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Abstract. UK supermarkets suffer serious financial losses owing to problems with their refrigeration systems. To combat this, various alarm systems exist, ranging from in-store sirens to a 24 hour alarm monitoring centre which is able to dispatch engineers and notify store staff. These systems are inherently reactive and, occasionally fail to detect faults in time to prevent damage to stock.  A cmarket exists for a system which can predict the future temperature of a refrigerated cabinet and thus predict fault conditions before they occur.  In this paper we report on the investigation of evolved recurrent neural networks to discover faults before they become serious; we compare recurrent networks with standard feed-forward networks, and also briefly discuss insight into the problem domain that arises from a visualisation of the best evolved networks.  
1. Introduction

Refrigeration systems in supermarkets are vital for maintaining high quality produce and for the protection of customer health. Failure of a refrigerated cabinet can lead to the destruction of valuable stock and further financial losses due to lost trading and expensive repair work. Supermarkets are very keen to reduce these losses and thus a market exists for systems which detect fault conditions as early as possible.

Control and monitoring systems within a store are able to raise an alarm if conditions within a refrigerated cabinet deviate from an acceptable level. This generally means that if a cabinet gets too hot then an alarm will be raised. Alarms are raised both in the store itself and remotely at an alarm monitoring centre and generally lead to the dispatch of an engineer to repair the fault. In addition to this, store staff can remove stock from the faulty case before it is damaged by increased temperature.

Advance prediction of cabinet temperature would be beneficial as it would allow the alarm signal to be raised earlier, and losses will consequently be reduced following a more timely response. Here we investigate feed-forward and recurrent neural networks, trained using an evolutionary algorithm, to provide such a prediction system. We focus largely on using the raw temperature data, which is now readily available to monitoring installations, rather than cabinet-generated ‘alarms’ data in previous work [1, 2]. We investigate a number of prediction schemes, with a view to discovering the most effective neural network architecture and the most appropriate prediction time.

Recurrent neural networks have been shown to be very effective in time series prediction (e.g. [3—8] ). Though they are generally quite difficult to train using more traditional gradient descent techniques [9], recurrent neural networks can be readily trained using an evolutionary algorithm [10—16].  
The paper continues as follows. Section 2 explains the relevant components of a typical refrigeration system. Section 3 discusses our training of neural networks using evolutionary algorithms. Section 4 summarises a series of experiments, and concluding remarks along with notes on ongoing investigations can be found in section 5.

We Need a new section here called `Related Work’  which is like a brief lit review, one or two pages, on:   EAs that produce recurrent NNs,  applications of recurrent NNs in similar sorts of problems, interpreted broadly, and papers comparing recurrent with standard NNs on applications.
2. Supermarket Refrigeration Systems and Temperature Data

JTL Systems Ltd are a leading provider of refrigeration control equipment and monitoring services in the UK. JTL also support this work with a view to commercial exploitation. Thus, the systems and data described here are those manufactured and monitored by JTL. Specifics may vary with different manufacturers, especially concerning data availability, but the basic principles are the same.

A typical UK supermarket will contain over 100 refrigerated cabinets, coldrooms and associated machinery. All contain controllers connected to a store-wide network monitored by a PC which provides a user interface and temperature logging functionality (under UK law, the temperature of refrigerated food products must be logged at all times from factory to purchase). Broadband availability has recently allowed JTL to connect a number of site PCs to the internet, giving us continuous access to live data. We use a typical supermarket as a test site for experiments; confidentiality agreements mean we cannot name the site, but refer to it as “site D”.

The system releases liquid refrigerant into a coiled tube, known as the Evaporator, which absorbs heat energy. Air is sucked in from the cabinet and blown over the evaporator. The cooled air is then blown back into the cabinet. Temperature is maintained by altering the amount of refrigerant allowed into the evaporator and thus the amount of heat removed from the air flowing over it.

A typical cabinet has two sensors in front of and behind the evaporator, measuring air temperature flowing onto and off it, referred to as the “air on” and “air off” sensors. To estimate the temperature of the cabinet itself these values are combined using a weighted average, with weights based on the cabinet design and other environmental considerations. Figure 1 shows temperature data gathered from a frozen food cabinet at site D (samples are taken once a minute and measurements are in ºC);  the estimated cabinet temperature is roughly half way between the air on and air off values.

Though air on and air off temperature values are used by the cabinet controller to maintain a constant temperature, only the estimated cabinet temperature value is used by the monitoring and alarm systems. Therefore, in all experiments presented here, we attempt to predict the cabinet temperature.
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Figure 1:  Temperatures recorded within a frozen food cabinet at site D
Since the evaporator is very cold, water tends to condense on its surface. This rapidly freezes and over time a thick layer of ice builds up, which eventually begins to act as an insulator and decreases the efficiency of the cabinet. To prevent this ‘icing up’ phenomenon, the evaporator must be regularly defrosted (typically every 6 hours). The large peak towards the right of figure 1 is the transient rise in temperature associated with a defrost. Defrosts are part of normal operation and so we expect our prediction systems to accurately predict cabinet temperature during defrost periods.

3.  Our Recurrent Neural Network Implementation and Algorithms
Figure 2 shows a simple recurrent neural network with one input, one output, two hidden nodes in the forward path and one in the feedback (recurrent) path. Neuron R1 and the synapses which connect it to and from F0 and F1 create a loop within the network, whereby  A proportion of the network’s output is fed back to its input.


[image: image2.wmf]
Figure 2:  A simple recurrent neural network
We use a strictly object oriented neural network implementation, which differs subtly from other implementations. Each network component (synapse or neuron) is represented by an object, with different classes for different types of neuron. That in figure 2 is constructed from synapse objects and several neuron objects. Hidden neurons are typically also connected to a bias neuron, which outputs a constant value of 1 (omitted from figure 1 for clarity). To calculate output we query the activation of each output neuron. Neuron O in figure 2, for example, must then query the outputs of the synapse objects which connect to it, which in turn query their downstream neurons. This continues recursively until an input neuron is reached. Clearly, this could cause infinite loops in an RNN. So, we force the activation of a neuron to be time bound. The synapses from feed-forward neurons (F0 and F1) to neurons in the recurrent loop (R1) have a built-in delay. When the output of a delay synapse at time t is requested it in turn requests the output of its input neuron at 
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. This eliminates infinite recursion and allows the network activation to be based, in part, on some component of its previous activation. Hidden neurons use a sigmoid activation function, and continuous inputs are scaled to between 0 and 1. Booleans are translated as true = 1, false = 0.   
To speed training, we present each pattern in the input data (a time-series) in order. The errors are calculated in turn and the mean taken to give a fitness value. A more precise approach is taken when calculating error on test data, matching the intended live use of the system. For test pattern 
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 (n ranges from 20 to the maximum number of patterns) we present 20 zeros to the network (in order to get it to a known state) then present 20 of the previous data patterns, (
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) to the network before calculating error at 
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. The mean of all error values is the total error for the network.
The Evolutionary Algorithm: In each experiment we have a static network topology, and hence can encode a neural network as a fixed-length vector of  weights. In all cases, a population of 100 is evolved for 10,000 generations. Each generation, 10% of the population is deleted and replaced by new individuals. Mutation is applied by adding random values to a single randomly chosen weight based on a zero-centred, Gaussian distribution with mean 0.1. Crossover involves copying all weights connected to the input of each neuron in turn from a random parent.

Early experiments showed premature convergence, so, we implemented a technique to maintain diversity. Rather than delete the worst 10% from the population, we remove 10% at random via 10 fitness/similarity tournaments. In one such tournament, three individuals are selected at random, and their Euclidean distances from each other are calculated. The least fit of the two closest is removed from the population. Meanwhile, parent selection is done via standard binary tournament selection scheme.
4.  Experiments and Results

We  want to expand this to have:

 -- clearly described and evaluated expts that try to find the best FFNN topology from a decent range of alternatives – so that it is more clear to the reader that we are comparing the RNN with the best FFNN.
-- clear description of all the datasets, and the healthy/faulty/simulated business. 

-- Expts that show, FOR EACH USEFUL PREDICTION WINDOW  (e.g. 15mins, 30mins) the best FFNN and the best RNN for that window.  Each of these illustrated via their curves on test data.

-- statistical comparisons; more about this later, I am writing a paper especially for you and other research students about stats. But short story is if you can provide the results (in terms of final error on test data) of 10 runs of X and 10 runs of Y (or, better, more than 10 of each) there are various simple tests that say what confidence you can have in X being better than Y. 
We concisely summarise many experiments to find good recurrent neural network (RNN) architectures for the advance prediction of refrigerator temperature. We investigate six different prediction windows, attempting respectively to predict the temperature of the cabinet 1, 2, 5, 15, 30 or 60 minutes into the future. Each reported result is the mean error achieved on an unseen test dataset over 10 independent trials, and where claims are made these were validated at at least 95% confidence via a randomisation test [17]. 
Input selection: Too few inputs could miss out vital information, but too many can introduce noise, will enlarge the search space and dampen performance. Various mode inputs are available in the cabinet controller and the log database in the store PC. Also, due to the static defrost scheduling used in most stores, we can calculate the mode of a controller at an arbitrary time in the future. We investigate the use of the “refrigerating” and “defrost” mode signals, each of which is a Boolean. At time t we attempt to predict cabinet temperature at time t+n using the following combinations of mode signals, in each case used in conjunction with the Air On and Air Off temperatures:  Mode values at t,; Mode values at t+n;  No mode values.
Figure 3 shows the error rates achieved when different combinations of mode inputs are used. The use of delayed mode inputs gives a clear advantage, especially when prediction window increases above five minutes. This is in line with our expectations, as it allows the network to better cope with defrost peaks. 

As mentioned in section 1, three temperature input values are available for use in prediction systems:  “Air On”, “Air Off” and the calculated “Cabinet Temperature” value. In a similar experiment, we compared the error rates achieved when different combinations of these were used.  One, two or three temperature inputs were used in conjunction with delayed mode inputs as follows: 3 Inputs (Cabinet temperature); 4 Inputs: (Air on, air off); 5 Inputs (Cabinet temperature, air on, air off).
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Figure 3:  Comparison of network performance with different mode inputs
In the results (we omit the figure for space reasons) there was little to distinguish the three choices, so we decided on the basis of domain knowledge to omit the estimated cabinet temperature input. Input values in all experiments hereon are: Air on at t, Air off at t, Refrigeration mode at time t+n, and Defrost mode at time t+n. Output is the predicted temperature of the cabinet in n minutes, varying as as previously stated. All temperature inputs are normalized.
Network Architecture: We were interested in the relative performance of RNNs and non-recurrent (feed-forward) NNs. Figure 5 shows the results of experiments to compare the performance of an RNN with three different feed forward NNs. To be fair to the feedforward NNs, their inputs were arranged as follows. Input to the RNN comprises the four values indicated above; however, the RNN naturally takes into account the inputs for previous values of t via its internal delayed feedback loops. To enable the feedforward NNs to compete, we therefore extend their input vector with historical values. The “One Step” architecture has the same set of inputs as the recurrent architecture, but   the “Two Step” architecture, when predicting the temperature at t+n, has inputs for time t along with inputs for time 
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, making a total of 8 inputs.  Meanwhile, the “Four Step” case has 16 inputs: values for 
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The RNN (see figure 4) is superior to the feed-forward architectures, especially when prediction window increases to over five minutes. It is possible that increasing the input vector size of a feed forward network would allow it to perform much better than shown here. However, increased input vector size implies greater complexity and thus slower and possibly less effective training. This is still to be investigated.

[image: image14.emf]Feed-Foward and Recurrent Network Comparison

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 5 15 30 60

Prediction Time

Error

FF (One Step)

FF (Two Steps)

FF (Four Steps)

RNN


Figure 4:  Comparison of feed-forward and recurrent network performance.
Having found evidence to prefer RNNs, we next investigated different RNN architectures. Figure 5 shows the error rates achieved by various different architectures, using the same inputs, outputs and datasets. Architectures on the x axis are encoded as four integers, separated by ‘x’s where, for example, 4x8x5x1 denotes a network with four inputs, eight feed-forward nodes, five recurrent nodes and one output.

    Performance of networks with more than one neuron in the recurrent layer are significantly better. Since the space of more complex networks is larger, and training time for each case was the same, we expect smaller networks to have an advantage. But since the larger networks performed better, it is a fair assumption that they are indeed better. Networks with five and eight recurrent nodes gave similar performance, but it is possible that the larger of these could have performed better if allowed more time to explore the space. This remains to be investigated.

Baseline Validation: It is appropriate to validate the performance of a prediction technique against simple baselines, generally as a means of putting the error values achieved by the prediction tool into context.  In this case we compare the error rates achieved by our best neural network with the error rates achieved by various simplified prediction strategies. Figure 6 shows the error rate achieved by a recurrent neural network compared to the error rate achieved when the predicted temperature, 
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, is:
· A random value in [0, 1], based on a Gaussian distribution

· A random value in [0, 1] , based on an exponential distribution

· The temperature value “now” 
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It is clear that RNN error is superior to that of these baselines. The “same as now” prediction, as might be expected, gives a small error when the prediction window is small, but increasingly degrades as prediction window moves further ahead. 
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Figure 5:  Mean error rates associated with different network architectures
Figure 7 shows the output of an RNN predicting 
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, aligned with the actual temperature of the cabinet. The predicted and real temperatures are impressively close.  

Predicting faults: Our main aim is to predict faults, so we also test on unseen datasets which contain evidence of faults. Here we again test various architectures, trained on relatively small “healthy” datasets, to predict ahead the temperature in “faulty” cabinets. It is worth noting that at the time this work was carried out there were no cabinets at site D which showed signs of serious fault, however, as with most supermarkets, some cabinets were in some way sub-optimal. Figure 8 shows the results. Two fault datasets were used, recorded from cabinets of the same type as that the one from which training data came. Error rate on the second faulty dataset was lower than the healthy dataset, though the difference is very slight. Error on the first faulty dataset is highest, but still acceptably low. Figure 9 shows the target and actual neural network responses when predicting cabinet temperature at 
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given the second faulty dataset. The network copes reasonably well with the extended defrost peak.

5. Concluding Discussion

Wrest the visualisation stuff from here to provide a standalone section on visualisation. Ideally this would say:
We visualise like this

By visualising the best RNN we come up with these hypotheses about the relative importance of certain inputs, and about what the hidden layers do.

Based on that we came up with a change to the inputs, and a recipe for fixing certain weights as zero, etc … at initialisation so that search is confined to useful areas.
All else the same, we find that our RNN evolved this way is even better. 

We show evidence that evolved RNNs are an appropriate technology for the advance prediction of cabinet temperatures and fault conditions in supermarket refrigeration systems. Promising error rates have been achieved for both healthy and ‘fault’ data. These error rates were achieved using only small training datasets and we feel that future work with larger datasets will enable better results and further-ahead prediction, especially when dealing with unseen fault conditions.
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Figure 6:  RNN error compared to baseline prediction methods.
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Figure 7:  Comparison of network performance with different mode inputs
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Figure 8:  Error rates predicting “Fault” data using different network architectures
Prediction accuracies 15 minutes ahead is particularly interesting. Although later prediction windows (see figure 4) provide low error, we are confused by the dip between 30 minutes and 60 minutes windows, and will investigate these windows further when we understand this. Meanwhile, 15-minute-ahead prediction was capable of distinguishing between normal and healthy operation, and provides enough advance warning to (for example) fix a simple icing-up problem in-store, improving those food items’ temperature records and perhaps saving much cost in loss from that cabinet  
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Figure 9:  Predicting the temperature of a  “faulty” cabinet
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Figure 10:  Visualization of network with five feed-forward and one recurrent neuron
As we gather more training and test data (data from faults, especially serious ones, is difficult to obtain, but gradually emerging), we need to investigate how we can reliably predict fault even further in future, focusing on RNNs. Towards this end, one area of ongoing work is aiming to understand the relative importance of different inputs via network visualization [18—20]. We use a simple technique as follows. In Figure 10 we see an RNN with one bias (top left), four inputs (left: from lowest to highest, air on, air off, refrigeration, defrost), five feed-forward neurons (middle), one recurrent neuron (bottom middle) and one output (right). A neuron’s radius is proportional to the sum of the magnitudes of the weights connected to its output, hence larger neurons tend to have a larger influence. Weights are shown as arcs. Lighter arcs have a lower magnitude while darker arcs have a higher magnitude. Negative weights are shown as dotted lines, positive as solid lines.
The recurrent neuron is clearly very important to this RNN’s behaviour. Clearly the bias and all input neurons are used by the network.  Air off seems to be the most important of the inputs, and refrigeration the least important, while the most important of the feedforward neurons (just above the recurrent neuron) seems to discern a feature based on Air off and the defrost indicator, and use this to negatively affect the output. Beyond apparent levels of importance, it remains very difficult to discern what is going on, however the information provided suggests potentially beneficial revised architectures, such as including additional historical values for the more important inputs, and perhaps instigating some hard-coded toplogy, via experiments which fix at 0 certain weights that appear unimportant here, which may then lead to more clearly understandable networks. 
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