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Abstract. A large number of biological pathways have been assembled
in later years, and are being stored in databases. Hence, the need for
methods to analyse these pathways has emerged. One class of meth-
ods compares pathways, in order to discover parts that are evolutionary
conserved between species or to discover intra-species similarites. Most
previous work has been focused on methods targeted at metabolic path-
ways utilising the EC enzyme hierarchy. Here, we propose a Gene On-
tology (GO) based approach for finding semantic local alignments when
comparing paths in biological pathways where the nodes are gene prod-
ucts. The method takes advantage of all three sub-ontologies, and uses a
measure of semantic similarity to calculate a match score between gene
products. Our proposed method is applicable to all types of biological
pathways, where nodes are gene products, e.g. regulatory pathways, sig-
nalling pathways and metabolic enzyme-to-enzyme pathways. It would
also be possible to extend the method to work with other types of nodes,
as long as there is an ontology or abstraction hierarchy available for cate-
gorising the nodes. We demonstrate that the method is useful for study-
ing protein regulatory pathways in S. cerevisiae, as well as metabolic
pathways for the same organism.

1 Introduction

A large number of biological pathways are being derived for many different
organisms such as S. cerevisiae and E. coli, and these are stored in various
databases such as KEGG[1] and EcoCyc[2]

There is a lack of and need for algorithms capable of searching for homologues
to pathway queries in a collection of known pathways [3]. These algorithms
should also return alignments between matching pathway fragments. Further-
more, these pathway alignment methods should rely on approximate, rather
than exact, matching in biological pathways [3, 4].

Previous work on comparative analysis of metabolic pathways has been ad-
dressed [5], where a combined approach was used which involves analysis and
comparison of biochemical data, pathway analysis using the elementary modes
concept, and comparative analysis of a set of completely sequenced genomes
where the EC hierarchy was used. A method for detection of functionally re-
lated enzyme clusters has been proposed [6], where topological properties of



metabolic pathways are considered. Another paper describes a method for topo-
logical motif search in biological pathways [7]. An approach for detecting frequent
subgraphs in biological pathways has been reported [4], however this method
does not directly address alignments. Furthermore, work on sequence similarity
based alignments between protein interaction networks has been reported [8].
However, none of these papers address the concept of approximate matching
and generalization using an abstraction hierarchy or ontology.

A method for deriving multiple alignments of paths in metabolic pathways
has been proposed [9], where the EC hierarchy is used for generalizing about en-
zymes. A method for alignment of metabolic pathways using a technique known
as approximate labeled sub-tree homeomorphism, has recently been proposed
[3], where the EC hierarchy once again is used for generalization.

Here, we propose a Gene Ontology (GO) [10] based local alignment method
for comparing biological pathways. To our knowledge, GO has not been used for
deriving semantic alignments of paths in biological pathways earlier. GO enables
the analysis of pathways where nodes are not only enzymes, but any kind of gene
product. Another novelty is the use of combined alignment scores involving all
three sub-ontologies of GO. Our proposed method is applicable to all types of
biological pathways, where nodes are gene products, e.g. regulatory pathways,
signalling pathways and metabolic enzyme-to-enzyme pathways. It would also
be possible to extend the method to work with other types of nodes, as long as
there is an ontology or abstraction hierarchy available for categorising the nodes.

2 Method

The method is summarized in figure 1, and involves the three procedures 1)
GO term probability calculation, 2) path extraction and 3) path alignment. The
first procedure calculates the probability of the GO terms using an annotation
database for one or several organisms. This knowledge is used in the alignment
procedure to calculate how semantically similar two gene products are. The sec-
ond procedure systematically extracts paths (sequences) of gene products from
the model- and query pathway graphs. This procedure enables the alignment
algorithm to handle graph structures. The path alignment procedure is where
each of the query paths is aligned with each of the model paths. This is done
using a modified version of the Smith-Waterman [12] local alignment algorithm,
tailored for the alphabet of gene product identifiers and using a GO semantic
similarity match function. Furthermore, a test for statistical significance of align-
ments is performed. More details regarding the three procedures are given in the
following.

GO term probability calculation

An annotation database D is used to calculate the probability of each GO term
using the method proposed by Lord et al. [11].

– For each gene product Gi in D:
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Fig. 1. The GOSAP method. Boxes with rounded corners represent procedures, and
quadratic boxes represent information.

• Increment a counter Cj for each annotated GO term Tj of Gi, and in-
crement the counter of each ancestor term of Tj.

– For each GO term Tk:
• Calculate the term probability p(Tk) = Ck

N
, where N is total number of

annotations in D.

Like in [11], both inheritance (is-a) and aggregation (part-of) relation types were
considered in the term probability calculation. Terms of all evidence types were
used.

Path extraction

A depth-first based algorithm is used to derive all paths originating from each
node in the pathway graph. Extension of a path ends whenever a leaf node or
a previously visited node is encountered (so that cycles are handled). Further-
more, only ”super-paths” are used in the subsequent path alignment, i.e. the set
of paths where no path is completely overlapping with another path. The objec-
tive is to obtain a small set of paths, while still covering the entire pathway graph.

Path alignment

The well-known Smith-Waterman algorithm, which was originally developed for
identification of common molecular subsequences [12], was here adapted for the
task of producing local alignments of paths of gene products. The scoring func-
tion sf used for a match is defined in equation 1, which is similar to [11] , and
in equation 2 [13].

sf (Gi, Gj) = max({SS(Tk, Tl) : Tk ∈ t(Gi), Tl ∈ t(Gj)}) (1)



SS(Tk, Tl) = −log2(pms(Tk, Tl)) (2)

Gx refers to a gene product, t(Gx) is the set of GO annotations for Gx, SS(Tk, Tl)
is the semantic similarity between GO molecular function terms Tk and Tl,
pms(Tk, Tl) is the probability of the minimum subsumer for Tk and Tl. The
minimum subsumer refers to the ancestor term with lowest probability that is
common to both terms. There is a reason for only using the molecular function
sub-ontology for driving the alignment procedure. If the process sub-ontology was
used instead, the alignment process would simply promote alignments where sin-
gle gene product pairs belong to similar processes, without enforcing this process
similarity throughout the complete alignment. The process- and cellular compo-
nent sub-ontologies were instead used (in combination with the molecular func-
tion ontology) to post-evaluate an alignment by calculating overall alignment
scores:

sfp(Gi, Gj) = sf (Gi, Gj) + sp(Gi, Gj) (3)

sfpc(Gi, Gj) = sf (Gi, Gj) + sp(Gi, Gj) + sc(Gi, Gj) (4)

The total alignment scores, denoted as SF , SFP and SFPC , are calculated by
summing up gene product comparison scores sf , sfp, sfpc from equations 1, 3 and
4, and possible gap penalties, over all positions in the locally aligned segment.
Hence, the scores sfp and sfpc enhance the ”resolution” of similarity between
sequences (paths) of gene products, providing differentiation between alignments
sharing similarity with respect to several sub-ontologies in combination.

When deriving an alignment using nucleotides or aminoacids, it is better to
start a new alignment when the best dynamic programming matrix option is
0, motivated by the assumption that scores of random matches are negative. In
GOSAP, a random match is expected to have the average term-to-term semantic
similarity 0.7 or less, based on an empirical term-to-term comparison for the GO
molecular function sub-graph. Furthermore, a linear gap penalty is used in the
local alignment algorithm.

Statistical significance of alignments

The alignment score itself may not be sufficient for judging the quality of an
alignment. Therefore, an assessment of the statistical significance of alignments
was performed according to the procedure described in [14]. A query path is
aligned against a large number of randomized versions of the model pathway,
where nodes keep their connectivity but where edges are randomly switched.
The p-value is defined as the share of randomized pathways that produce an
alignment with equal or higher score than the original alignment.

3 Results

We have tested our algorithm on protein regulatory pathways as well as metabolic
enzyme-to-enzyme pathways. Due to the space limitation we only report results
for a few experiments in order to illustrate how GOSAP can be used.



Protein regulatory pathways
Protein regulatory pathways from KEGG [1] were used. When a gene product
complex regulates another complex, a link is created from each gene product in
the regulating complex to each gene product in the regulated complex. In an
experiment, 195 super-paths extracted from the cell cycle regulatory pathway
for S. cerevisiae were used as model paths and 37 super-paths of the MAPK
regulatory pathway were used as queries. As these two pathways are quite dif-
ferent, few similarities are expected to be detected. Using a gap penalty of 1,
100 randomized models, and statistical significance threshold p ≤ 0.05, six align-
ments in total were found for 3 of the 37 queries. For example, the query path
”MSG5[i]>FUS3[p]>FAR1”, resulted in the following alignment with SF = 25.8
and a significance value pf = 0.04:

Q: MSG5[i]>FUS3 (GAP) FAR1

M: MIH1[d]>CDC28[ip]>SWI5[e]>SIC1

F: GO:0004725>GO:0004674 (GAP) GO:0019210

P: GO:0050875>GO:0006468 (GAP) GO:0000074

C: GO:0005737>GO:0005634 (GAP) GO:0005634

Q and M are the aligned paths for query and model, respectively. F shows the
GO molecular function alignment sequence, where a GO identifier represents the
minimum subsumer GO term for the two gene products under comparison. The
corresponding information for biological process and cellular component is shown
at P and C. Symbols within square brackets denote relation types as specified in
KEGG; ”i”=inhibition, ”d”=dephosphorylation, ”ip”=phosphorylation and in-
hibition, and ”e”=expression. For example, in the molecular function alignment,
gene products MSG5 and MIH1 have the minimum subsumer ”protein tyrosine
phosphatase activity” (GO:0004725). Even if the alignment is significant with
respect to the chosen threshold for pf , the score is considerably lower than the
identity score, which represents a perfect match. The identity score is defined as
the semantic score obtained when comparing the ungapped query alignment seg-
ment with itself, and is 36.4 for the query ”MSG5[i]>FUS3[p]>FAR1”. Hence,
SF is 71% of the identity score. However, another significant alignment for the
same query path was obtained using a combined score where ”FUS3[p]>FAR1” is
aligned against exactly the same sub-sequence (”FUS3[p]>FAR1”) in the model
with SFPC = 53.3 and a significance value pfpc = 0.04, demonstrating the utility
of using all three ontologies for scoring alignments. The path is present in both
the MAPK and cell cycle pathways i KEGG, because it is both an exit point
from the MAPK pathway and an entry point to the cell cycle pathway. All GO
identifiers in alignments are not explained due to limited space, please refer to
the Gene Ontology website (www.geneontology.org) for more details.

Assessing reverse engineered regulatory pathways

Apart from studying similarities among documented pathways, our method can
be used to assess hypothetical regulatory pathways derived using reverse engi-
neering techniques. An example is a pathway reported in [15] containing 12 gene
products and 14 edges, which was derived using a dynamic Bayesian network
technique and microarray gene expression data for the S. cerevisiae cell cycle.



It can be observed that only 3 of 14 edges in this pathway are identical to those
in the known KEGG regulatory pathway of the S. cerevisiae cell cycle. Hence,
it is expected that few similarities are detected by GOSAP.

The 11 super-paths that can be derived from this pathway were aligned
against 195 super-paths found in a KEGG regulatory pathway of the S. cerevisiae

cell cycle. Using a gap penalty of 1, 100 randomized models, and statistical
significance threshold p ≤ 0.05, one significant alignment was found for the query
path ”FAR1[?]>SIC1[?]>CLN2[?]>SIC1” with SFP = 76.6 and a significance
value pfp = 0.03:

Q: FAR1[?]>SIC1 (GAP) CLN2[?]>SIC1

M: FAR1[i]>CLN1[p]>SWI6[e]>CLN2[p]>SIC1

F: GO:0004861>GO:0019207 (GAP) GO:0016538>GO:0019210

P: GO:0007050|GO:0045786>GO:0000079 (GAP) GO:0000320|GO:0000321>GO:0000079

C: GO:0005634>GO:0005634 (GAP) GO:0005634>GO:0005634

A pipe sign ”|” in the process alignment means that the terms it separates are
equally good alternatives with respect to score. This alignment shows for exam-
ple that SIC1 and CLN1 have the molecular function ”kinase regulator activity”
(GO:0019207) and biological process ”regulation of cyclin dependent protein ki-
nase activity” (GO:0000079), in common. The correct sub-path ”CLN2[?]>SIC1”
in the model was captured, and the gap in the query sequence is aligned against
the transcription coactivator SWI6 in the model, suggesting that SWI6 is a step
that is missing in the corresponding pathway in the hypothetical network. Ad-
ditionally, clues to potential relation types for the query path are provided by
the model path, e.g. a phosphorylation relation (”p”) is feasible between CLN2
and SIC1. Once again, the utility of combined scores is demonstrated, since no
significant alignment could be found using the molecular function score alone
(pf ≥ 0.36). An identical significant alignment was found using all three sub-
ontologies.

Metabolic pathways

Metabolic enzyme-to-enzyme pathways are derived from ordinary metabolic
pathways by creating directed links between enzymes if the product of one enzy-
matic reaction is the substrate of another enzymatic reaction. GOSAP was used
to rediscover one of the findings in [3], where a significant alignment was detected
between the isoleucine biosynthesis- and valine biosynthesis metabolic pathways
for S. cerevisiae. Using a gap penalty of 1 and 100 randomized models, an align-
ment was found where the query path ”ILV2[E]>ILV5[E]>ILV3[?]>BAT1” from
the isoleucine biosynthesis pathway is aligned with an identical path in the valine
biosynthesis model pathway, with SF = 51.3 and a significance value pf = 0.07.
Another almost identical alignment with identical SF and pf was also found,
but where the last model gene product BAT1 was replaced with BAT2. This
is expected, since the gene products have the same functional annotation and
the corresponding reaction is annotated with both enzymes. These results are
consistent with those in [3]. Other alignments in this case had pf ≥ 0.17 and
SF ≤ 49.5. Using a combined score SFPC = 118.0 and pfpc = 0.02 the align-
ment with BAT1 as last gene product in the model path was separated from



the alignment where BAT2 is last gene product (SFPC = 113.4, pfpc = 0.11).
This is due to differing GO cellular component annotation for BAT1 and BAT2.
BAT1 is active in the mitochondrial matrix, whereas BAT2 is annotated with
the less specific ”cytoplasm” term.

4 Discussion

We have developed a method for extracting and aligning paths from biological
pathways containing gene products, where GO is used to annotate the gene
products and GO based semantic similarity for all three sub-ontologies is used to
score alignments. In the application of assessing hypothetical pathways, GOSAP
is potentially useful for correction of query pathway segments that diverge from
the model pathway, and also for predicting what gene products that may be
missing in the query pathway.

Execution times for pathway comparisons on a Sun workstation varied from
a few seconds for the metabolic network comparison (pathways have 4 and 5
nodes, and 4 super-paths each), to one hour when comparing the MAPK pathway
against the cell cycle pathway (pathways have 49 and 65 nodes, 37 and 195 super-
paths, respectively). This is when using 100 randomized models for statistical
significance calculation. We plan to further develop the alignment algorithm by
introducing heuristics, in order to reduce the computational complexity.

There are different parameter settings in GOSAP that must be considered,
especially the gap penalty and the significance value. Currently, these settings
must be set manually by the user. It was for example empirically observed that
the significance values for alignments in general increase as a function of decreas-
ing gap penalty, i.e. many alignments involving randomized graphs get higher
scores, which in turn makes it harder to get significant alignments. As for the
gap penalty, increasing gap penalties promote the matching of less similar gene
products in order to avoid gaps, whereas very low penalties (or no penalty at
all) results in fragmented alignments where only small sub-segments match. Dif-
ferent gap penalty strategies, such as affine gap costs, would also be of interest
to investigate.

The performance of GOSAP depends on the quality of the GO annotations.
Both regarding experimental evidence (e.g. ”traceable author statement”) and
regarding specificity of GO terms for individual gene products. Currently, anno-
tations of all evidence types are used, since we found it unfair to disqualify any
specific type. But it is generally the opinion that ”traceable author statement”
is the most reliable type of annotation. As for specificity, some gene products
are annotated with very specific terms and some are not. GOSAP would benefit
from future, more fine grained versions of GO.

Furthermore, a multiple alignment extension of GOSAP similar to the work
of [9] would enable the study of more than two species or paths at a time. It
would also be possible to develop a measure of how semantically similar entire
pathways are, based on the current method of comparing individual paths in
pathways. GOSAP could in fact be generalised to cover any type of pathway or



graph from any domain, as long as there are abstraction hierarchies or ontologies
available for the different node types.
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