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Information vs knowledge:
    a simple example about a software house

Consulting low-level information in the DB:

How many videogames of type XYZ
were sold for customer ABC in 99/99/99?

Users - low managerial level
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Now suppose we extract the following
high-level knowledge from the database:

IF (Age < 18) AND (Job = student)
THEN (Buy = videogame)     (prob.=90%)

We can ask: Which customers have a high
probability of buying videogames?

Users - high managerial level
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Desirable Properties of the
discovered knowledge

* Accurate (as much as possible)

* Comprehensible by the human user

* Interesting  (useful / new / surprising)
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Data Mining Tasks

Types of problem to be solved:

Classification

Clustering

etc., etc.
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Knowledge Discovery Paradigms

Type of method used to solve the task:

rule induction and decision trees

genetic algorithms

genetic programming

etc, etc;
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Classification

Each example belongs to a predefined class

Each example consists of:
• a class (or goal) attr ibute
• a set of predicting attr ibutes

The aim is to predict the class of an example,
given its predicting attr ibutes’ values
[Hand 97], [M ichie et al. 94]
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Data partitioning for the classification task.

training data                      test data
(known class)               (unknown class)

   .  .  .      goal                     .  .  .       goal
                  c                                         ?
                  b                                         ?
                  a                                         ?
                  a                                         ?
                  b                                         ?
                  c                                         ?
                  a                                         ?



11

What is the next number in the sequence:
[Bramer 96]

1, 4, 9, 16, ?        (training data)
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A possible answer is 20, based
on the generator polynomium:

(-5n4 + 50n3 -151n2 + 250n -120) / 24

Both n2 and the complex polynomium are
100% consistent with the training data
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Classification example [Freitas & Lavington 98]:

Goal is to predict whether or not a
customer will buy a product, given
a customer’s Sex, Country and Age

Sex Country Age Buy?
(goal)

M France 25 yes
M England 21 yes
F France 23 yes
F England 34 yes
F France 30 no
M Germany 21 no
M Germany 20 no
F Germany 18 no
F France 34 no
M France 55 no
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Classification rules for the above data:

IF (Country = ‘Germany’) THEN (Buy = ‘no’)

IF (Country = ‘England’) THEN (Buy = ‘yes’)

IF (Country = ‘France’ & Age ≤≤≤≤ 25)
    THEN (Buy = ‘yes’)

IF (Country = ‘France’ & Age > 25)
    THEN (Buy = ‘no’)
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Classification regarded as data separation
2 predicting attributes (A1 and A2)
2 classes (‘+’ and ‘-’)
A2                      A2                   A2
  + +     - - -             + +      - - -           + +     - - -
  + + +    - -             + + +   - -           + + +    - -
  + + +  -    -           + + +  -    -          + + +  -    -
  -   -       - -             -   -       - -           -   -       - -
   + +    -  -  -           + +    -  -  -          + +    -  -  -
  + +     -  -              + +     -  -            + +     -  -
  + + +   -  -            + + +   -  -           + + +   -  -
                     A1                     A1                   A1
    original              separating          separating
      data                by A1 values       by A2 values

Which classifier will be more
accurate on unseen test data?
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Cluster ing

Salary
       o  o o  o               o  o  o       o
         o  o  o                            o

      o   o       o                  o    o
         o     o             o   o
                                                         Age

The system  must “ invent” classes,
by grouping similar examples



18

Salary
      o  o o  o               o  o  o       o
        o  o  o                            o

      o   o     o                    o    o
          o     o              o   o
                                                            Age

After clustering, we can
apply classification methods
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 Criteria for finding good clusters

Minimize within-cluster distance

Maximize between-cluster distance

Favor a small number of clusters
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Induction of Classification Rules

Basic idea: improve candidate rules, via
generalization and specialization operations

Example of specialization:

IF (Country = ‘France’)                      THEN ...
                                                     specialization

IF (Country = ‘France’ & Age ≤≤≤≤ 25)  THEN ...

Generalization is the opposite operation
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Decision Trees

internal nodes: predicting attributes
leaf nodes: predicted class

To classify a new example, push it down
the tree, until reaching a leaf node

                            Country?

  Germany            France          England

    no                        Age                        yes

                       ≤≤≤≤ 25            > 25

                      yes                   no
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Tree is built by selecting
one-attribute-at-a-time  (local search)

LOOP
  Select attribute that best separates classes;
  Partition the set of examples in the current
  node according to selected attribute’s values;

Repeat this process, recursively;
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 Drawback of Local search
(select one-attribute-at-a-time)

Problems with attribute interaction

Exclusive OR (XOR) problem:
A1   A2   XOR
0      0       0
0      1       1
1      0       1
1      1       0

Looking only at one attribute gives us no
useful information for predicting XOR
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Example of Simpson’s Paradox

Renewal of magazine subscriptions, by month
and subscription category
[Wagner 82], [Newson 91]

                        subscription category
month gift  previous  direct   sub.    catalog  total
                    renewal    mail   service  agent
Jan
total    3,954  18,364    2,986    20,862    149   45,955
renew 2,918   14,488    1,783     4,343      13   23,545
rate     0.812    0.789   0.597    0.208  0.087   0.512
Feb
total      884     5,140   2,224      864      45    9,157
renew   704     3,907   1,134      122        2    5,869
rate     0.796   0.760    0.510   0.141  0.044   0.641
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Genetic Algorithms for Data Mining

In data mining, GA can be used to:

(a) optimize parameters for other
       kinds of data mining algorithm

(b) discover knowledge by itself
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Using GAs for parameter optimization

(a) finding a good set of attribute weights
     for nearest-neighbor algorithms

(b) finding a good set of weights and/or
      a good topology for a neural network

(c) selecting a good set of attributes
      to be given to another algorithm
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GAs can also be used for r ule discovery

Why should we consider using
GAs rather than rule induction?

Both paradigms can discover
high-level “ IF-THEN” rules, but:
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Most rule induction algorithms select
one-attribute-at-a-time (local search)

GAs perform a global search that
copes better with attribute interaction

Rules are evaluated as a
whole by the fitness function

Genetic operators can modify
many-attributes-at-a-time
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Hybr id decision tree/GA
[Carvalho & Freitas 2000a, 2000b]

• decision tree used to classify “ easy” examples
(it exploits simplicity and eff iciency
  of decision tree algor ithms)

• GA used to classify “ diff icult” examples
(it exploits GA abili ty to cope better with
  att r ibute interaction)
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Identifying easy/difficult examples
   in a decision tree
                                      A1

           + + + +
         + + + + ++                A2

           + + +++
            “easy”
                                 + +           -   -
                                 - +            -   +
                                    “difficult”
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Basic ideas of GAs for rule discovery:

(a) Candidate rules are represented
        as individuals of a population
 

(b) Rule quality is computed
       by a fitness function

(c) Using task-specific knowledge
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Classification with
Genetic Algorithms

1) Each individual represents a rule set,
     i.e. an independent candidate solution

2) Each individual represents a single rule
   A set of individuals (or entire population)
   represents a candidate solution (rule set)
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Individual Representation

In GABIL, an individual is a rule set,
encoded as a bit string [DeJong et al. 93]

It uses k bits for the k values
of a categorical attribute

If all k bits of an attribute are set to 1
the attribute is not used by the rule
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Goal attribute: Buy furniture (y/n)
Marital_status: Single/Married/Divorced
House: Own/Rented/University

                      Marital_status    House   Buy?
The string              011                100       1

represents the rule
IF (Marital_status = M or D) and (House = O)
THEN (Buy furniture = y)
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An individual is a variable-length string
representing a set of fixed-length rules

      rule 1             rule 2
 011  100  1     101  110  0

Mutation: traditional bit inversion

Crossover: corresponding crossover points in
the two parents must semantically match
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Example of crossover in GABIL

if a parent is “cut” in the second bit of a rule,
the other parent must also be cut in the second
bit of a rule, e.g.:

 011  100  1     101  110  0
 010  101  1     111  101  1    101  111  0
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Individual representation

In GIL an individual is a set of rules,
using a high-level encoding     [Janikow 93]

               rule 1                rule 2
(A=1) and (B=2 or 3)      (C=2)

This kind of high-level encoding is
more efficient for continuous attributes
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Representing the predicted class

• included in the genome (and evolved)
 

• not included in the genome

• all rules predict the same class

• for a given rule antecedent, choose
       class maximizing rule quality
      [Greene & Smith 93], [Noda et al. 99]
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Task-specific genetic operators

generalizing/specializing mutation
[Janikow 93], [Liu & Kwok 2000]

Example of specializing mutation:
IF (Age ≤≤≤≤ 30)  ... AND ...  THEN ...
                specialization

IF (Age ≤≤≤≤ 25)  ... AND ...  THEN ...
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generalizing/specializing crossover
[Giordana et al 94], [Anglano et al. 1998]

generalizing crossover - logical OR
specializing crossover - logical AND

                 generalizing     specializing
0 1 0 1           0 1 1 1               0 0 0 1
1 0 1 0           1 1 1 0               1 0 0 0
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GIL has special genetic operators
for handling:  [Janikow 93]

• rule sets
• rules
• rule conditions
 

 Operators can perform generalization,
specialization or other operation
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 Generalization at the rule-set level in GIL:
 

 Given two individuals, copy a rule
 from an individual to the other
 

 Indiv1:     rule         (or)    rule
    copy
 

 Indiv2:    rule     (or)    rule     (or)    rule
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 Relevance-Based Rule Pruning
 

 remove some conditions from a rule
 (simplifies and generalizes the rule)
 

 Basic idea:   the less relevant a rule
 condition is, the higher the probability
 of removing that condition
 

 This basic idea was used e.g. in:
 [Liu & Kwok 2000], [Carvalho & Freitas 2000a]
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 Fitness Functions for Classification
 

• at least a measure of predictive accuracy

• possibly, also a measure of comprehensibility
(the fewer the number of rules and
 rule conditions, the better)

E.g.: complexity = 2 #rules + #conditions
[Janikow 93]
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• possibly, also a measure of rule interestingness
[Noda et al. 1999]

 

 motivation for interestingness measures:
 IF (pregnant) THEN (sex = ́ femalé )
 (accurate, comprehensible, uninteresting)
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• Standard approach to combine accuracy,
comprehensibility and interestingness:

   weighted fitness functions
 

• Problem: non-commensurate objectives

• Solution: multi-objective EAs
   [Bhattacharyya 2000a, 2000b], [Kim et al. 2000]

       [Emmanouilidis et al. 2000]



47

 Parallel GA
• Parallelize fitness computation

• Fitness of many individuals can be
   computed in parallel (each processor
   evaluates a subset of individuals)

• Fitness of a single individual can be
     computed in parallel by p processors
    (data distributed across p processors)
 See [Freitas & Lavington 98], [Flockhart & Radcliffe 95],
[Giordana & Neri 95],[Anglano et al 97],[Araujo et al 99]
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 Clustering with GA
 

 Simple representation:
 

• one gene per object to be clustered
 

• each gene = id of the cluster
    to which the object belongs
 

 E.g. - 10 objects, 4 clusters:
          B C B B A D D C A D
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 Advantage: fixed-length individual
 

 Disadvantages [Falkenauer 98]:
 

• high redundancy
   e.g. (A B B A) and (B A A B)
 

• crossover and mutation problems
 

• is not scalable w.r.t. No. of objects
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 Graph-based clustering [Park & Song 98]
 

 Each data instance is a node in a graph
 A cluster is a group of connected nodes
 

         1
                             4
         2
                       3         5
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 Adjacency-based representation:
 A vector of N integer elements, where
 N = No. of instances to be clustered.
 

 i-th gene with value j means that the nodes i
and j are connected by a link in the graph
 

 E.g. the above clustering could be represented
by:   I = < 2, 1, 5, 3, 3 >
 

 Search space size: (N-1)N
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 Extending adjacency representation
 with task-specific knowledge:
 

 The i-th gene can take on a value j
 only if j is one of the k nearest
 neighbours of the i-th instance
 

 search space size: kN
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 Advantages of this representation:
 

• does not require prespecified
    number of clusters
 

• does not require special genetic
   operators to produce valid offspring
 

• knowledge-based representation
   reduces the size of the search space
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 Disadvantages of this representation:
 

• not scalable for large data sets (genome
   length is N, where N is the No. of instances)
 

• redundancy - several genotypes correspond
   to the same phenotype
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 Clustering with hybrid GA/K-means
 [Hall et al. 99]
 

 GA optimizes location of cluster centroids
 

 Individual representation:
 a matrix of c x n cluster centers
 (c = No. of clusters, f = No. of features)
 

 M11  .  .  .  .  .  M 1f             fitness based on
 .   .   .   .   .   .   .                distances from
 .   .   .   .   .   .   .                centroids
 Mc1 .  .  .  .  .  Mcf             (K-means)
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 Attribute selection with GA
 

 Simple Individual Representation:
 One gene for each predicting attribute
 

 Each gene can take on 2 values:
 0 (attrib. ignored), or 1 (attrib. selected)
 

 Example: 0 1 1 0 1 0 0 0
 (attributes 2, 3, and 5 are selected)
 See [Vafaie & DeJong 93], [Bala et al. 95]
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 Fitness depends on the performance
 of a data mining algorithm with the
 selected attributes  (GA is a wrapper)
 

 

 Fitness function can include a penalty
 for individuals with many attributes
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 More elaborated individual encoding:
 [Cherkauer & Shavlik 97]
 

 Each gene can contain an
 attribute (Ai)  or be empty (0)
 

 Ex.:  0 0 A7 A7 A2 0 A7 A5 0 0
 (selected attributes: A2, A5, A7)
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Advantages of the elaborated encoding:
 

 Repeated attributes reduces
 loss of genetic diversity
 

 Individual´ s length does not depend on
 the number of attributes being mined
 

 Individual contains info about relative
importance of selected attributes
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 GA for selecting attributes for
 an ensemble of classifiers

 [Guerra-Salcedo & Whitley 99]
 

 Each GA run selects an attribute subset
 

 Each selected attribute subset is used
 to build one classifier of the ensemble
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 Genetic Programming
 for Classification

 

 Standard approach:
 

 terminal set: predicting attributes,
 random constant generator
 

 function set: mathematical,
 comparison and logical operators
 

 each individual is a “rule”
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 Classification: compare the output
 of the root node against a threshold
 

 For an m class problem, run GP m times: each
time we solve a 2-class problem
 

 (one class is the “+” class and all other classes
are grouped into a “-” class)
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 Genetic Programming for Classification
 

 Main problems with standard approach
 

 Closure property requires that all
 tree nodes return the same data type
 

 Size and complexity of GP trees
 make them difficult to understand
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 Non-standard approaches
 for Classification with GP

 

 “Booleanize” attributes
 and function set
 

 Constrained-syntax GP
 

 Grammar-based GP
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 Booleanize attributes and use logical
 operators (and, or) in the function set
 [Hu 98], [Eggermont et al 99], [Bojarczuk et al 99]
 

 Property of closure is satisfied
                               OR
 

 

               AND                          Age>65
 

     Age<18      Sex=‘M’
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 Constrained-syntax GP
 

 For each function used in the function set,
specify the type of its arguments and the
 type of its result
 

 Crossover and mutation are modified
 to respect the defined restrictions
 

 See e.g. [Bhattacharyya et al. 98]
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 Functions  datatype of input
arguments

 datatype
of output

 +, -, *, /  (real, real)  real
 ≤≤≤≤, >  (real, real)  boolean
 AND, OR  (boolean, boolean)  boolean
 IF  (boolean, boolean or

real, boolean or real)
 boolean

 

                                IF
 

                ≤≤≤≤                                OR
 

      9.6       Var1              ≤≤≤≤                     >
 

                              Var5      20      Var2     1.1
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 Grammar-based GP
 

 Basic idea: use a grammar to define the
 format of rules [Wong & Leung 2000]
 

 The placement of a symbol in the
 tree must be allowed by the grammar
 

 To create an individual, a complete derivation
is performed from the
 start symbol of the grammar
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Ex.: predicting attributes: sex, age, x_ray
         goal attributes: disease_1, disease_2

 Rule →→→→ Rule1 | Rule2
 Rule1 →→→→ if Antec1 then Cons1
 Rule2 →→→→ if Antec2 then Cons2
 Antec1 →→→→ Sex_cond and Age_cond
 Antec2 →→→→ Age_cond and X_ray_cond
 Sex_cond →→→→ ∅∅∅∅ | “sex = M” | “sex = F”
     .
     .
 Cons1 →→→→ Disease1
 Disease1 →→→→ “disease1=yes” | “disease1=no”
     .
     .
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  Example:          Rule
 

                           Rule1
 

                if    Antec1    then      Cons1
 

     Sex_cond  and  Age_cond   “disease1=no”
 

    “sex = F”                  ∅∅∅∅
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Advantages of grammar-based GP:

• uses domain knowledge
• avoids the need for closed function set
 

 Disadvantages of grammar-based GP:

• grammar is domain-specific
• reduces the autonomy of the algorithm to

discover novel, surprising knowledge
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 Constructive Induction
 

 Motivation - generate “higher-level”
 attributes, such as:
 

 “Income > Expenditure?”
 

 which can be used to
 generate rules such as:
 

 IF (“Income > Expenditure?” = “yes”) ...



73

 Note that the condition:
 (“Income > Expenditure?” = “yes”)
 

 corresponds to an “infinite” number
 of conditions of the form:
 (Income > value) AND (Expenditure < value)
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Constructive induction with GP [Hu 98]
 

 1st step: “booleanize” all the attributes
 

 E.g.: values of attribute Age can be
 divided into 2 groups: Age ≤≤≤≤ v, Age > v
 (v is automatically chosen)
 

 2nd step:
 apply GP to construct new attributes
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 Each individual represents an attribute
 

 Terminals: booleanized attributes
 Functions: logical operators (and, not)
 

 All terminal and function
 symbols return boolean values
 (meets the closure requirement)
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 Conclusions
 

• Motivation for data mining with GA/GP:
to cope with attribute interaction better
than local, greedy rule induction methods

• Need for task-specific genetic operators
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• GP’s representational power is more
useful to construct new attr ibutes and

    discover novel knowledge
 

• Fitness function should consider
   accuracy, comprehensibil ity, and
   interestigness – which suggests
   multi-objective algor ithms
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