MIPS data set of known protein complexes.

The MIPS (http://www.mips.gsf.de/proj/yeast/) protein complex catalogue is a curated set of manually annotated yeast protein complexes derived from literature scanning. After removal of 44 complexes that contain only one member, 212 complexes were left in the data set. In spite of growing interest in detecting modules, this research area still in its infancy and it lacks a benchmark that could be used for a more through evaluation of prediction accuracy. MIPS complex data set is incomplete, but it is currently the best available resource for protein complexes that we are aware of. Needless to say, this fact may have affected the presented outcome in terms of the number of matched complexes.

To evaluate the performance of SWEMODE and choose the best parameter settings, we used overlap score. Overlap score, 
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where 
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 is the predicted module, and 
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 is a module from the MIPS complex data set. The 
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 measure assigns a score of 0 to modules that have no intersection with any known complex, whereas modules that exactly match a known complex get the score 1. 
We compared the results from original versus highest k-core graph (Fig. 1). It is obvious that the exclusion of the proteins that belong to original but not to the highest k-core graphs increased the overlap with MIPS complexes. Interestingly, at the highest threshold value (
[image: image22.wmf]9

.

0

>

Ol

), both networks produce the same results, which indicates that the predicted modules that exactly match the MIPS complexes seem to be very robust. This confirms the essentiality of using highest k-cores of the graph, because, as pointed out in previous work [19], yeast proteins that participate in most central cores seem to be evolutionary conserved and essential to the survival of the organism.

[image: image23.emf]
Fig. 1. The result is evaluated in terms of number of matched MIPS complexes at different threshold values. Here, the result using original protein graph is compared to result when using highest k-core graph.
Next we evaluated the effect of using cellular component information to calculate weighted core-clustering coefficient, and also adding this aspect to a combined weighted core-clustering coefficient that takes into consideration two of the GO aspects ( molecular function and biological process. The result of this comparison is shown in Fig. 2. Both using cellular component as a separate aspect when calculating weights and in combination with other two aspects generated slightly better results in terms of matched MIPS complexes. This result is interesting, as we in previous work [16] (when only direct neighbours were considered for the inclusion in the modules) found that the GO biological process was most suitable for deriving modules. This may be explained by the fact that we here, in module prediction step, use another procedure inclusion the proteins in the modules. In contrast to previous work, when only direct neighbours of each module seed node were considered for the inclusion in the modules, the algorithm recursively moves outwards the seed node (depth-first search), identifying indirect neighbours of the seed node whose weights are higher than a certain threshold, which is given NWP of the seed node. This indicates that the farther you go from the seed protein, the similarity between the GO terms assigned to the seed protein and the corresponding terms assigned to its indirect neighbours drops faster, when using GO molecular function or GO biological process, compared to the GO cellular component. Simply stated, seed protein may, for example be connected, directly or indirectly with the neighbours that have different functional activities or are involved in different processes, but they may still be a part of same macromolecular complex (which is described in GO cellular component sub-ontology).

[image: image24.emf]
Fig. 2. The results from SWEMODE when using core weighted clustering coefficient based on each separate GO aspect compared to the corresponding measure when all three aspects are combined.
We started by evaluating the importance of introducing overlap. Generally, we can state that introducing the overlap, i.e. degree of “fluffing” the modules, improved our previous results. For example, at the overlap threshold level 
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, we have identified nine more modules in average by using fluff parameter. The corresponding difference for 
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 is 12. The best parameter setting, which resulted in the highest number of modules that matched predicted complexes, was obtained with 
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 (i.e. all direct neighbours of the modules whose weighted clustering coefficient is higher than zero are added to the module) and 
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. This parameter setting resulted in 659 modules (471 modules of length three or larger). The module with highest rank, i.e. the module that is generated with seed proteins with highest weighted core-clustering coefficient, corresponds to Lsm complex. [28] All eight Lsm-proteins (Lsm1-8) are correctly predicted by the algorithm. Among other highly ranked modules, we have found origin recognition complex, the oligosaccharyl transferase (OST) complex [29], pore complex etc. The whole list of modules may be obtained upon request. 
4.2   Investigating Interconnectivity between Modules

To identify topologically and functionally important proteins, we calculated the frequency of each protein across 200 sets of overlapping modules. We calculate the number of times each protein appear in a module, divided by the number of module sets it appears in. 
The majority of the most frequent proteins are annotated with the GO biological process term “cell organization and biogenesis”, which has the following GO definition: “the processes involved in the assembly and arrangement of cell structures, including the plasma membrane and any external encapsulation structures such as the cell wall and cell envelope”. Table 1 shows top ten proteins where 80% (highlighted proteins) belong to the above mentioned class. We have used SGD GO Term Finder (http://www.yeastgenome.org/help/goTermFinder.html ) to identify the most significantly shared GO term among those proteins. GO Frequency in Table 1 shows the percentage of those proteins that are annotated with the given GO term. The most significantly shared term is obtained by examining the group of proteins to find the GO term to which the highest fraction of the proteins is associated compared to the number of times that the term is associated with other yeast proteins. The significance (i.e., the P value) of the shared GO term describing biological process for the ten most frequent proteins is shown in the last row in Table 1. In addition, we have repeated the same evaluation procedure for the 50 most frequent proteins. Still, the majority of the proteins share GO term “cell organization and biogenesis”, which also is most significant term (
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), but the GO frequency has slightly decreased from 80% to 74%. For comparison, the bottom 50 proteins were evaluated with the same procedure. Here we found that most of the proteins (78%) share GO biological process term “primary metabolism” (
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). Even though those proteins are involved in the anabolic and catabolic processes that take place in all cells, and are very important, they do not seem to have an important role in the interconnectivity of the modules.
Cdc28, which appears most frequently in modules, is one of five different cyclin-dependent protein kinases (CDKs) in yeast and has the fundamental role in the control of the main events of the yeast cell cycle. [30] It acts as a hub, i.e., holds together several functionally related clusters. In previous work, this protein is suggested to be a part of the intramodule path within yeast filamentation network, because of its highest intracluster connectivity, i.e. it had most interactions with other members of the same cluster. [12] That is why it is particularly interesting that we have identified this protein as most frequent in our modules.
Table 1.  Top ten overlapping proteins. Highlighted proteins are annotated with GO term “cell organization and biogenesis” (8 of 10).
	Proteins
	Cdc28
	Nap1
	Prp43
	Pre1
	Pwp2
	Sed5
	Tfp1
	Nop4
	Utp7
	Rpc40

	Module Frequency
	4.2
	3.9
	2.9
	2.7
	2.7
	2.6
	2.6
	2.6
	2.5
	2.5

	GO biological process
	cell organization and biogenesis

	GO frequency
	80%

	P value
	
	3.8(10-4


4.3   Comparison with other Module Definitions
Recently, a topology-based method for detecting modules from a PPI network has been proposed [14]. They proposed a new divisive algorithm that uses a new module notion based on the degree definition of the sub-graphs. The approach is based solely on topological properties of the protein sub-graph. It is applied on the same YEAST-CORE data set that we have used here. A total of 99 modules were detected in [14]. For convenience, those modules will be referred to as Feng Luo modules. We have evaluated Feng Luo modules with the overlap score threshold, and compared them with our modules generated across approximately 400 different parameter settings. Our modules show higher agreement with MIPS complexes. The maximimum number of modules predicted by our method may seem as a very good result, compared to Feng Luo modules. However, this may be attributable to the fact that some parameter settings generate many small modules of size 2 or 3, which are easily matched with MIPS complexes, while Fung Luo modules are large (of length 3 or larger). This is why average number of matched modules is a more realistic indicator for this comparison. This comparison also indicates that integrating domain knowledge and network topology information seems to be more adventagours than using only topology information.

[image: image31.emf]
Fig. 3. Comparison between Feng Luo modules and the modules generated with SWEMODE using all three GO aspects.
5   Conclusions and Discussion
We have proposed a method for analysis of protein networks using a measure based on a novel combination of topological and functional information of the proteins.[16] The algorithm takes advantage of this combined measure to identify locally dense regions with high functional similarity. In the evaluation of the method, we found many densely connected regions with high functional homogeneity, in many cases corresponding to sets of proteins that constitute known molecular complexes and some additional interacting proteins which share high functional similarity with the complex but are not part of it. Together, such sets of interacting proteins form functional modules that control or perform particular cellular functions, without necessarily forming a macromolecular complex. Many of the identified modules correspond to the functional subunits of known complexes. Thus, the method may be used for the prediction of unknown proteins which participate in the identified modules. As indicated by the results, the use of a functionally informed measure to generate modules should imply increased confidence in the predicted function.
We have here demonstrated that restricting the analysis to the highest k-core PPI graph instead of the original PPI graph resulted in an improved set of modules, with respect to their overlap with known molecular complexes recorded in MIPS.
We are also able to show that using cellular component as a separate aspect when calculating weights or in combination with other two aspects generated slightly better results in terms of matched MIPS complexes, compared to previous work when only two aspects, molecular function and biological process, were compared. One of the main reasons that accounts for this improvement is the inclusion of the indirect neighbours of the seed proteins in module prediction step. Proteins that are used to seed modules seem to share more similarity with more distant neighbours, when cellular component annotation is used, compared to two other GO aspects. Seed protein may, for example be connected, directly or indirectly with the neighbours that have different functional activities or are involved in different processes, but they may still be a part of same macromolecular complex (which is described in GO cellular component sub-ontology).
We have also identified topologically and functionally important proteins by calculating the frequency of each protein across 200 sets of overlapping modules. Initial results show that the most frequently appearing proteins that connect several modules are mostly involved in the assembly and arrangement of cell structures, such as the cell wall and cell envelope, which indicates that they are involved in supporting the cell structure rather than signal transduction. 

We will continue our research in this area with investigation of functional modules in other organisms, such as E. coli. Another line of our research is dealing with the analysis of the modules in reactome data, and we will focus on the comparison between the modules in interactome and the modules in reactome network. Explaining the relationships between structure, function and regulation of molecular networks at different levels of the complexity pyramid of life is one of the main goals in systems biology. By integrating the topology, i.e. various structural properties of the networks with the functional knowledge encoded in protein annotations, and also analysing interconnectivity between the modules at different levels of hierarchy, we aim to contribute to this goal. With the increasing availability of protein interaction data and more fine-grained GO annotations, our approaches will help constructing a more complete view of interconnected functional modules to better understand the cell organisation.
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