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Abstract. UK supermarkets regularly incur serious financial loss owing to faults and management prroblems with their in-store food refrigeration systems. Losses arise because a faulty refrigerated cabinet may fail to keep its contents at an adequately low temperature, in which case its contents may need to be destroyed. In attempt to address this, various temperature-alert based alarm systems exist, ranging from in-store sirens to a 24 hour alarm monitoring centre which is able to dispatch engineers and notify store staff. But these systems often fail to detect faults in time to prevent damage to stock. There is need for a system which can predict the future temperature of a refrigerated cabinet and thus predict fault conditions before they occur. In this paper, exploiting the recent availability of raw real-time temperature data in the industry, we report on the investigation of evolved recurrent neural networks to discover faults before they become serious; we compare recurrent networks with standard feed-forward networks, and also briefly discuss insight into the problem domain that arises from a visualisation of the best evolved networks.  
1. Introduction

Refrigeration systems in supermarkets are vital for maintaining high quality produce and for the protection of customer health. Failure of a refrigerated cabinet can lead to the destruction of valuable stock and further financial losses due to lost trading and expensive repair work. Supermarkets are very keen to reduce these losses and thus a market exists for systems which detect fault conditions as early as possible. Control and monitoring systems within a store are able to raise an alarm if conditions within a refrigerated cabinet deviate from an acceptable level. This generally means that if a cabinet gets too hot then an alarm will be raised. Alarms are raised both in the store itself and remotely at an alarm monitoring centre and generally lead to the dispatch of an engineer to repair the fault. In addition to this, store staff can remove stock from the faulty case before it is damaged by increased temperature.

Advance prediction of cabinet temperature would be beneficial as it would allow the alarm signal to be raised earlier, and losses will consequently be reduced following a more timely response. Here we investigate feed-forward and recurrent neural networks, trained using an evolutionary algorithm, to provide such a prediction system. We focus largely on using the raw temperature data, which is now readily available to monitoring installations, rather than cabinet-generated ‘alarms’ data in previous work (Taylor et al ‘02, Taylor and Corne ’02). We investigate a number of prediction schemes, with a view to discovering the most effective neural network architecture and the most appropriate prediction window. We also analyse the best-performing neural networks with a view to understanding the relative importance of the different input features available to us; this involves applying a novel method to visualise networks, based on techniques from the relevant literature; we then make first steps towards using the information thus obtained to consider improved architectures for this task.

The paper continues as follows: A review of related work in the area of recurrent neural networks and evolutionary algorithms can be found in section 2. Section 3 explains the relevant components of a typical refrigeration system. Section 4 discusses our training of neural networks using evolutionary algorithms. Section 5 summarises a series of experiments. A brief overview of our use of visualisation techniques to examine network architecture and input importance can be found in section 6. Finally, concluding remarks along with notes on ongoing investigations can be found in section 7.

2.  Related Work

There is no research literature related to our work concerning the application itself, other than our own previous work (discussed in section 3). This is because the multi-site real-time availability of refrigeration status and control data is currently still unique to the products and services provided and maintained by JTL systems (the company who owns the data and who supported most of this work, see more detail in section 3). In this related work section, we therefore focus on the general use of recurrent neural networks vs feedforward neural networks in (mainly) time series prediction, evaluating the relative appropriateness of these techniques for our task was the main point of the work reported here. We begin with a brief reminder of the architecture of simple recurrent networks, since this also lays the groundwork for our later discussions of certain implementation details and of visualisation techniques.  

Figure 1 shows a simple recurrent neural network (RNN) with two inputs (I0, I1), a bias neuron (B0), three hidden nodes in the forward path (H0, H1, H2), one neuron in the feedback (recurrent) path (H3) and a single output (sigmoid unit H4 and placeholder output unit Q0, which are connected by a fixed, unity weight). Neuron H3 and the synapses which connect it to and from H0, H1 and H2 create a loop within the network, whereby a component of the network’s output is fed back to its input. Internal loops are the defining feature of an RNN (Elman ‘90).
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Figure 1:  A simple recurrent neural network

To prevent infinite iteration when calculating network output, delay synapses are used to link from hidden to recurrent neurons, for example H0 to H3, so the output of H0 at time t ( 1 is used to calculate the weighted sum of inputs for H3 at time t. Because internal loops feed a component of the network’s previous output back to its input, RNNs have the capacity for memory. If the output of hidden neuron H0 is high then this can be fed back, via H3, at the next time step. This feature of RNNs makes them especially suited for time series problems, where changes between time steps are important (Dorffner ‘96, Koskela et al ‘96, Cholewo and Zurada ‘97, Giles et al ‘01, Husken and Stagge ‘03, Connor et al ’94).

RNNs are hard to train using traditional gradient descent learning techniques such as backpropagation due to problems with the assignment of delta values to neurons in the recurrent loop (Bengio et al ’94). Evolutionary algorithms (EAs), however, do not suffer such problems and have been shown to outperform gradient descent techniques when used to find the optimal set of weights for both RNNs and for feedforward NNs (Belew et al ‘90, Yao and Liu ‘95, Liu and Yao ‘96, Yao ‘99, Knowles and Corne ‘00, Dailey et al ‘02, Abraham ‘05, Mandischer ‘95, Beer and Gallagher ‘92, Weiland ‘91). EAs (Yao ‘99, Fogel ’06) seek to solve multivariate optimisation problems by discovering the point in problem space at which an error term is at its minimum. The EA generally deals with an abstract genotypic representation of a potential solution so any implementation specific difficulties which may exist in the phenotype are unimportant.  

The architecture of a neural network, recurrent or otherwise, is very important (Miller et al ‘93, Giles and Omlin ‘’94, Solla ’92). Larger networks with greater numbers of neurons and weights take longer to train due to the increased dimensionality of the associated problem space. In some cases, neural networks which are too large can have problems with over-fitting, where the network’s extra capacity for concept representation is employed to very closely fit the training data. Smaller neural networks tend to use broader class representations and thus are often better at generalisation. That said, if a network is too small it will not be able to achieve a sufficiently high accuracy.  

Deciding on a network architecture is often a matter of trial and error (Zeng et al ‘94, Giles et al ’91). Based on some degree of domain knowledge or user experience a set of candidate architectures is decided upon. Networks of each architecture are trained for a fixed number of generations or learning cycles and the resulting error rates are compared. The architecture which gives the lowest error rate over several experimental runs is deemed to be the best. The trial and error approach is not ideal since it depends upon the globally optimal architecture being among the candidate architectures selected for comparison.

EAs have been used to evolve network architectures in a number of ways. The most popular evolutionary techniques for optimising network architecture are growing and pruning algorithms. Growing algorithms (Ash ‘89, Frean ‘90, Hanson ‘90, Giles et al ‘95, Azimi-Sadjadi et al ’93) start with small networks and use mutation to add neurons and/or weights and thus increase network complexity. Pruning algorithms (Le Cun et al ‘90, Hassibi and Stork ‘92, Giles and Omlin ’94) begin with a population of very large, highly connected networks and use mutations to remove weights and/or neurons. In both growing and pruning algorithms the fitness function is based on error rate and some measure of network complexity, thus smaller networks with lower error rates are favoured.

When using an evolutionary algorithm to train a neural network, whether simply to find the optimal weight set or additionally to discover the optimal architecture, it is important that an appropriate genotype-phenotype mapping be found. For example, many early EAs used a binary coding; mapping from numerical values to a string of binary digits which were manipulated by crossover and mutation operators. Although this technique was perhaps more faithful to its biological inspiration, it was flawed in that genetic operators did not respect the natural boundaries between variables. More recently it has been shown that the use of a real-coded gene (i.e. a list of real values) gives better results (Herrera et al ‘98, Blanco et al ‘01, Antonisse ’89).

When evolving neural networks, the preservation of specific groups of weight values can also be beneficial. Often, a particular concept is modelled by one hidden neuron; with the incoming weights to that neuron forming the basic concept representation. Using the mutate-nodes operator (Montana and Davis ’89), which mutates all weights connected to the input of a randomly selected neuron, or similarly the crossover-nodes operator (Montana and Davis ’89), which copies weights from two or more parents in groups corresponding to the inputs to each neuron, can help to preserve concept representations in offspring. Due to the possibility of distributed concept representations (Hinton et al ‘86) within the network these operators are by no means flawless but they are in the worst case only as potentially destructive as simple mutation and multipoint crossover.  

It has also be shown that in some cases the use of any crossover, regardless of the specific algorithm used, can lead to problems with the evolutionary training of neural networks. Given two networks in a population, A and B, it is possible that each network represents a given concept, (, in a different way. In network A, ( may be associated with neuron H0, while in network B, ( may be linked to H1. A and B may be among the better individuals in the population and, therefore, may be selected as parents for a new offspring, C. However, crossover of genetic material from parents A and B is likely to produce a very poor offspring. Should weights for H0 be taken from parent A and weights for H1 be taken from parent B, C will have two neurons associated with concept (, possibly at the expense of another concept, (, ( or (. Likewise, were weights for H0 to be taken from B and H1 from A then C would not have any neuron associated with (. This problem of competing conventions (Schaffer et al ‘92, Angeline ’94) has motivated some to avoid the use of crossover altogether and use only mutation when evolving neural networks (Fogel et al ‘90, Fogel ‘90, Fogel and Sebald ’90).

In summary, it seems clear that RNNs are a promising architecture for our time series prediction task, and that using EAs to train them has favourable precedent, as long as we heed the lessons from Montana and Davis’ work on appropriate operators, while being careful to explore many different architecures for the problem in hand.  

3. Supermarket Refrigeration Systems and Temperature Data

JTL Systems Ltd are a leading provider of refrigeration control equipment and monitoring services in the UK. JTL also support this work with a view to commercial exploitation. Thus, the systems and data described here are those manufactured and monitored by JTL. Specifics may vary with different manufacturers, especially concerning data availability, but the basic principles are the same. 

A typical UK supermarket will contain over 100 refrigerated cabinets, coldrooms and associated machinery. All contain controllers connected to a store-wide network monitored by a PC which provides a user interface and temperature logging functionality (under UK law, the temperature of refrigerated food products must be logged at all times from factory to purchase). Broadband availability has recently allowed JTL to connect a number of site PCs to the internet, giving us continuous access to live data. We use a typical supermarket as a test site for experiments; confidentiality agreements mean we cannot name the site, we therefore refer to it as “site D”.

Within each refrigerated space, the system releases liquid refrigerant into a coiled tube, known as the Evaporator, which absorbs heat energy. Air is sucked in from the cabinet and blown over the evaporator. The cooled air is then blown back into the cabinet. Temperature is maintained by altering the amount of refrigerant allowed into the evaporator and thus the amount of heat removed from the air flowing over it.

A typical cabinet has two sensors in front of and behind the evaporator, measuring air temperature flowing onto and off it, referred to as the “air on” and “air off” sensors. To estimate the temperature of the cabinet itself these values are combined using a weighted average, with weights based on the cabinet design and other environmental considerations. Figure 2 shows temperature data gathered from a frozen food cabinet at site D (samples are taken once a minute and measurements are in ºC); the estimated cabinet temperature is roughly half way between the air on and air off values.

Though air on and air off temperature values are used by the cabinet controller to maintain a constant temperature, only the estimated cabinet temperature value is used by the monitoring and alarm systems. Therefore, in all experiments presented here, we attempt to predict the cabinet temperature.
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Figure 2:  Temperatures recorded within a frozen food cabinet at site D

Since the evaporator is very cold, water tends to condense on its surface. This rapidly freezes and over time a thick layer of ice builds up, which eventually begins to act as an insulator and decreases the efficiency of the cabinet. To prevent this ‘icing up’ phenomenon, the evaporator must be regularly defrosted (typically every 6 hours) (Datta et al ’98, Datta and Tassou ’98, Datta and Tassou ’99, Tassou et al ’01). The large peak towards the right of figure 2 is the transient rise in temperature associated with a defrost. Defrosts are part of normal operation and so we expect our prediction systems to accurately predict cabinet temperature during defrost periods. Conditions in the store, especially humidity levels, have an effect on defrost duration and thus the shape of the defrost peak (Howell et al ’99).

JTL’s controllers have simple built-in rules that raise alarms to the onsite PC (as well as to JTL’s monitoring centre). For example, if cabinet temperature exceeds a certain threshold, this raises a specific alarm that should normally be investigated by onsite staff. However, given such an alarm, it is very difficult to ascertain whether there is a real underlying problem with the refrigeration system or a real problem with that specific cabinet, or perhaps no problem at all (several alarms will be raised on a hot day as the system struggles to cope, but otherwise is operating satisfactorily). However, it is intuitively reasonable that the pattern of alarms raised by the various units at a single site will potentially reveal the underlying cause. In previous work, before raw temperature data were readily available to us, we explored the use of evolved NNs (but not RNNs) for prediction tasks based on recent alarm history at a site. In Taylor et al (2002) we found that the volume of alarms arriving at the monitoring centre from a particular site could be predicted with reasonable accuracy, enabling the possibility of predicting staffing needs and sending early (earlier than previously possible) warnings to sites that the refrigeration system needed attention. Given access to engineers’ call-out data, so that we could link alarm patterns to the particular faults (or absence of fault) as classified by the engineer on call, we were also able to accurately predict the specific (and most common) fault of `icing up’ based on alarm patterns alone (Taylor and Corne, 02).    

In the current work, however, we exploit the fact that we now have access to streams of raw temperature data (as described above), that are far richer in information than the crude threshold-based alarms. We must also accept, however, that engineers’ call-out data is essentially unavailable (for complex reasons concerned with the UK supermarket industry), and so we focus on analysing the temperature data series alone in attempt to discover fault conditions usefully in advance.  

4.  Our Recurrent Neural Network Implementation and Algorithms

We use a strictly object oriented neural network implementation, which differs subtly from other implementations. Each network component (synapse or neuron) is represented by an object, with different classes for different types of neuron. That in figure 1 is constructed from synapse objects and several neuron objects. Hidden neurons are typically also connected to a bias neuron (B0), which outputs a constant value of 1. To calculate output we query the activation of each output neuron. Neuron Q0 in figure 1, for example, must then query the outputs of the synapse objects which connect to it, which in turn query their downstream neurons. This continues recursively until an input neuron is reached. Clearly, this could cause infinite loops in a recurrent network. So, we force the activation of a neuron to be time bound. The synapses from feed-forward neurons (H0, H1 and H2) to neurons in the recurrent loop (H3) have a built-in delay. When the output of a delay synapse at time t is requested it in turn requests the output of its input neuron at 
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. This eliminates infinite recursion and allows the network activation to be based, in part, on some component of its previous activation. Hidden neurons use a sigmoid activation function and continuous inputs are scaled to between 0 and 1. Booleans are translated as true = 1, false = 0.   

To speed training, we present each pattern in the input data (a time-series) in order. The errors are calculated in turn and the mean taken to give a fitness value. A more precise approach is taken when calculating error on test data. For test pattern 
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 (n ranges from 20 to the maximum number of patterns) we present 20 zeros to the network (in order to get it to a known state) then present 20 of the previous data patterns, (
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) to the network before calculating error at 
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. The mean of all error values is the total error for the network.
4.1.  The Evolutionary Algorithm

In each experiment we have a static network topology, and hence can encode a neural network as a fixed-length weight vector. In all cases, a population of 100 is evolved for 10,000 generations. Each generation, 10% of the population is deleted and replaced by new individuals. Mutation is applied by adding random values to a single randomly chosen weight based on a zero-centred, Gaussian distribution with mean 0.1. The crossover-nodes operator (Montana and Davis ’89) is used, which involves copying all weights connected to the input of each neuron in turn from a random parent.

Early experiments showed premature convergence, so, we implemented a technique to maintain diversity. Rather than delete the worst 10% from the population, we remove 10% at random via ten fitness/similarity tournaments. In one such tournament, three individuals are selected at random, and their Euclidean distances from each other are calculated. The least fit of the two closest is removed from the population. Meanwhile, parent selection is done via a binary fitness tournament selection scheme.

5.  Experiments and Results

We concisely summarise many experiments to find good RNN architectures for the advance prediction of refrigerator temperature. We investigate six different prediction windows, attempting respectively to predict the temperature of the cabinet 1, 2, 5, 15, 30 or 60 minutes into the future. Each reported result is the mean error achieved on an unseen test dataset over 10 independent trials, and where claims are made these were validated at at least 95% confidence via a randomisation test (Edgington ’95). 

5.1.  Input selection

Too few inputs could miss out vital information, but too many can introduce noise, will enlarge the search space and dampen performance. Various mode inputs are available in the cabinet controller and the log database in the store PC. Also, due to the static defrost scheduling used in most stores, we can calculate the mode of a controller at an arbitrary time in the future. We investigate the use of the “refrigerating” and “defrost” mode signals, each of which is a Boolean. At time t we attempt to predict cabinet temperature at time t+n using the following combinations of mode signals, in each case used in conjunction with the Air On and Air Off temperatures: Mode values at t; Mode values at t+n; No mode values.

Figure 3 shows the error rates achieved when different combinations of mode inputs are used. The use of delayed mode inputs gives a clear advantage, especially when prediction window increases above five minutes. This is in line with our expectations, as it allows the network to better cope with defrost peaks. 

As mentioned in section 1, three temperature input values are available for use in prediction systems: “Air On”, “Air Off” and the calculated “Cabinet Temperature” value. In a similar experiment, we compared the error rates achieved when different combinations of these were used. One, two or three temperature inputs were used in conjunction with delayed mode inputs as follows: 3 Inputs (Cabinet temperature); 4 Inputs: (Air on, air off); 5 Inputs (Cabinet temperature, air on, air off).
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Figure 3:  Comparison of network performance with different mode inputs

In the results (we omit the figure for space reasons) there was little to distinguish the three choices, so we decided on the basis of domain knowledge to omit the estimated cabinet temperature input. Input values in all experiments hereon are: Air on at t, Air off at t, Refrigeration mode at time t+n, and Defrost mode at time t+n. Output is the predicted temperature of the cabinet in n minutes, varying as previously stated. All temperature inputs are normalized.

5.2.  Network Architecture

We were interested in the relative performance of RNNs and non-recurrent (feed-forward) NNs. Figure 4 shows the results of experiments to compare the performance of an RNN with three different feed forward NNs. To be fair to the feedforward NNs, their inputs were arranged as follows. Input to the RNN comprises the four values indicated above; however, the RNN naturally takes into account the inputs for previous values of t via its internal delayed feedback loops. To enable the feedforward NNs to compete, we therefore extend their input vector with historical values. The “One Step” architecture has the same set of inputs as the recurrent architecture, but  the “Two Step” architecture, when predicting the temperature at t+n, has inputs for time t along with inputs for time 
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, making a total of 8 inputs. Meanwhile, the “Four Step” case has 16 inputs: values for 
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The RNN (see figure 4) is superior to the feed-forward architectures, especially when prediction window increases to over five minutes. It is possible that increasing the input vector size of a feed forward network would allow it to perform much better than shown here. However, increased input vector size implies greater complexity and thus slower and possibly less effective training. This is still to be investigated.

Having found evidence to prefer RNNs, we next investigated different RNN architectures. Figure 5 shows the error rates achieved by various different architectures, using the same inputs, outputs and datasets. Architectures on the x axis are encoded as four integers, separated by ‘x’s where, for example, 4x8x5x1 denotes a network with four inputs, eight feed-forward nodes, five recurrent nodes and one output.
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Figure 4:  Comparison of feed-forward and recurrent network performance.
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Figure 5:  Mean error rates associated with different network architectures

    Performance of networks with more than one neuron in the recurrent layer are significantly better. Since the space of more complex networks is larger, and training time for each case was the same, we expect smaller networks to have an advantage. But since the larger networks performed better, it is a fair assumption that they are indeed better. Networks with five and eight recurrent nodes gave similar performance, but it is possible that the larger of these could have performed better if allowed more time to explore the space. This remains to be investigated.

5.3.  Baseline Validation

It is appropriate to validate the performance of a prediction technique against simple baselines, generally as a means of putting the error values achieved by the prediction tool into context. In this case we compare the error rates achieved by our best neural network with the error rates achieved by various simplified prediction strategies. Figure 6 shows the error rate achieved by an RNN compared to the error rate achieved when the predicted temperature, 
[image: image16.wmf]n

t

T

+

, is:

· A random value in [0, 1], based on a Gaussian distribution

· A random value in [0, 1] , based on an exponential distribution

· The temperature value “now” 
[image: image17.wmf])

(

t

n

t

T

T

=

+

.

It is clear that RNN error is superior to that of these baselines. The “same as now” prediction, as might be expected, gives a small error when the prediction window is small, but increasingly degrades as prediction window moves further ahead. 

Figure 7(upper) shows the output of an RNN predicting 
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, aligned with the actual temperature of the cabinet. The predicted and real temperatures are impressively close. Figure 7(lower) shows the output of the best feed forward network, for comparison. Figure 8 shows the equivalent comparison for prediction of t+60.
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Figure 6:  RNN error compared to baseline prediction methods.
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Figure 7: (upper) Typical recurrent network response, 15 minute prediction, 7.5 hours (450 samples) shown; (lower) Typical feed-forward network response.
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Figure 8:  (upper) Typical recurrent network response, 60 minute prediction, 7.5 hours (450 samples) shown; (lower) typical recurrent network response.

These results seem quite impressive; in both cases, the horizontal axis records 4o about 40 readings (one per minute) per centimetre, and the clear rise in temperature during the start of defrost is predicted in advance on the basis of input patterns where each is within the normal between-defrosts temperature range. This is especially impressive in the t+60 case. In the latter case, however, both the RNN and NN are less able to follow the cycling between-defrosts temperature pattern, suggesting that finer details are less well modelled for the higher length prediction windows. Meanwhile, the RNN is clearly better than the NN, in both cases, at predicting the overall shape of the defrost curve.   

5.4.  Predicting faults

Our overriding aim, however, is to predict faults. Successful modelling of ‘normal-operation’ data is not necessarily useful in itself, since we have no guarantee that the RNN (for example) will recognise the subtle deviations from normal that (we believe) are the precursors to a potentially damaging fault scenario. So, here we describe tests of the evolved NNs and RNNs on unseen datasets which contain evidence of faults. Again we test various architectures, trained on relatively small “healthy” datasets, to predict ahead the temperature in “faulty” cabinets. It is worth noting that at the time this work was carried out there were no cabinets at site D which showed signs of serious fault, however, as with most supermarkets, some cabinets were in some way sub-optimal. Two fault datasets were used, recorded from cabinets of the same type as that the one from which training data came. 

Faulty dataset 1 is shown in figure 9, a clear disturbance is visible after defrosts. This could be caused by a nearby cabinet defrosting and warming up the cabinet from which faulty dataset 1 was recorded. Detail of this disturbance is shown in Figure 10.

Figure 11 shows the full range of data for faulty dataset 2. Two important features are visible. Firstly, due to some change in external conditions, in the second half of the data the cabinet is working much harder to maintain the correct temperature, this leads to a lower air off temperature, higher air on temperature and roughly stable cabinet temperature. This feature is not necessarily indicative of a fault per se but is an interesting test for our prediction systems. The second feature in the second fault dataset is the temperature disturbance shortly before defrost. As with the first dataset, this is probably due to an adjacent cabinet defrosting. Figure 12 shows this disturbance more clearly.

Figure 13 shows the results of experiments with networks of different architectures on healthy data and the two faulty datasets. Error rate on the second faulty dataset was lower than the healthy dataset, though the difference is very slight. Error on the first faulty dataset is highest, but still acceptably low. Figure 14 shows the target and actual neural network responses when predicting cabinet temperature at 
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given the second faulty dataset. The network copes reasonably well with the extended defrost peak.
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Figure 9:  “Faulty” dataset 1, full range of 5000 samples (roughly 3 ½  days) shown
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Figure 10:  “Faulty” dataset 1 detail showing temperature anomaly prior to defrost. 450 samples (7.5 hours) shown
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Figure 11:  “Faulty” dataset 2, full range of 5000 samples (roughly 3 ½  days) shown
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Figure 12:  “Faulty” dataset 2 detail showing temperature anomaly after defrost. 450 samples (7.5 hours) shown
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Figure 13:  Error rates predicting “Fault” data using different network architectures
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Figure 14:  Predicting the temperature of a  “faulty” cabinet, 7.5 hours (450 samples) shown

6.  Visualisation and Input Importance Analysis

There are two principle motivations for visualising neural networks. The first of these is to use visualisation as a tool for optimising the architecture of the network: deciding on the correct number of hidden nodes or removing weights which have little effect on the network’s behaviour. The second is to use visualisation to “open the black box”: to gain an understanding of the internal representations which are created during training, to select appropriate input variables or to gain an insight into the causal relationships which exist between input and output variables in the underlying problem domain.

In our work, we seek to use visualisation to reinforce experimental findings regarding network topology and also to help us to understand the effects of input variables on network behaviour. 

6.1.  Visualising Neural Networks

Various techniques exist for the display of neural network architecture and also for the visualisation of a particular network’s response to different input values. One of the earliest and probably the best known visualisation technique is the Hinton diagram (Hinton et al ’86), which uses black or white squares of varying sizes to show the sign and magnitude of weights values. Although they give a good indication of weight values, Hinton diagrams provide a somewhat abstract representation of network structure.  Bond diagrams (Wejchert and Tesauro ‘89) employ a topographical representation of the network which gives a clearer indication of how neurons are connected. Triangles represent weights; black triangles correspond to positive weights and grey to negative weights; triangle size is proportional to weight magnitude. Figure 15 shows examples of both Hinton and bond diagrams.

More recently, the triangular connections used in bond diagrams have been replaced by simple lines (Streeter et al ’01, Olden and Jackson ’02). Colour is used along with line thickness to show weight magnitude and sign, while preserving the topological layout introduced in bond diagrams. These diagrams are often referred to as neural interpretation diagrams.

Using the simple visualisation techniques mentioned so far it is possible to deduce some basic facts about a neural network and its inputs, outputs and internal representations (Olden and Jackson ’02). For example, we can conclude that hidden neurons with low magnitude weights connecting to the output layer do not have a great effect on the overall behaviour of the network. In simple feed-forward three layer networks we can make judgements on the overall excitory or inhibitory nature of an input variable using the input-hidden layer link and hidden-output layer link. If input-hidden and hidden-output weights share the same sign then the input is excitory (has a positive influence on network output); if the signs differ then the input value is inhibitory. It is important to note that in order to make any realistic judgements of this type, the network must be trained to the global minimum error.


[image: image31.wmf]3

1

1

2

2

3

4

Figure 15.  Hinton diagram (left) showing weights connecting a layer of three neurons (y axis) to a layer of four neurons (x axis) and bond diagram (right) showing connections within a simple neural network.
Due to the distributed nature of concept representations within trained neural networks (Hinton et al ’86) it is hard to use basic visualisation techniques to infer much about the underlying problem domain. Investigation has been performed into the extraction of meaningful information on how a neural network solves a given problem by constructing decision trees (Craven and Shavlik ’95), showing decision boundaries as hyperplanes (Pratt and Nicodemus ‘94) or plotting hidden neuron responses within a hypercube (Dutch ’04a, Dutch ’04b). Garson’s algorithm (Garson ‘91) pays specific attention to the importance of input variables by assigning an importance value to each node within a neural network. The algorithm was later extended in Goh ‘95 and Tzeng and Ma ‘05. Garson’s original algorithm multiplies weight magnitudes between layers to derive neuron importance. Tzeng and Ma’s extended version performs a similar operation to calculate importance, while taking into account input data values and the signs of weights. Sensitivity analysis, fuzzy curves and error changes have also been used for input importance calculation (Sung ‘98). All of these techniques focus on non-recurrent three layer (input, hidden, output) neural networks.

The use of neural network visualisation is especially prevalent in the natural sciences (Chen and Ware ’99, Scardi and Harding ’99, Dimopoulos et al ’99, Maier et al ‘98), where gaining an understanding of the underlying problem domain is at least as important as creating an accurate neural network model.

6.2.  Simple Weight Based Visualisation

Figure 16 shows a RNN with four inputs and one output. Neurons are represented by circles and are connected together by lines which represent weights. Weights connect from left to right, except in the case of recurrent loops. The top left neuron is a bias unit (B0) which outputs a constant value of 1, it is easier to visualise an external bias than an internal one, since the weights which connect hidden neurons to the bias unit are functionally the same as all other weights in the network. The neurons below the bias unit are the network inputs (I0 … I3). The neuron on the far right is an output unit (Q0). Output neurons have no activation function and are used as placeholders, from which the network’s output can be read. The output has a single incoming connection from the neuron before it, which has a fixed weight value of 1. The remainder of the neurons are hidden units (H0 … H4), which have a sigmoid activation function and are arranged in two layers. The bottom neuron in the left hand layer is a recurrent node (H5).

Weights are visualised by sign and magnitude. The colour of the line is dependant on the magnitude of the weight; the higher the magnitude the darker the line. Negative weights are drawn as dotted lines.

In an attempt to show the importance of each neuron in the network, we make the radius of each neuron dependant on the sum of the magnitudes of its outgoing weights. We expect a neuron to have more effect on the overall activation of the network if its outgoing weights have higher magnitudes.
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Figure 16:  Simple network visualisation scheme.  Typical network with 4x5x1x1 topology, trained for 15 minute prediction period.

Inputs I0 and I1 have higher radii than other inputs in figure 16, which implies that the variables with which they are associated (air on and air off temperatures) are of greater importance to the network. There is also a clear chain of negative weights connecting from I0 via H1 to the output, which tells us that I0 has an excitory effect on the network.

There is, however, a problem with this visualisation technique: The large, negative weight connecting I2 to H3 (WI2,H3) is a good example of this. Because the weight in question has a high magnitude, we assume that I2 has a higher importance. However, since H3 has very low outgoing weights, its output will have only a small impact on the activation of the network and so the large weight connecting I2 to H3 does not actually imply that I2 is important. In this case, other connections from I2 do suggest that it has some importance to the overall behaviour of the network but we should disregard WI2,H3.

6.3.  Importance-Based Visualisation

Figure 17 shows the same network as figure 16 but we use a more advanced visualisation scheme which we hope will eliminate the problem detailed above. The technique is similar to those presented in v9, v10 and v11 (which ones were these???) but is extended to work with recurrent networks. All output neurons are assigned an importance value of 1. Importance values for all other neurons are a function of outgoing weight magnitude and the importance of the neuron to which that weight connects. The function used to calculate the importance In of a non-output neuron, n, is shown in equation 1.
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Where n is the current neuron, m ranges across all neurons to which n has outgoing connections and i ranges across all neurons which have outgoing connections to m (including n). Wnm is the magnitude of the weight connecting neuron n to neuron m.
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Figure 17:  Importance based network visualisation scheme showing same network as figure 12 (4x5x1x1, fifteen minute data).

Before the network is drawn, each neuron will be assigned an importance value (such that 0 ≤ In ≤ 1), starting at the outputs propagating back towards the input and bias units. The process of calculating neuron importance is repeated several times (ten in this case) to ensure that the importance of recurrent neurons is correctly calculated. The radius of each neuron is dependent on its importance value. Since output neurons have a fixed importance of 1, they have the largest radius.  

Figure 17 shows us that I1 is the most important to the network, while hidden unit H3 is virtually unused. Because representations are randomly distributed across the various neurons in the network, different training runs result in very different hidden node importance values. However, since input neurons are always associated with a given input variable, we are able to take the mean importance for each input across several trained networks and analyse the importance of each input variable.

This leads to interesting results, in this case. Figures 18 and 19 show the importance values for each of the four network inputs (air on, air off, refrigerating and defrost) given different prediction periods for the largest and smallest network architectures investigated here. For short prediction periods (1, 2 and 5 minutes) we see that the two temperature values, especially air off, have higher importance values. At longer prediction periods the mode inputs become more important. This corresponds to what we might expect, since at shorter prediction times the “same as now” solution works quite well, while at longer prediction times the delayed mode inputs become more useful to the network. Since the larger network has a higher capacity for concept representation than the smaller one, we expect to see different importance values for each architecture. This is indeed the case; with the larger network, especially at longer prediction periods, the mode inputs have higher importance and the air off input slightly lower importance than with the smaller, more simple network architecture. This implies that the larger network is able to make use of some more subtle concepts in the input data, while the smaller network is not.
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Figure 18:  Input importance values for various prediction times.  Smallest network architecture (4x5x1x1).
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Figure 19:  Input importance values for various prediction times. Smallest network architecture (4x10x8x1).

As mentioned above, visualisation is also useful for making decisions about network architecture. Figure 20 shows the importance of neurons in the largest network architecture investigated here (4x10x8x1). The network has ten feed-forward neurons and eight recurrent. Figure 20 shows that three neurons, H5, H7 and H3, have very low importance values compared to others in the forward path, while all neurons in the recurrent part of the network have roughly equivalent importance values.  

We could infer from this that the network has wasted capacity in the forward path and that we could remove neurons from the forward path and maintain the same prediction accuracy. This is reinforced by experimental results, which show very little difference in performance between 4x10x8x1 and 4x8x8x1 networks. Figure 21 shows a network with fewer nodes in the feed-forward path (4x8x8x1); in this network, though H2 and H5 have low importance values compared to other feed-forward hidden neurons, their importance values are significantly higher than the importance values of the smallest neurons in figure 20.

7.  Concluding Discussion

We show evidence that evolved RNNs are an appropriate technology for the advance prediction of cabinet temperatures and fault conditions in supermarket refrigeration systems. Despite being trained only on healthy data, evolved RNNs (with better accuracy in general than evolved feedforward NNs) are able to predict temperatures in advance for faulty cabinets, enabling a warning to be issued adequately well in advance to allow time for the cabinet to be fixed (or food relocated) before spoilage occurs. Over ver many experiments (much summarised in this paper), we find evidence that RNNs are more appropriate for this task than NNs, and that effective models are achieved from relatively small (“healthy”) datasets. Much larger datasets are potentially available, and we feel that future work with larger datasets may enable further-ahead prediction, especially when dealing with unseen fault conditions.
Prediction accuracies 15 minutes ahead is particularly interesting. Although later prediction windows provide low error, figure 4 suggests a local minimum of error at 15 minutes, indicating that we begin to lose predictability beyond this amount of time ahead. Meanwhile, 15 minutes, as long as the alarm is quickly heeded, is just adequate to ‘rescue’ the contents of a faulty cabinet. But, more importantly, several kinds of faults (such as ‘icing up’) will not cause spoilage until several defrost cycles following the initial stages of fault, and hence 15-minute ahead prediction of the early signs of fault is highly actionable and effective. 

Interested in the way our NNs solved the problem, with a view to understand how architectures might be enhanced when we come to apply this technology in the commercial environment, we developed a visualisation technique that allowed us to examine the better-performing evolved networks. When we scrutinised the relative ‘importance’ of the four different inputs, we found that these varied smoothly according to how far ahead the NN was attempting to predict. Also it was clear that the none of the input features dwindled towards insignificance, whatever the prediction window. These results suggest a complex relationship between all four inputs and the network’s operation that would be very hard to untangle. Although the significant changes in relative importance were interesting (e.g. for the smallest network architecture, the ‘Air Off’ temperature was the most important input for predicting ahead 1—15 minutes, but the least important in the 30 and 60 minute tasks), it was not clear that we could benefit from these observations by, for example, eliminating one or more of the inputs for specific tasks. The generic technique, however, may turn out to be useful on other problems, where sharper distinctions between inputs’ importance may be visible.

Meanwhile, visualisation gave supporting evidence for the superiority (in this task) of smaller networks (with fewer neurons in the feedforward path), by showing that expertiments to evolve the ‘larger’ networks led to results that carried a number of clearly unimportant feedforward neurons. Of course,  it could be that alternative RNN traininng methods may be able to find RNNs of this architecture that effectively used all of its feedforward neurons, and perhaps produced better overall predictions. However, in the context of our favoured RNN training method, this visualisation has provided very useful information, helping us feel justified to prune from future investigations the idea of allowing longer training times for RNNs with larger feedforward layers.        

In summary, we have investigated the use of evolved recurrent neural networks for exploiting a newly available data stream in certain quarters of the supermarket refrigeration control industry. Results are largely promising, indicating that there is potential to deploy this effectively in the industry, leading to significant savings for supermarkets and to benefits for public health. We are currently further developing and refining the system with a view to rollout in the near future.  
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Figure 20:  4x10x8x1, 15 minute prediction, showing importance values.  Feed forward neurons: H0 – H9; Recurrent neurons: H10 – H17
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Figure 21:  4x8x8x1, 15 minute prediction, showing importance values.  Feed forward neurons: H0 – H7; Recurrent neurons: H8 – H15
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