
A Comparison of Dominance Mechanisms andSimple Mutation on Non-Stationary ProblemsJonathan Lewis,? Emma Hart, Graeme RitchieDepartment of Arti�cial Intelligence, University of Edinburgh,Edinburgh EH1 2QL, ScotlandAbstract. It is sometimes claimed that genetic algorithms using diploidrepresentations will be more suitable for problems in which the environ-ment changes from time to time, as the additional information stored inthe double chromosome will ensure diversity, which in turn allows thesystem to respond more quickly and robustly to a change in the �tnessfunction. We have tested various diploid algorithms, with and withoutmechanisms for dominance change, on non-stationary problems, and con-clude that some form of dominance change is essential, as a diploid encod-ing is not enough in itself to allow exible response to change. Moreover,a haploid method which randomly mutates chromosomes whose �tnesshas fallen sharply also performs well on these problems.1 IntroductionGenetic algorithms (GAs) are often used to tackle problems which are stationary,in that the success criteria embodied in the �tness function do not change in thecourse of the computation. In a non-stationary problem, the environment mayuctuate, resulting in sharp changes in the �tness of a chromosome from onecycle to the next. It is sometimes claimed that a diploid encoding of a problemis particularly suited to non-stationary situations, as the additional informationstored in the genotype provides a latent source of diversity in the population,even where the phenotypes may show very little diversity. This genotypic diver-sity, it is argued, will allow the population to respond more quickly and e�ectivelywhen the �tness function changes. As well as incorporating diversity, it may bepossible for a diploid to maintain some kind of long term memory, which enablesit to quickly adapt to changing environments by remembering past solutions.The e�ectiveness of a diploid GA may depend on the exact details of itsdominance scheme. Moreover, where a changing environment is the central issue,it is important to consider changes which a�ect the dominance behaviour ofchromosomes over time, as this may provide added exibility.We have carried out tests on a number of diploid methods, including somewhere dominance change can occur. We found that diploid schemes withoutsome form of dominance change are not signi�cantly better than haploid GAs? Now at School of Mathematical and Computational Sciences, University of St An-drews, St Andrews KY16 9SS, Scotland.



for non-stationary problems, but certain dominance change mechanisms producea distinct improvement. Also, certain representations are very e�ective at main-taining memory, whilst others are more e�ective at maintaining diversity. Thus,the nature of the non-stationary problem may inuence the methodology cho-sen. Furthermore, we show that in some situations, a haploid GA with a suitablemutation mechanism is equally e�ective.2 Previous workNg andWong[4] describe a diploid representation with simple dominance change,as follows (for simplicity, we will con�ne our attention to phenotypes whichare strings of 0s and 1s). There are 4 genotypic alleles: 1, 0(dominant) and i,o(recessive). The expressed gene always takes the value of the dominant allele. Ifthere is a contention between two dominant or two recessive alleles, then one ofthe two alleles is arbitrarily chosen to be expressed. The dominance mapping tocompute phenotype from genotype is shown in �gure 1, where \0/1" indicatesan equal probability of either value. The occurrence of 1i or 0o is prohibited | ifthis does occur, the recessive gene is promoted to be dominant in the genotype.This last stipulation is a simple form of dominance change observed in naturein which recessive genes tend to be eliminated, over time, in favour of theirdominant counterparts. We will refer to this arrangement as \basic Ng-Wong".
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1Fig. 2. AdditiveRyan [5] proposed a notion of additive dominance. In this scheme, the geno-typic alleles are regarded as having quasi-numeric (or at least ordered) values,and these values are combined using some suitably designed form of pseudo-arithmetic, with the resulting phenotypic allele depending on the value of this\addition". One way to e�ect this scheme is to associate actual numbers withthe genotype alleles, and then apply some threshold to the result. Ryan uses 4genotypic values A, B, C, D, and allocates these the values 2, 3, 7 and 9 re-spectively, with any result greater than 10 being mapped to 1 and lower valuesmapped to 0. The resulting dominance map is shown in �gure 2.In both these schemes, the probability of creating a phenotypic 0 is exactly0.5, and hence the mapping in each case is unbiased.



Other forms of dominance exist which are not explored in this paper. Theseinclude using a \dominance mask", for instance, [1, 2], or implementing a formof meiosis, as observed in natural systems, in which a haploid chromosome isproduced from a chromosome pair via recombination operators, for instance [6].See [3] for further discussion of some of the issues.3 Dominance ChangeIn natural systems, dominance can change over time, as a result of the presenceor absence of particular enzymes. Ng and Wong [4] de�ne a speci�c condition fordominance change to occur (which we adopt in this paper for all our dominancechange methods): if the �tness of a population member drops by a particularpercentage � between successive evaluation cycles, then the dominance statusof the alleles in the genotype of that member is altered. That is, the dominancemapping for computing the phenotype does not change, but the allele valuesalter their dominance characteristics.Dominance change is achieved in the Ng-Wong diploid by inverting the dom-inance values of all allele-pairs, such that 11 becomes ii, 00 becomes oo, 1obecomes i0 and vice versa. It can be shown that this results in a probability 3/8of obtaining a 1 in the phenotype where there was originally a 0, after applyingthe inversion. We will refer to this method as \Full-Ng-Wong".We have extended Ryan's additive GA by adding a similar dominance changemechanism, in which the genotypic alleles are promoted or demoted by a singlegrade. Thus demoting `B' by 1 grade makes it an `A' whereas promoting it makesit a `C'. Furthermore `A' cannot be demoted, and `D' cannot be promoted. Foreach locus, we choose at random one of the two genotypic alleles and then usethe following procedure:{ If the phenotypic expression at this locus is `1' then demote the chosengenotypic allele by one grade, unless it is an `A'.{ If the phenotypic expression at this locus is `0' then promote the chosengenotypic allele by one grade, unless it is `D'It can be proved that this \Extended-Additive" method results in a 3/8 prob-ability of changing a phenotypic 0 to a phenotypic 1.Finally, we introduce a comparable \recovery" mechanism for the haploidGA, in which a bit-ip mutation operator is applied to each locus of the haploidgenotype with probability 3/8, whenever a decrease of � in the �tness of thatindividual is observed between successive generations.The Extended-Additive and Haploid-Recovery schemes have been designedwith a 3/8 probability of ipping a phenotypic 0 to a 1 after a change in domi-nance so as to make them exactly comparable with the Full-Ng-Wong method.4 ExperimentsMethods tested. To investigate the bene�t of a dominance change mechanism, wetested the Simple Additive and Basic Ng-Wong GAs (Section 2 above) without



dominance change, and also an ordinary haploid GA with mutation rate 0.01.The dominance change GAs tested were those described in Section 3 above:Full-Ng-Wong, Extended-Additive and Haploid-Recover.Parameters. All GAs were run with population size 150. Rank selection wasused, with uniform cross-over, steady-state reproduction, and mutation rate 0.01.During crossover of diploid genotypes, chromosome I of the �rst parent diploidwas always crossed with chromosome I of the second parent diploid. The thresh-old � for applying dominance change (Full-Ng-Wong and Extended-Additive)or recovery mutation (for Haploid-Recover) was a drop of 20% in the �tness ofa phenotype. The modi�ed version of an individual replaced the original withprobability 1.0 if the modi�ed version was no less �t; otherwise with probability0.5. Each experiment was repeated 50 times, and the results averaged.Test Problems. The GAs were tested on an oscillating version of the commonlyknown single knapsack problem. The object is to �ll a knapsack using a subsetof objects from an available set of size n, such that the sum of object weightsis as close as possible to the target weight t. In the oscillating version, thetarget oscillates between two values t1 and t2 every o generations. A solution isrepresented by a phenotype of length n, where each gene xi has a value 0 or 1,indicating if the object is to be included in the knapsack. The �tness f of anysolution x is de�ned byf(x) = 11 + jtarget�Pni=1 wixijIn the following experiments, 14 objects were used. Each object had a weightwi = 2i, where i ranged from 0 to 13. This ensures that any randomly chosentarget is attainable by a unique combination of objects. Two targets were chosenat random, given the condition that at least half their bits should di�er. Theactual targets used were 12643 and 2837, which have a Hamming separation of9. The target weight was changed every 1500 generations. Each period of 1500generations is referred to as an oscillatory period in the remainder of the text.5 Results5.1 Oscillating Knapsack, Fixed Targets { Simple DiploidyThe results for the basic GAs are shown in �gures 3, 4 and 5. Simple Ad-ditive and the haploid GA perform very poorly for both targets after the �rsttarget change. The Basic Ng-Wong GA makes better progress towards �nding asolution for the �rst target value, but never manages to �nd a solution for thesecond target that has �tness greater than 0.05. Clearly, diploidy alone does notmaintain su�cient diversity to allow readjustment to a new target.
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Fig. 3. Simple Haploid GA withFixed Target Oscillation 0
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Fig. 4. Ryan's Additive GA withFixed Target Oscillation
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Fig. 5. Basic Ng-Wong with Fixed Target Oscillation5.2 Oscillating Knapsack, Fixed Targets { Dominance ChangeFigures 6, 7, and 8 show the averaged �tness over the 50 runs, plotted againstgeneration for each of the 3 GAs. Each graph shows the best and average �tnessof the population at each generation. Table 1 shows the number of the 50 ex-Oscillation Period1 2 3 4 5 6 7 8 9 10Haploid-Recover 45 44 33 45 33 44 29 43 37 47Extended-Additive 43 29 44 42 39 40 45 37 39 40Ng-Wong 32 21 41 25 34 27 32 26 32 27Table 1. Number of instances in which optimum was achieved in each period. Periodsin which the target was 2837 (low) are shown in italics.periments in which the optimal �tness of 1 was attained during each oscillatoryperiod.Comparison of the graphs obtained for Extended-Additive and Haploid-Recover show very similar performance. Extended-Additive �nds a solution within20% of the optimal �tness (i.e. > 0:8)in 90% of oscillation periods, compared to
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Fig. 6. Haploid-Recover with FixedTarget Oscillation 0
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Fig. 7. Extended-Additive withFixed Target Oscillation
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Fig. 8. Full-Ng-Wong with Fixed Target Oscillationthe haploid which �nds a solution within 20% of optimum in 60% of periods.However, if we look at periods in which the solution obtained was within 10% ofoptimum, (i.e. > 0:9), then we �nd that Haploid-Recover outperforms Extended-Additive, with success rates of 35% and 15% respectively. Both methods showa rapid response to the change in environment, where the GA rapidly improvesthe quality of the new, poorly �t, solutions that are produced as a result ofthe environment change. This suggests that su�cient diversity is created in thepopulation as a result of the dominance change of recovery mutation to allowevolution to continue e�ciently.The Full-Ng-Wong GA behaves very di�erently however. Firstly, we notice aincremental improvement in the best �tness obtained for the lower, 2nd target.A clear \learning curve" is observed, until after 12 complete oscillatory periodsthe GA is able to maintain a constant value for this target immediately afterthe environment changes. Secondly, the GA quickly �nds a good solution for thehigh target, and this solution is rapidly reverted to each time the target switches.Thirdly, after 2 periods, there is no decrease in �tness for the population whenthe target switches from the low target to the high target. Finally, best solutionsachieved for both targets are poor when compared to the haploid-recover andadditive-recovery GAs | 0.62 for the low target and 0.77 for the high target.The performance of Full-Ng-Wong can be explained by examining the domi-nance mechanism. If no '10' or 'io' contentions exist, then a genotype can encodetwo arbitrary solutions, changing from one solution to another by merely apply-ing the dominance change mechanism. Thus, it is possible to encode a genotypethat represents the perfect solution to both targets, and ip between the two byinverting the dominance, without any requirement for further evolution. Thus



the gradient shown in �gure 8 is due to the population simply \learning" a se-quence of dominance values that enables this rapid change to take place. Noticethat this mechanism allows the \remembering" of only 2 solutions in the geno-type, so this mechanism will not be useful in an environment where there aremore than 2 possible situations, or, more generally, where environmental changeresults in a completely new �tness function, or target in this case. To con�rmthis and to investigate the ability of the other GAs to cope with such changes,we repeated the experiments using a random-oscillating knapsack problem.5.3 Knapsack with Randomly Changing TargetsThe 14-object knapsack problem was repeated, but this time a random newtarget was chosen at the end of each oscillation period of 1500 generations. Targetvalues were con�ned to the range 0 to 16383. Figures 9, 10 and 11 illustrate theperformance of the three GAs on this problem.The results show that Full-Ng-Wong performs poorly compared to the othertwo methods. Maintaining a memory of the environment is not useful in therandom target case, and any GA must rely on maintaining a su�ciently diversepopulation to be able to adapt to the changing conditions. The results imply thatthe dominance change mechanism in the Full-Ng-Wong case does not reintroducediversity into the population, whereas the use of straightforward mutation canbe extremely useful.
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Fig. 9. Haploid-Recover withRandom Target Oscillation 0
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Fig. 10. Extended-Additivewith Random Target Oscillation
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Fig. 11. Full-Ng-Wong with Random Target Oscillation



5.4 Analysis of Population VarianceIn order to analyse the performance of each GA in more detail, we can look atthe phenotypic variance in the population as each GA evolves, and for Full-Ng-Wong and Extended-Additive we can compare the phenotypic diversity to thegenotypic diversity. Figures 12, 13 and 14 show the phenotypic gene-varianceacross the population at each locus in the phenotype plotted against generationfor the �xed target experiments. For each type of GA, two graphs are plottedshowing the variance (vertical axis) either side of the two target changes (low tohigh, generation 3000; high to low, generation 4500).
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Figure 12 shows that Haploid-Recover has almost converged each time thetarget changes, but diversity is rapidly introduced due to the recovery mutation.Extended-Additive maintains slightly more phenotypic diversity in its popula-tion throughout the run than Haploid-Recover. This is unsurprising as a diploidGA would be expected to converge more slowly than a haploid. The e�ect of thedominance change is the same however. Full-Ng-Wong shows a slightly di�erentpicture. Just before the change from the low to high target, diversity in the pop-ulation is high. However, the next time the target switches, phenotypic diversityis low across all loci and only a small increase is gained as a result of applyingthe dominance change mechanism. The e�ect becomes more pronounced as thenumber of target switches the population is exposed to increases.
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Chromosome IIFig. 16. Genotypic Population Variance for Full-Ng-WongWe examine the genotypic diversity by plotting a similar graph for each ofthe two strings that make up the diploid genotype. Figures 15 and 16 showthe genotypic diversity for Full-Ng-Wong and Extended-Additive either side ofthe 3rd target change, at generation 4500. For Extended-Additive, both partsof the genotype retain diversity, but the mapping from genotype to phenotyperesults in a less diverse phenotype than genotype. The genotypic diversity forFull-Ng-Wong shows a series of peaks running parallel to the generation axis,



indicating some loci with very diverse genotypes and others that have completelyconverged. Closer examination reveals that those loci with little variance areexactly those loci in which the phenotype remains invariant from the optimalsolution of target 1 to the optimal solution of target 2, hence even at generation4500 the population is already starting to learn the two di�erent solutions.6 ConclusionsUsing two variations of a non-stationary problem, we have shown that a simplediploid scheme does not perform well in either case. Adding some form of dom-inance change mechanism considerably improves matters, but the form of thechange mechanism can have a signi�cant e�ect. In the case of Full-Ng-Wong, thedominance change mechanism introduces a form of memory, which allows a pop-ulation to \learn" two di�erent solutions. Although this may be useful in certainsituations, it cannot be used if there are more than two possible solutions, or ifthe environment changes do not follow a regular pattern.For the problems considered, extending the additive dominance scheme witha change mechanism improves it considerably. It responds quickly to changesin the environment, even when the changes are random. However, there is lit-tle di�erence in performance between this GA and a simple haploid GA whichundergoes heavy mutation when a decrease in �tness is observed between evalu-ations. Future experimentation with other non-stationary problems will make itpossible to observe if these results can be generalised across this class of prob-lems. If so, then the case for implementing a diploid mechanism as opposed to asimple mutation operator may be weakened, given that diploid schemes requiremore storage space and extra evaluations to decode genotype into phenotype.References1. Emma Collingwood, David Corne, and Peter Ross. Useful diversity via multiploidy.In Proceedings of International Conference on Evolutionary Computing, 1996.2. David Corne, Emma Collingwood, and Peter Ross. Investigating multiploidy'sniche. In Proceedings of AISB Workshop on Evolutionary Computing, 1996.3. Jonathan Lewis. A comparative study of diploid and haploid binary genetic algo-rithms. Master's thesis, Department of Arti�cial Intelligence, University of Edin-burgh, Edinburgh, Scotland, 1997.4. Khim Peow Ng and Kok Cheong Wong. A new diploid sceme and dominance changemechanism for non-stationary function optimisation. In Proceedings of the SixthInternational Conference on Genetic Algorithms, 1995.5. Conor Ryan. The degree of oneness. In Proceedings of the ECAI workshop onGenetic Algorithms. Springer-Verlag, 1996.6. Kukiko Yoshida and Nobue Adachi. A diploid genetic algorithm for preservingpopulation diversity. In Parallel Problem Solving from Nature: PPSN III, pages36{45. Springer Verlag, 1994.This article was processed using the LaTEX macro package with LLNCS style


