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| nfor mation vs knowledge:
a ssimple example about a software house

Consulting low-level information in the DB:

How many videogames of type XY Z
were sold for cussomer ABC in 99/99/99?

Users- low managerial level



Now suppose we extract the following
high-level knowledge from the database:

|F (Age < 18) AND (Job = student)
THEN (Buy = videogame) (prob.=90%)

We can ask: Which customers have a high
probability of buying videogames?

Users- high managerial level



Desirable Properties of the
discovered knowledge

* Accurate (as much as possible)
* Comprehensible by the human user

* Interesting (useful / new / surprising)



Data Mining Tasks
Types of problem to be solved:
Classification
Clustering

etc., etc.



Knowledge Discovery Paradigms
Type of method used to solvethe task:
ruleinduction and decision trees
genetic algorithms
genetic programming

etc, etc;



Classfication

Each example belongsto apredefined class

Each example consists of:
» aclass(or goal) attribute
o aset of predicting attributes

Theaim isto predict the dassof an example,
given its predicting attributes values

[Hand 97], [Michie & al. 94]



Data partitioning for the classification task.

training data test data
(known class) (unknown class)
goal . .. | goal
C ?
b ?
a ?
a ?
b ?
C ?
a ?




What isthe next number in the sequence:
[Bramer 96]

1,4,9, 16, ? (training data)
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A possible answer is 20, based
on the generator polynomium:

(-5n* + 50n° -151n° + 250n -120) / 24

Both n” and the complex polynomium are
100% consistent with thetraining data
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Classification example [Freitas& Lavington 98]:

Goal isto predict whether or not a
customer will buy a product, given
a customer’s Sex, Country and Age

Sex | Country | Age | Buy?

(god)
M France 25 yes
M England | 21 yes
F France 23 yes
F England | 34 yes
F France 30 no
M | Germany | 21 no
M | Germany| 20 no
F | Germany | 18 no
F France 34 no
M France 25 no
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Clasgfication rulesfor the above data:

|F (Country = ‘Germany’) THEN (Buy = ‘no)
|F (Country =‘England’) THEN (Buy = ‘yes)

|F (Country = ‘France & Age< 25)
THEN (Buy = ‘yes)

|F (Country ="‘France & Age> 25)
THEN (Buy =‘'no)
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Classification regarded as data separation

2 predicting attributes (A and Ay)
2 classes (*+ and ‘-")

Az

+ +
++ +
++ +
+ +
+ +

+++ - -

original
data

Which classifier will be more
accur ate on unseen test data?

A1

Az Az
++ | --- +4+ | ---
+++| -- +++| --
+++ |- - +++ |- -
++ |- - - ++ |- - -
++ |- - ++ |- -
+4++ |- - +++ |- -
Aq Aq
separ ating separ ating
by A; values by A, values
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Clustering

Salary
0 00O 00O 0
00O 0
0O 0 0O O
0O O 00
Age

Thesystem must “invent” classes,
by grouping similar examples
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Salary
0 00 C
000

After clustering, we can
apply classification methods

Age
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Criteriafor finding good clusters
Minimize within-cluster distance
M aximize between-cluster distance

Favor a small number of clusters
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| nduction of Classification Rules

Basic idea: improve candidaterules, via
generalization and specialization operations

Example of specialization:

|F (Country = ‘France’) THEN ...
lspeci alization

|F (Country = ‘France’ & Age<25) THEN ...

Generalization isthe opposite oper ation
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Decision Trees

Inter nal nodes. predicting attributes
leaf nodes. predicted class

To classify a new example, push it down
thetree, until reaching a leaf node

Country?

Germany France England

DI

<25 \fs

¥




Treeisbuilt by selecting
one-attribute-at-a-time (local search)

LOOP
Select attributethat best separates classes;
Partition the set of examplesin the current
node according to selected attribute's values,

Repeat this process, recursively;
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Drawback of Local search
(select one-attribute-at-a-time)

Problemswith attribute interaction

Exclusive OR (XOR) problem:

A1 A, XOR
O 0 O
O 1 1
1 0 1
1 1 O

L ooking only at one attribute gives us no
useful information for predicting XOR
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Example of Simpson’s Paradox

Renewal of magazine subscriptions, by month
and subscription category

[Wagner 82], [Newson 91]

subscription category

montn gift previous direct sub. catalog total
renewal mail service agent

Jan
total (3,954 18,364 2,986 20,862 149 45,955
renew|2,918 14,488 1,783 4343 13 23,545

rate 10.812 0.789 0.597 0.208 0.087 0.512

Feb
total | 884 5140 2224 864 45 9,157
renew| /04 3,907 1134 122 2 5,869

rate |0.796 0.760 0.510 0.141 0.044 0.641
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Genetic Algorithmsfor Data Mining

In data mining, GA can be used to:

(a) optimize parametersfor other
kinds of data mining algorithm

(b) discover knowledge by itself
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Using GAsfor parameter optimization

(a) finding a good set of attribute weights
for nearest-neighbor algorithms

(b) finding a good set of weights and/or
a good topology for a neural network

(c) selecting a good set of attributes
to be given to another algorithm
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GAs can also be used for r ule discovery

Why should we consider using
GAsrather than ruleinduction?

Both paradigms can discover
high-level “I1F-THEN?” rules, but:
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Most ruleinduction algorithms select
one-attribute-at-a-time (local search)

GAs perform a global search that
copes better with attribute interaction

Rules are evaluated as a
whole by the fithess function

Genetic operators can modify
many-attributes-at-a-time
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Hybrid deasion tree/GA
[Carvalho & Freitas 2000a, 2000b]

» deasion tree used to classfy “easy” examples
(it exploits smplicity and efficiency
of deasion tree algorithms)

e GA used to clasgfy “difficult” examples
(it exploits GA ability to cope better with
attribute interaction)
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| dentifying easy/difficult examples
In adecision tree

“difficult”

30



Basic ideas of GAsfor rule discovery:

(a) Candidaterulesarerepresented
asindividuals of a population

(b) Rulequality iscomputed
by afitness function

(c) Using task-specific knowledge
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Classification with
Genetic Algorithms

1) Each individual representsarule s,
I.e. an independent candidate solution

2) Each individual representsa singlerule

A set of individuals (or entire population)
represents a candidate solution (rule set)
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I ndividual Representation

In GABIL, an individual isarule set,
encoded as a bit string [DeJong et al. 93]

It usesk bitsfor thek values
of a categorical attribute

If all k bitsof an attributeareset to 1
the attributeisnot used by therule

33



Goal attribute: Buy furniture (y/n)
Marital _status. Single/Married/Divor ced
House: Own/Rented/Univer sity

Marital status House Buy?
Thestring 011 100 1

representstherule

|F (Marital_status=M or D) and (House= O)
THEN (Buy furniture=y)



An individual isavariable-length string
representing a set of fixed-length rules

rulel rule2
011 100 1 | 101 110 0

Mutation: traditional bit inverson

Crossover: corresponding crossover pointsin
the two parents must semantically match
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Example of crossover in GABIL

If aparent is“cut” in the second bit of arule,
the other parent must also be cut in the second
bit of arule, e.q.:

O]ll 100 1 101 110 O
010 101 1 1ﬂ1 101 1 101 111 O
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| ndividual representation

In GIL an individual isa set of rules,
using a high-level encoding [Janikow 93]

rulel rule?2
(A=1) and (B=2or 3) | (C=2)

Thiskind of high-level encodingis
mor e efficient for continuous attributes
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Representing the predicted class
e included in the genome (and evolved)

e not included in the genome
e all rulespredict the same class

 for agiven rule antecedent, choose
class maximizing rule quality
[Greene & Smith 93], [Noda et al. 99]
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Task-specific genetic operators

generalizing/specializing mutation
[Janikow 93], [Liu & Kwok 2000]

Example of specializing mutation:

IF (Age<30) ... AND ... THEN ..
lspeci alization

IF (Age<25) ... AND ... THEN ...
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gener alizing/specializing cr ossover
[Giordana et al 94], [Anglano et al. 1998]

generalizing crossover - logical OR
specializing crossover - logical AND

generalizing specializing

10/1 ﬂlll 0001
01/0 110 ﬂooo

40



GIL has special genetic operators
for handling: [Janikow 93]

e ruleseats
e rules
e ruleconditions

Operators can perform generalization,
specialization or other operation
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Generalization at therule-set level in GIL:

Given two individuals, copy arule
from an individual to the other

Indivy: | rule (or) | rule

W

Indiv,: | rule | (or) | rule | (or)| rule




Relevance-Based Rule Pruning

remove some conditionsfrom arule
(smplifiesand generalizestherule)

Basicidea: thelessrelevant arule
condition is, the higher the probability
of removing that condition

Thisbasicideawasused e.g. in:
[Liu & Kwok 2000], [Carvalho & Freitas 2000a]
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Fitness Functions for Classification

 at least a measure of predictive accuracy

» possibly, also a measur e of comprehensbility

(the fewer the number of rulesand
rule conditions, the better)

E.g.. complexity = 2 #rules + #conditions
[Janikow 93]



e possbly, also ameasure of ruleinterestingness
[Noda et al. 1999

motivation for interestingnessmeasur es.
|F (pregnant) THEN (sex = ‘female’)
(accur ate, comprehensible, uninteresting)
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« Standard approach to combine accuracy,
comprehensibility and interestingness.
weighted fitness functions

* Problem: non-commensur ate obj ectives

o Solution: multi-objective EAS
[Bhattacharyya 2000a, 2000b], [Kim et al. 2000]
[Emmanouilidis et al. 2000]
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Paralle GA

« Parallelizefitness computation

* Fitness of many individuals can be
computed in parallel (each processor
evaluates a subset of individuals)

* Fitnessof a singleindividual can be
computed in parallel by p processors
(data distributed across p processor s)

See[Freitas & Lavington 98], [Flockhart & Radcliffe 95],
[Giordana & Neri 95],[JAnglano et al 97],[Araujo et al 99]
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Clustering with GA

Simplerepresentation:
e One gene per object to be clustered

» each gene=1d of the cluster
to which the object belongs

E.g. - 10 objects, 4 clusters:
BCBBADDCAD

48



Advantage: fixed-length individual

Disadvantages [Falkenauer 98]:

* high redundancy
eg.(ABBA)and (B AAB)

e crossover and mutation problems

 isnot scalablew.r.t. No. of objects
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Graph-based clustering [Park & Song 98]

Each datainstanceisanodein agraph
A cluster isagroup of connected nodes

) 2
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Adjacency-based representation:
A vector of N integer elements, where
N = No. of instancesto be clustered.

I-th gene with value| meansthat the nodesi
and | are connected by alink in the graph

E.g. the above clustering could be represented
by: 1=<2,1,5,3,3>

Sear ch spacesize: (N-)M
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Extending adjacency representation
with task-specific knowledge:

Thei-th gene can takeon avalue|
only if j isone of the k nearest
neighbours of thei-th instance

sear ch space size: k™
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Advantages of thisrepresentation:

» doesnot require prespecified
number of clusters

« does not require special genetic
operatorsto produce valid offspring

* knowledge-based representation
reducesthe size of the search space
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Disadvantages of thisrepresentation:

* not scalablefor large data sets (genome
length isN, where N isthe No. of instances)

* redundancy - several genotypes correspond
to the same phenotype



Clustering with hybrid GA/K-means
[Hall et al. 99]

GA optimizeslocation of cluster centroids

I ndividual representation:
amatrix of cx n cluster centers
(c = No. of clusters, f = No. of features)

My . .... M 1 fitness based on
distances from

e centroids
\Y P M ¢ (K-means)
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Attribute selection with GA

Simple Individual Representation:
One genefor each predicting attribute

Each gene can take on 2 values.
O (attrib. ignored), or 1 (attrib. selected)

Example: 01101000
(attributes 2, 3, and 5 are selected)

See[Vafaie & Delong 93], [Bala et al. 95]
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Fitness depends on the performance
of a data mining algorithm with the
selected attributes (GA isawrapper)

Fitness function can include a penalty
for individualswith many attributes
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Mor e elaborated individual encoding:
[Cherkauer & Shavlik 97]

Each gene can contain an
attribute (A;) or be empty (0)

EX.: OOA7A7A2 OA7A5OO
(Sel ected attributes: A, As, A7)
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Advantages of the elabor ated encoding:

Repeated attributesreduces
loss of genetic diversity

Individual® slength does not depend on
the number of attributes being mined

I ndividual containsinfo about relative
Importance of selected attributes
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GA for selecting attributes for
an ensemble of classifiers

[Guerra-Salcedo & Whitley 99]
Each GA run saects an attribute subset

Each salected attribute subset isused
to build one classfier of the ensemble
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Genetic Programming
for Clasgfication

Standard approach:

terminal set: predicting attributes,
random constant gener ator

function set: mathematical,
comparison and logical operators

each individual isa “rule”
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Classification: compar e the output
of theroot node against a threshold

For an m class problem, run GP m times: each
time we solve a 2-class problem

(oneclassisthe“+” classand all other classes

are grouped into a “-” class)
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Genetic Programming for Classification
Main problemswith standard approach

Closure property requiresthat all
tree nodesreturn the samedatatype

Size and complexity of GP trees
make them difficult to under stand
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Non-standard approaches
for Classification with GP

“Booleanize’ attributes
and function set

Constrained-syntax GP

Grammar -based GP



Booleanize attributes and use logical
operators(and, or) in the function set

[Hu 98], [Eggermont et al 99], [Bojarczuk et al 99]

Property of closureissatisfied
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Constrained-syntax GP

For each function used in the function set,
specify thetype of itsarguments and the
type of itsresult

Crossover and mutation are modified
to respect the defined restrictions

See e.g. [Bhattacharyya et al. 98]
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Functions|datatype of input datatype
arguments of output

+,-,*%,/ |(real, real) real

<, > (real, real) boolean

AND, OR |(boolean, boolean) | boolean

| F (boolean, boolean or |boolean

real, boolean or real)
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Grammar-based GP

Basicidea: use a grammar to definethe
format of rules[Wong & Leung 2000]

The placement of a symboal in the
tree must be allowed by the grammar

To create an individual, a complete derivation

Is performed from the
start symbol of the grammar
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EX.: predicting attributes: sex, age, X_ray
goal attributes: disease 1, disease 2

Rule - Rulel | Rule2

Rulel - if Antecl then Consl

Rule2 - if Antec2 then Cons2

Antecl - Sex _cond and Age cond

Antec2 - Age cond and X _ray_cond

Sex_cond -» O |“sex =M" | “sex = F”

Consl - Diseasel
Diseasel - “diseasel=yes’ | “diseasel=no"
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Example: Rule

RJIel

i ﬂcw\consl

Sex_cond ancl Age cond “diseasel=no”

|

F" []

“%X
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Advantages of grammar-based GP:

e usesdomain knowledge
e avoidsthe need for closed function set

Disadvantages of grammar-based GP:

e grammar isdomain-specific
e reducesthe autonomy of the algorithm to
discover novdl, surprising knowledge

71



Constructive I nduction

Motivation - gener ate “higher-level”
attributes, such as:

“Income > Expenditure?”

which can be used to
generaterulessuch as.

|F (“Income > Expenditure?’ = “yes’) ...
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Note that the condition:
(“I'ncome > Expenditure?’ = “yes’)

correspondsto an “infinite’” number
of conditions of the form:
(Income > value) AND (Expenditure < value)
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Constructive induction with GP [Hu 98]
1st step: “booleanize’ all the attributes

E.g.: valuesof attribute Age can be
divided into 2 groups. Age<v, Age>vV

(v isautomatically chosen)

2nd step:
apply GP to construct new attributes
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Each individual represents an attribute

Terminals: booleanized attributes
Functions: logical operators (and, not)

All terminal and function
symbolsreturn boolean values

(meetsthe closurerequirement)
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Conclusions

e Motivation for data mining with GA/GP:
to cope with attribute interaction better
than local, greedy ruleinduction methods

* Need for task-specific genetic operators
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 GP’srepresentational power ismore
useful to construct new attributes and
discover novel knowledge

* Fitnessfunction should consider
accuracy, comprehensibility, and
Interestigness —which suggests
multi-objective algorithms
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